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Grassmann Defective Surfaces.

CLAUDIO FONTANARI

Sunto. – Una varietà proiettiva si dice (1 , h)-difettiva se la dimensione della Gras-
smanniana delle rette contenute negli h-piani (h11)-secanti la varietà ha dimen-
sione minore dell’ordinario. Nel presente lavoro, ispirato a una classica nota di
Alessandro Terracini, si dimostra un criterio di (1 , h)-difettività per superficie al-
gebriche e si presentano alcune sue conseguenze: in particolare, si deduce che l’im-
mersione di Veronese di grado abbastanza alto di una superficie liscia con gruppo
di Picard isomorfo a Z non è (1 , h)-difettiva, estendendo così il risultato ottenuto
per P 2 dallo stesso Terracini, e si esibiscono nuovi esempi di superficie rigate
(1 , h)-difettive.

Summary. – A projective variety V is (1, h)-defective if the Grassmannian of lines con-
tained in the span of h11 independent points on V has dimension less than the ex-
pected one. In the present paper, which is inspired by classical work of Alessandro
Terracini, we prove a criterion of (1, h)-defectivity for algebraic surfaces and we dis-
cuss its applications to Veronese embeddings and to rational normal scrolls.

1. – Introduction.

Here we study complex projective surfaces from the point of view of Grass-
mann defectivity. Roughly speaking (but a precise definition is stated at the
beginning of section 2), given an algebraic surface S embedded in some projec-
tive space we are interested in the dimension of the Grassmannian of lines
contained in the span of h11 independent points on S . Of course there is a
naïve expectation suggested by an easy parameter count, but already in the
nineteen century it was clear that the expected dimension is not necessarily
attained. The exceptional surfaces are said to be (1 , h)-defective. For in-
stance, in the paper [9] published by London in 1890, the 3-Veronese embed-
ding of P 2 is claimed to be (1 , 4 )-defective (see Remark 2.2 in [8] for a modern
proof of this fact). Indeed, the study of Grassmann defectivity for Veronese
embeddings of P 2 historically arose as a variation of the so-called Waring
problem (see Problem 7.6 in [5]) and it was tackled from this point of view by
various authors, among whom we wish to mention at least Alessandro Terraci-
ni. In his beautiful paper [10], going back to 1915, he was able to prove that
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London’s example is the unique (1 , h)-defective Veronese embedding of P 2 .
The interested reader can find in [8] a modern revisitation of this classical re-
sult. Terracini’s method turns out to be quite powerful and it suggests more
general applications. Indeed, the present paper is entirely devoted to working
out Terracini’s ideas in the case of arbitrary algebraic surfaces.

In particular, after recalling some basic facts from [8], we present in sec-
tion 2 a compact characterization of (1 , h)-defective surfaces. As a conse-
quence, it follows that Terracini’s theorem holds for any smooth algebraic sur-
face S with Pic (S) `Z: namely, in section 3 we prove that high degree
Veronese embeddings of such surfaces are never (1 , h)-defective. Further-
more, our characterization can be also applied as an effective tool for produc-
ing examples: for instance, in section 4 we exhibit a new series of examples of
(1 , h)-defective surfaces, which are rational normal scrolls satisfying simple
numerical conditions.

My deepest gratitude goes to Ciro Ciliberto, who suggested the problem
and supported this research with his invaluable advice. It is also a pleasure to
thank Rita Pardini, who on many occasions patiently answered my questions
about algebraic surfaces.

This research was partially supported by MIUR (Italy).

2. – Preliminaries and the main result.

Let V%P r be an integral nondegenerate projective variety of dimension n
defined over the complex field C .

DEFINITION 1. – The h-secant variety Sech (V) of V is the Zariski closure of
the set ]p�P r : p lies in the span of h11 independent points of V (. V is h-de-
fective with h-defect d h (V) if

d h (V) 4 min ](n11)(h11)21, r(2dim Sech (V) D0 .

DEFINITION 2. – The (k , h)-Grassmann secant variety Seck , h (V) of V is the
Zariski closure of the set ]l�G(k , r) : l lies in the span of h11 independent
points of V (. V is (k , h)-defective with (k , h)-defect d k , h (V) if

d k , h (V)4min ](h11) n1(k11)(h2k), (k11)(r2k)(2dim Seck , h (V) D0 .

We recall the following results, taken from [8] but essentially already con-
tained in [10].

PROPOSITION 1. – Let V%P r be an integral nondegenerate projective vari-
ety of dimension n . Let s : Pk 3VKP r(k11)1k be the Segre embedding of
Pk 3V . Then V is (k , h)-defective with defect d k , h (V) 4d if and only if
s (Pk 3V) is h-defective with defect d h (s (Pk 3V) ) 4d .



GRASSMANN DEFECTIVE SURFACES 371

LEMMA 1. – Let V%P r be an integral nondegenerate projective variety of
dimension n . For kGr , let s : Pk 3VKP r(k11)1k be the Segre embedding of
Pk 3V . Fix p (0) , R , p (h) general points on V and l (0) , R , l (h) general points
in Pk , so that P ( j) »4 (l 0

( j) p ( j) , R , l k
( j) p ( j) ) is a general point on s (Pk 3V) %

P r(k11)1k for j40 R h ; finally, take a general point P� aP (0) , R , P (h) b. Then
there is a natural identification between:

l hyperplanes H%P r(k11)1k such that TP (Sech (s (Pk 3V) ) ) %H ;

l k-dimensional linear systems H of hyperplane sections of V%P r

with a projectivity v : H KPk such that all the elements of the linear system
pass through the points p ( j) �V and for every j the hyperplane section of the
linear system corresponding to l ( j) is tangent to V at p ( j) .

Let S%P r be a nondegenerate integral algebraic surface. If H is a hyper-
plane section of S , then P r 4PV , where V’H 0 (S , OS (H) ) and equality holds
if and only if S%P r is linearly normal. Moreover, PV naturally identifies to the
hyperplane linear system of S and for any effective divisor D on S the hyper-
plane sections of S passing through D form a linear system PV(2D).

THEOREM 1. – The surface S is (1, h)-defective with defect d if and only if

l either the linear system L(2h11 ) of hyperplane sections of S with h1

1 assigned general double points contains exactly 2r24h1d22 indepen-
dent pencils. In this case S sits in a (s12)-dimensional cone over a curve
with vertex a linear space of dimension sGh21, and rF2h1s13;

l or there exists an (h11)-dimensional involution D on S such that
2 dimPV(2D) 4h12r112min ]4(h11)21, 2r11(1d21, where D is
a general divisor in D.

PROOF. – By Proposition 1, S is (1 , h)-defective with defect d if and only if
s (P 1 3S) %P 2r11 is h-defective with defect d , i. e.

dim Sech (s (P 1 3S) ) 42r112cE4(h11)21(1)

where c»42r112min ]4(h11)21, 2r11(1dF1.
Hence if we take a general point P as in the statement of Lemma 1, then

TP (Sech (s (P 1 3S) ) ) is contained in exactly c independent hyperplanes Ht

(1 G tGc). By Lemma 1, each Ht gives rise to a pencil FHt of hyperplane sec-
tions of S all passing through h11 general points p (0) , R , p (h) of S in such a
way that for every p ( j) at least one curve of the pencil passes doubly through
p ( j) . By an infinitesimal Lemma already known to Terracini and reproved in
modern times by Ciliberto and Hirschowitz in [6], we have that every Ht is tan-
gent to s (P 1 3S) along a positive dimensional variety S passing through
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P (0) , R , P (h) (notice that by Bertini’s theorem S does not depend on t). The
points of S are indeed Segre images of pairs (l , p) such that for every t the
curve of FHt corresponding to l has a singular point in p . If S is one-dimen-
sional we have a priori two cases:

(i) s21 (S) 4 0
j40

h

P 1 3 ]p ( j) (, so that all the curves of FHt
pass doubly

through p (0) , R , p (h) ;

(ii) s21 (S) surjects on P 1 and projects to S over a curve D passing
through p (0) , R , p (h) , so that FHt

has D as a base curve.

Notice that if S is higher dimensional we fall a fortiori in case (ii).
In case (i) we have FHt

’ L(2h11 ) for every 1 G tGc . We claim that

dimaFH1
R FHc

DF
c

2
.

To check the claim, let aFH1
R FHc

b be spanned by the columns of a
matrix

gf01

f11

R

R

f0c

f1c
h

whose entries are hyperplane sections of S . Just making elementary opera-
tions on columns, we obtain

gf01

f11

R

R

f0x

f1x

0

g1x11

R

R

0

g1c
h

where

x4 dim a f01 R f0c b .

Since both f01 R f0x and g1x11 R g1c are linearly independent, we de-
duce

dimaFH1
R FHc

b F max ]x , c2x( F
c

2

and the claim is checked.
By the claim, to prove that all surfaces falling in this case are indeed h-de-

fective, it will be sufficient to show that expdim L(2h11 ) E
c

2
. Using (1) we

compute:

expdim L(2h11 ) 4r23(h11) Gr2
3

4
(2r132c) 4

4
22r2913c

4
E

c

2
21
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(notice that by definition of d we have cG2r11). Hence S is h-defective with
defect strictly greater than 1 and from [2], Classification Theorem 1.3, it fol-
lows that S sits in a (s12)-dimensional cone over a curve with vertex a linear
space of dimension sGh21, and that rF2h1s13. In particular, we have
rF2h11, so c42r24h1d22.

In case (ii), as p (0) , R , p (h) vary on S , the curve D moves in an (h11)-di-
mensional involution D (for the concept of an involution, see [2], § 5). If D pass
doubly through p (0) , R , p (h) , we may argue exactly as in case (i); otherwise,
the moving parts of the c independent pencils FHt

are contained in PV(2D)
and have to pass through p (0) , R , p (h) in correspondence with prescribed gen-
eral coefficients. Hence the generic fiber of the natural map

G(P 1 , PV(2D) ) K (P 1 )h11 /Aut (P 1 )

which associates to a one-dimensional linear system the (h11)-ple of coeffi-
cients corresponding to its curves through p (0) , R , p (h) , must have dimension
c21. It follows that

dim G(P 1 , PV(2D) )2 (h11)1JAut (P1 ) 4c21 ,

i.e.

2 dim PV(2D) 4h1c21 .

Conversely, from each of the two conditions described in the statement we ob-
tain exactly c independent pencils of hyperplane sections of S passing doubly
through any fixed h11 general points of S in correspondence of prescribed
general coefficients in P 1 . Applying Lemma 1 we deduce that TP (Sech (s (P 1 3

S) ) ) is contained in exactly c independent hyperplanes of P 2r11 ; hence
dim Sech (s (P 1 3S) ) 42r112c and s (P 1 3S) is h-defective with defect d .
Now the thesis directly follows from Proposition 1. r

3. – Application to Veronese embeddings.

We recall the following standard definition:

DEFINITION 3. – Let V be an algebraic variety and fix an ample divisor H
on V . Then for any nDD0 the n-Veronese of V (with respect to H) is the em-
bedding of V into PH 0 (V , nH) by the complete linear series NnHN .

COROLLARY 1. – Let S be an integral algebraic surface with Pic (S) 4Z
and let H be the ample divisor which generates Pic (S) over Z . If n c 0 and
hF2, then the n-Veronese of S is (1 , h)-defective if and only if for some inte-
ger m with 1 GmGn
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either

h

2h

h

G

F

G

h 0 (S , mH)22

h 0 (S , nH)22

2h 0 (S , (n2m) H)22

or

h

2h

3h

Gh 0 (S , mH)22

Gh 0 (S , nH)22

F2h 0 (S , nH)22h 0 (S , (n2m) H)22 .

PROOF. – We are going to apply Theorem 1. To begin with, notice that the
first possibility cannot occur. Indeed, if S sits in a cone over a curve C , then
there is a natural map f : SKC and f *(OC (1) ). F40 for any fiber F of f , con-
tradicting the assumption Pic (S) 4Z . Next, in this case we may rephrase the
second possibility in terms of linear systems. Indeed, by definition (see [2],
§ 5), an involution D is in particular an algebraic family of divisors
parametrized by a reduced variety. Hence the hypothesis Pic (S) 4Z implies
that all divisors in D are linearly equivalent and D turns out to be a linear sys-
tem. Now the thesis follows from Theorem 1 via a straightforward computa-
tion. r

THEOREM 2. – Let S be a smooth algebraic surface with Pic (S) 4Z . Then
there exists an integer n0 4n0 (S) such that for any nFn0 and hF2 the n-
Veronese of S is not (1 , h)-defective.

REMARK 1. – The classical case S4P 2 (where n0 »44) is stated in [10] on
p. 100 and in [8] as Theorem 1.4. However, there are many other interesting
examples of algebraic surfaces S with Pic (S) 4Z . Here we wish to recall at
least a couple of facts. If S(d) is the quasi-projective variety parametrizing
smooth surfaces of degree d in P 3 , by the Noether-Lefschetz theorem there is a
countable set of proper irreducible closed subvarieties of S(d) such that for
any point s outside the union of these subvarieties the corresponding surface
S has Pic (S) `Z generated by OS (1) (see [7], p. 341). Moreover, for every gF

2 there is a unique family of K3 surfaces of degree 2g22 in P g depending on
19 moduli, whose generic surface has Picard group generated by the hyper-
plane section (see [4], p. 108).

PROOF OF THEOREM 2. – Let H be as in the statement of Corollary 1. If K is
the canonical divisor on S , we have K4kH with k�Z . The Riemann-Roch



GRASSMANN DEFECTIVE SURFACES 375

theorem gives:

h 0 (S , aH)2h 1 (S , (k2a)H)1h 0 (S , (k2a)H) 4x1
1

2
(a 2 2ak) d

where x»4x(OS ) and d»4H 2 . Notice that if aDk we have H 1 (S , (k2a) H) 4

0 by the Kodaira vanishing theorem. Hence we may introduce the following
(biregular) invariant of S:

M»4 max
1 GaGk

h 1 ( (k2a) H)

so that for any b�Z

h 0 (S , bH) Gx1
1

2
(b 2 2bk) d1M .

Now, if we take nDk , by Corollary 1 the n-Veronese of S is (1 , h)-defective if
and only if for some m with 1 GmGn either

hGx1
1

2
(m 2 2mk) d1M22(2)

2hFx1
1

2
(n 2 2nk) d22(3)

hG2x1 ((n2m)2 2 (n2m) k) d12M22(4)

or

hGx1
1

2
(m 2 2mk) d1M22(5)

2hGx1
1

2
(n 2 2nk) d22(6)

3hF (2nm2m 2 2mk) d22M22(7)

In the sequel, we will denote by Ci , i�N , nonnegative constants depending
only on the numerical invariants k , x , d and M . We start by excluding the first
possibility. Indeed, from (2) and (3) we get

n 2 2knG2(m 2 2km)1C1 ,(8)

while (3) and (4) together give us

(2(n2m) )2 24kn14kmFn 2 2kn2C2 .(9)
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From (9) we deduce

(2(n2m) )2 Fn 2 13kn1min ]0, 24kn(2C2 ,

hence

(2(n2m) )2 F (n22NkN)2

for nFn0 (k , C2 ). It follows that

mG
n

2
1NkN

and from (8) we obtain

n 2 2knG
1

2
n 2 12NkN2 12NkNn1max ]0, 22kn(1C1 .

Therefore

1

2
n 2 GC3 n1C4

and if we take n0 c0 this is clearly impossible for any nFn0 . So the first case
cannot occur.

Next we turn to the second possibility. From (5) and (7) we get

g2n2
5

2
m1

1

2
kh mGC5 ,(10)

while (6) and (7) together give us

2(2n2m2k) mG
3

2
(n 2 2kn)1C6 .(11)

From (10) we deduce

nG
5

4
m2

1

4
k1

C5

2m
G

5

4
m2

1

4
k1

C5

2
,

hence

mF
4

5
n1

1

5
k2

2

5
C5 .

So using (11) we obtain

3

2
n 2 2

3

2
kn1C6 F2(2n2m2k) mF2(n2k) m

F2(n2k)g 4

5
n1

1

5
k2

2

5
C5h .
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Therefore

2
1

10
n 2 1C7 n1C8 F0

and if we take n0 c0 this is clearly impossible for any nFn0 . So the proof is
over. r

4. – Application to rational normal scrolls.

Turning to examples of (1 , h)-defective surface, the following holds.

THEOREM 3. – Let 0 Ea0 Ga1 and hF2 be integers. Assume that a0 1a1 F

2h and 2a0 Gh22, or a0 1a1 G2h and 2a1 F3h12, or a0 1a1 42h and h
even. Then the rational normal scroll S(a0 , a1 ) %Pa01a111 is (1 , h)-defec-
tive.

REMARK 2. – If we specialize to the case h42, we obtain that S(1 , 3 ) and
S(2 , 2 ) are the unique rational normal scrolls satisfying the numerical hy-
potheses of Theorem 3. We should expect this result, since it is classically
known that S(1 , 3 ) and S(2 , 2 ) are (1 , 2 )-defective and by the classification
of (1 , 2 )-defective surfaces due to Chiantini and Coppens (see [3]) these two
surfaces are indeed the unique smooth (1 , 2 )-defective surfaces.

PROOF OF THEOREM 3. – By Theorem 1, in order to prove that a scroll S4

S(a0 , a1 ) is (1 , h)-defective it is sufficient to exhibit a divisor D on S such
that

(12)

h 0 (S , OS (D) )

2h 0 (S , OS (H2D) )

Fh12

Fh12(a0 1a1 11)11

2min ]4(h11)21, 2(a0 1a1 11)11(1111 .

On the other hand, the theory of divisors on a (nonsingular) rational normal
scroll S is very well understood (see for instance [1] § 3.1 for a careful exposi-
tion of this subject). Namely, we have

Pic (S) `ZH5ZF(13)

where H is a divisor associated to the tautological sheaf OP(E) (1 ) of the corre-
sponding projective bundle P(E) and F is a divisor associated to the fiber
p* OP 1 (1 ) of the natural projection p : P(E) KP 1 . Moreover, since a global
section

s�H 0 (P(E), OP(E) (a)7p* OP 1 (b) )
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naturally identifies to a polynomial

s4 !
i01R1 ik4a , ijF0

s i0 R ik
X0

i0
R Xk

ik

(where X0 R Xk are homogeneous coordinates on the fiber of p : P(E) KP 1 and
s i0 R ik

�H 0 (P 1 , OP 1 (i0 a0 +R+ik ak +b))), we have

h 0 (S , OS (aH1bF) ) 4 !
i01R1 ik4a , ijF0

max ]i0 a0 1R1 ik ak 1b11, 0( .(14)

It follows from (13) that the divisor D in (12) is of the form D4aH1bF; more-
over, since (14) shows that h 0 (S , OS (aH1bF) ) 40 for aE0 and for a40 and
bE0, there are only two possibilities for D:

(i) D4bF

(ii) D4H2bF

with bF0.
In case (i), from (12) and (14) we get:

b11

2 max ]a0 2b11, 0(

h12(a0 1a1 11)11

Fh12

12 max ]a1 2b11, 0( F

2min ]4(h11)21, 2(a0 1a1 11)11(12 .

(15)

In case (ii), from (12) and (14) we get:

max ]a0 2b11, 0(

2b12

1max ]a1 2b11, 0( Fh12

Fh12(a0 1a1 11)11

2min ]4(h11)21, 2(a0 1a1 11)11(12 .

(16)

Let first a0 1a1 F2h . In this case, we choose D4bF with b4h11. Then the
first inequality of (15) is satisfied; moreover, the assumption 2a0 Gh22 im-
plies that also the second inequality of (15) holds.

Let now a0 1a1 G2h , so that in particular a0 Gh . As above, we choose D4

bF with b4h11. Then the first inequality of (15) is satisfied; moreover, the
assumption 2a1 F3h12 implies that also the second inequality of (15)
holds.

Let finally a0 1a1 42h and assume that h is even. Here we choose D4

H2bF with b4
h

2
, so that the second inequality of (16) is satisfied. If a0 F

h

2
21 4b21, then the assumption a0 1a1 F2h implies that also the second

inequality of (16) holds; if instead a0 E
h

2
21, then the assumption a1 F

3

2
h11

implies that also the second inequality of (16) holds.
Hence the proof is over. r
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