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Bollettino U. M. I.
(8) 7-B (2004), 335-355

Construction of a Natural Norm
for the Convection-Diffusion-Reaction Operator (*).

GIANCARLO SANGALLI

Sunto. – In questo lavoro si costruisce, mediante interpolazione, una norma naturale
per operatori lineari continui coercivi e non simmetrici. Più precisamente, si cerca
una norma con stesse le proprietà che ha la norma dell’energia quando si conside-
rano operatori simmetrici: si dimostrano cioè, rispetto a tale norma, stime di con-
tinuità e di inf-sup indipendenti dall’operatore. In particolare, si prende in conside-
razione l’operatore di diffusione-trasporto-reazione lineare: si ottengono quindi
stime di continuità e inf-sup indipendenti dai coefficienti dell’operatore, pertanto
significative anche nel regime di trasporto dominante. I risultati qui presentati
possono servire ad una più approfindita comprensione e analisi di tecniche nume-
riche per problemi non simmetrici.

Summary. – In this work, we construct, by means of the function space interpolation
theory, a natural norm for a generic linear coercive and non-symmetric operator.
We look for a norm which is the counterpart of the energy norm for symmetric ope-
rators. The natural norm allows for continuity and inf-sup conditions independent
of the operator. Particularly we consider the convection-diffusion-reaction opera-
tor, for which we obtain continuity and inf-sup conditions that are uniform with
respect to the operator coefficients, and therefore meaningful in the convection-
dominant regime. Our results are preliminary to a deeper understanding and
analysis of the numerical techniques for non-symmetric problems.

1. – Introduction.

In order to clarify the aim of this work, we first recall the well known prop-
erties of coercive and symmetric operators. Denote by Lsym such an operator,
defined on a Hilbert space V into its dual V *:

Lsym : VKV *,

(*) Comunicazione presentata a Milano in occasione del XVII Congresso
U.M.I.



GIANCARLO SANGALLI336

and let asym : V3VKR be the associated bilinear form

asym (w , v) »4V * aLsym w , vbV fV * aLsym v , wbV , (w , v�V .

Further, assume that the norm of V is the energy norm VwVV »4asym (w , w)1/2.
Then Lsym behaves as an isometry from V into V *, i.e., it has unitary norm and
its inverse has a unitary norm, too. This obvious fact can be expressed in terms
of continuity and inf-sup conditions:

continuity :

inf-sup:

V Lsym VVKV * »4 sup
w�V

sup
v�V

aLsym w , vb

VwVV VvVV

41

V Lsym
21

V

21
V *KV »4 inf

w�V
sup
v�V

aLsym w , vb

VwVV VvVV

41 .

(1)

In this sense, the energy norm is the natural norm. Consider, for example, the
problem Lsym u4 f , where u denote the solution for the source term f , and a
perturbed problem Lsym (u1du) 4 f1df , where df represent a perturbation
of the source term, then the relative effect on the solution is bounded by the
relative magnitude of the source perturbation:

VduVV

VuVV

G
Vdf VV *

V f VV *

.(2)

Moreover, the plain Galerkin F.E.M. for Lsym u4 f , i.e.,

.
/
´

Find uh �Vh such that

asym (uh , vh ) 4V * af , vh bV , (vh �Vh

(3)

gives an optimal discrete solution uh in the discrete space Vh %V:

Vu2uh VV G inf
wh�Vh

Vu2wh VV .(4)

Finally, optimal a-posteriori residual-based estimates for (3) can be proved
(see [16]). Given V%Rn , V4H 1

0 (V), and the coefficients kD0 and rF0 we
may consider, as an example of Lsym , the reaction-diffusion operator:

w O Lsym w»42kDw1rw .(5)

It is worth noting that the previous results (2) and (4) are independent of the
coefficients k and r in the example (5).

Consider now a coercive and non-symmetric operator L, still from V into
its dual V *, and let a(Q , Q) : V3VKR be the associated bilinear form (i.e.,
a(w , v) »4V * aL w , vbV , (w , v�V). We can split L into its symmetric part Lsym
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and its skew-symmetric part Lskew

L 4 Lsym 1 Lskew , a(w , v) 4asym (w , v)1askew (w , v),

in the usual way:

V * aLsym w , vbV »4asym (w , v) »4
1

2
(a(w , v)1a(v , w) ), (w , v�V ,

V * aLskew w , vbV »4askew (w , v) »4
1

2
(a(w , v)2a(v , w)), (w , v�V .

(6)

The example now is the convection-diffusion-reaction operator: given V4

H 1
0 (V), kD0, rF0 and b : VKRn we consider

w O L w»42kDw1b Q˜w1rw ;(7)

with the assumption div (b) 40, the splitting (6) is

Lsym w4

asym (w , v) 4

2kDw1rw ,

ks
V

˜w Q˜v1s
V

rwv ,

Lskew 4

askew (w , v) 4

b Q˜w ,

s
V

b Q˜wv ;

We still assume that the norm on V is the energy norm VwVV »4a(w , w)1/2
f

asym (w , w)1/2. The aim of this paper is to prove conditions similar to (1) for the
non-symmetric operator L; more precisely we construct a natural norm NNN QNNN
such that the continuity

sup
w�V

sup
v�V

aL w , vb

NNNwNNNNNNvNNN
G Cc E1Q(8)

and the inf-sup condition

inf
w�V

sup
v�V

aL w , vb

NNNwNNNNNNvNNN
F Cis D0(9)

hold true with constants Cc and Cis independent of L. Therefore, for the
example (7), Cc and Cis will be independent of the coefficients k , b and r.

It is clear that now, contrary to the symmetric case, the choice NNN QNNN»4V QVV

does not give (8)-(9). In the paper, we will use the function space interpolation
theory to obtain a suitable NNN QNNN. As for the symmetric case, the norm NNN QNNN ,
for which (8)-(9) hold true, depends on L and gives the natural topology for L.

This is the proper framework to understand the behavior of (7) for small
values of the diffusivity k , when the higher order term 2kD acts as a singular
perturbation on the lower order term b Q˜1r Id. Conditions (8)-(9) gives also
the proper framework for using some recent numerical methodologies devoted
to (7). Particularly, we mention the least-squares formulations in the context
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of finite element methods [4] or in the context of wavelet methods [8], and the
adaptive wavelet methods [7] (see also [1, 3, 6]).

More generally, (8)-(9) are the starting point for the classical analysis of
numerical methods for this class of operators. When the continuity and inf-sup
conditions are known for an operator L, then ideal numerical methods should
preserve them at the discrete level. This is straightforward for symmetric and
coercive operators, while in other contexts, e.g., for mixed formulations (see
[5]), this requires ad hoc numerical methods. On the contrary the error analy-
sis of numerical methods for (7) typically do not follow the classical argument
mentioned above and it is not completely satisfactory (see [12]). Then we hope
this paper could give some insights for a deeper theoretical understanding of
numerical methods for (7) (we refer to [12, § 4], [13] for a further discussion on
the topic).

This paper presents some of the results of [14]. Different estimates for the
operator (7) have been obtained by other authors: see for example the analysis
by Bertoluzza, Canuto and Tabacco in [2, § 2.1], or the paper by Dörfler [9].
The peculiarity of our paper is that both conditions (8)-(9) are obtained for (7).

The outline of the paper is as follows: in § 2 we present our methodology
for obtaining (8)-(9) in the case of a generic non-symmetric and coercive oper-
ator L; then we apply the theory first, in § 3, to the very simple one-dimension-
al (n41) convection-diffusion-reaction model problem, and then, in § 4, to the
multi dimensional (nD1) case, and discuss the results.

2. – The abstract framework.

In this section, we present our idea for obtaining uniform continuity and
inf-sup conditions (8)-(9).

Let V be a Hilbert space, and let V * be its dual. In the present section we
consider a generic coercive isomorphism L : VKV * and the associated bilin-
ear form

a(w , v) »4V * aL w , vbV , (w , v�V ;(10)

The problem of solving L u4 f for the unknown u�V admits the variational
formulation:

find u�V such that a(u , v) 4V * a f , vbV , (v�V .(11)

We also assume that V QVV , the norm of V , is the energy norm for L, i.e.

a(w , w) 4VwVV
2 , (w�V .(12)

We split L 4 Lsym 1 Lskew , and introduce the bilinear forms asym (Q , Q) and
askew (Q , Q) on V3V according to (6). Lsym is the symmetric part of L (i.e.,
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asym (w , v) 4asym (v , w), (w , v�V), and we have

asym (w , w) 4

asym (w , v) G

VwVV
2 ,

VwVV VvVV ,

(w�V ,

(w , v�V ,
(13)

while Lskew is the skew-symmetric part of L (i.e., askew (w , v) 42askew (v , w),
(w , v�V).

Finally, we define

VwVA0
2 »4VwVV

2 , (w�V ,

VwVA1
2 »4VwVV

2 1V Lskew wVV *
2 , (w�V ,

(14)

where

V Lskew wVV * 4 sup
v�V

askew (w , v)

VvVV

;

we also set A0 4A1 4V from the algebraic standpoint; nothe that A0 and A1

are the same space with the same topology, but the two norms V QVA0
and V QVA1

are different (even though equivalent, up to constants depending on L).
The following lemma states two basic estimates; we explicitly compute the

constants appearing into the estimates to put in light their independence of L.

LEMMA 1. – Under the hypotheses above, we have

a(w , v) G21/2
VwVAi

VvVA12 i
, (w , v�V ,(15)

sup
v�V

a(w , v)

VvVA12 i

F521/2
VwVAi

, (w�V ,(16)

for i40 or i41.

PROOF. – Let v and w be two generic elements of V.
By using the Cauchy-Schwartz inequality we easily get

a(w , v) 4

G

G

asym (w , v)1askew (w , v)

VwVV VvVV 1V Lskew wVV * VvVV

21/2
VwVA1

VvVA0
;

similarly, since askew (w , v) 42askew (v , w), we also get a(w , v) G

21/2
VwVA0

VvVA1
, then (15) follows.

Recalling (12) and (13), we have

VwVV G sup
v�V

a(w , v)

VvVV

,(17)
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and

sup
v�V

asym (w , v)

VvVV

G sup
v�V

a(w , v)

VvVV

.(18)

Then, we get:

V Lskew wVV * 4

G

G

sup
v�V

askew (w , v)

VvVV

sup
v�V

a(w , v)

VvVV

1sup
v�V

asym (w , v)

VvVV

2 sup
v�V

a(w , v)

VvVV

,

(19)

and, collecting (17) and (19), we get

VwVA1
G51/2 sup

v�V

a(w , v)

VvVA0

,(20)

which is (16) for i41. We are left to show that

VwVA0
G51/2 sup

v�V

a(w , v)

VvVA1

;(21)

for that purpose, we make use of a duality argument. Reasoning as for (20) we
obtain

VwA VA1
G51/2 sup

v�V

a(v , wA)

VvVA0

,(22)

for any wA �V. Given a generic w�V , we associate to it wA �V such that
a(v , wA) 4asym (v , w), (v�V; thanks to (22) we have

VwA VA1
G51/2 sup

v�V

a(v , wA)

VvVA0

451/2 sup
v�V

asym (v , w)

VvVA0

451/2
VwVA0

,

whence

VwVA0
2 4asym (w , w) 4a(w , wA)

G sup
v�V

a(w , v)

VvVA1

QVwA VA1

G51/2 sup
v�V

a(w , v)

VvVA1

QVwVA0
,

which completes the proof. r
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From Lemma 1 we can obtain a family of intermediate estimates by means
of the function spaces interpolation. We follow the notation and the definitions
of [15]; for the reader’s convenience, we recall the fundamental definition of
interpolated norm, according to the so-called K-method: given 0 EuE1 and
1 GpG1Q we define

(23) VwV(A0 , A1 )u , p
»4y s

0

1Q

inf
w0�A0 , w1�A1 ,

w01w14w

(t 2u
Vw0 VA0

1 t 12u
Vw1 VA1

)p dt

t
z

1

p

.

Generally (A0 , A1 )u , p is the space of functions w�A0 1A1 such that
VwV(A0 , A1 )u , p

E1Q. In our particular case, A0 and A1 are the same space from
the algebraic standpoint (A0 fA1 fV), and V QV(A0 , A1 )u , p

simply is a new norm on
V.

LEMMA 2. – Given u , p and p 8 such that 0 EuE1, 1 GpG1Q , and 1/p1

1/p 841, under the hypotheses above, we have

a(w , v) G21/2
VwV(A0 , A1 )u , p

VvV(A0 , A1 )12u , p 8
, (w , v�V ,(24)

sup
v�V

a(w , v)

VvV(A0 , A1 )12u , p 8

F521/2
VwV(A0 , A1 )u , p

, (w�V .(25)

PROOF. – Typically interpolation theorems are stated in terms of linear op-
erators instead of bilinear forms. Then it is more convenient to rephrase (15)
as

V L wVA1* G21/2
VwVA0

, V L wVA0* G21/2
VwVA1

,(26)

and (16) as

VwVA0
G51/2

V L wVA1* , VwVA1
G51/2

V L wVA0* ,(27)

for all w�V.
From (26) and thanks to Theorem [15, §1.3.3] and [15, §1.11.2], we get (24).

Proceeding similarly for L21 , from (27) we obtain

V L21 fV(A0 , A1 )12u , p 8* G51/2
VfV(A0 , A1 )u , p

,

for any f�V *, that gives (25). r

Thanks to (13), Lsym is an isomorphism from V into V *f Lsym (V); hence-
forth, we also assume that Lskew is injective. Then we introduce the two Hilbert
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spaces C0 and C1 :

C0 »4 Lskew (V),

C1 »4 Lsym (V),

with VfVC0
»4V Lskew

21 fVV

with VfVC1
»4V Lsym

21 fVV 4VfVV * .
(28)

In the next lemma we analyze the structure of V QV(A0 , A1 )u , p
.

LEMMA 3. – Given u , p and p 8 such that 0 EuE1, 1 GpG1Q , and 1/p1

1/p 841, under the hypotheses above, we have

1/10VwV

2
(A0 , A1 )u , p

GVwV

2
V 1V Lskew wV

2
(C0 , C1 )u , p

G2VwV

2
(A0 , A1 )u , p

, (w�V .(29)

PROOF. – Since VwVV GVwVAi
with i40, 1 , then VwVV GVwV(A0 , A1 )u , p

follows by
a straightforward application of the interpolation theorem (e.g., [15, §1.3.3]).
We also have

V Lskew wVC0
GVwVA0

, V Lskew wVC1
GVwVA1

,

which gives V Lskew wV(C0 , C1 )u , p
G C VwV(A0 , A1 )u , p

, whence VwV

2
V 1

V Lskew wV

2
(C0 , C1 )u , p

G2VwV

2
(A0 , A1 )u , p

.
In order to complete the proof, we directly deal with the definition of inter-

polated norm (23). For any tD0 consider the two splitting

w4 wA0 (t)1wA1 (t), with wAi (t) �V , i41, 2 ,

w4 w×0 (t)1w×1 (t), with w×i (t) �V , i41, 2 ;
(30)

then define w0 (t) �V and w1 (t) �V such that L wi (t) 4 Lsym wAi (t)1 Lskew w×i (t),
i.e.,

a(wi (t), v) 4asym (wAi (t), v)1askew (w×i (t), v), (v�V , i40, 1 ,(31)

whence w4w0 (t)1w1 (t), (tD0.
Thanks to (16) and to the properties of asym (Q , Q) and askew (Q , Q) we

have

(32) Vw0 (t)VA0
G51/2 sup

v�V

a(w0 (t), v)

VvVA1

G51/2usup
v�V

asym (wA0 (t), v)2askew (v , w×0 (t) )

VvVA1

v

G51/2usup
v�V

asym (wA0 (t), v)

VvVV

1sup
v�V

askew (v , w×0 (t) )

V Lskew vVV *

v
G51/2 (VwA0 (t)VV 1Vw×0 (t)VV).
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In a similar way, we have

(33) Vw1 (t)VA1
G51/2 sup

v�V

a(w1 (t), v)

VvVA0

G51/2usup
v�V

asym (wA1 (t), v)1askew (w×1 (t), v)

VvVA0

v

G51/2usup
v�V

asym (wA1 (t), v)

VvVV

1sup
v�V

askew (w×1 (t), v)

VvVV

v
G51/2 (VwA1 (t)VV 1V Lskew w×1 (t)VV *) .

From (23), by the triangle inequality and using (32)-(33), we have

VwV(A0 , A1 )u , p
Gy s

0

1Q

(t 2u
Vw0 (t)VA0

1 t 12u
Vw1 (t)VA1

)p dt

t
z1/p

G51/2y s
0

1Q

(t 2u
VwA0 (t)VV 1 t 2u

Vw×0 (t)VV 1 t 12u
VwA1 (t)V1

t 12u
V Lskew w×1 (t)VV * )p dt

t
z1/p

G51/2y s
0

1Q

(t 2u
VwA0 (t)VV 1 t 12u

VwA1 (t)VV)
p dt

t
z1/p

y s
0

1Q

(t 2u
V Lskew w×0 (t)VC0

1 t 12u
V Lskew w×1 (t)VC1

)p dt

t
z1/p

;

finally, taking the infimum over all wA0 �V , wA1 4w2wA0 �V , w×0 �V and w×1 4

w2w×0 �V , and using [15, 1.3.3.(f)], we finally get

VwV(A0 , A1 )u , p
G51/2 (VwVV 1V Lskew wV(C0 , C1 )u , p) ,

completing the proof of (29). r

When p4p 842 and u412u41/2 , Lemma 2 gives the continuity and
inf-sup conditions for L, as stated in the introduction, where NNN QNNN4

V QV(A0 , A1 )1/2 , 2
; in particular, under the hypotheses of Lemma 3, we have the fol-

lowing obvious corollary.
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COROLLARY 1. – Under the assumption of Lemma 3 and setting

NNN QNNN»4 (V QV2
V 1V Lskew QV2

(C0 , C1 )1/2 , 2)
1/2

,(34)

we have the continuity and inf-sup conditions (8)-(9) for L, with constants Cc

and Cis independent of L.

Actually Lemma 2 establishes a family of continuity and inf-sup conditions
for L (for different values of u and p) with different norms on the trial space
(i.e., V QV(A0 , A1 )u , p

) and on the test space (i.e., V QV(A0 , A1 )12u , p 8
); on the other hand

from the numerical standpoint (8)-(9) are mainly interesting, as discussed in
[12, §4].

3. – The convection-diffusion-reaction operator.

We now apply the results of the previous section to the convection-diffu-
sion-reaction operator. In Lemma 1-3 we have explicitly computed the con-
stants involved into the estimates, in order to emphasize that the estimates do
not depend on L; henceforth, for the sake of simplicity, we will use generic
constants denoted by C, C1 , C2 , which are independent on the operator coeffi-
cients k , b and r and on the domain V.

3.1. – The one-dimensional case.

We start with the analysis of the very simple one-dimensional operator,
with constant coefficients kD0 and rF0, and unitary velocity. Then, for this
subsection only, we will consider a special case of (7), which is

w O L w»42kw 91w 81rw ,(35)

where the argument w is a function on the interval V4 [0 , 1 ].
We consider first, and with particular emphasis, the ordinary differential

equation with homogeneous Dirichlet boundary conditions. The variational
formulation (11) reads

find u�V such that a(u , v) 4s
0

1

fv , (v�V ,

where

V4H 1
0 (0 , 1 ) with V QV2

V 4kN QN2
H 1 1rV QV2

L 2 ,

a(w , v) 4ks
0

1

w 8 v 81s
0

1

w 8 v1rs
0

1

wv .
(36)
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Then Lsym w42kw 91rw , Lskew w4w 8 , asym (w , v) 4ks
0

1

w 8 v 81rs
0

1

wv and

askew (w , v) 4 s
0

1

w 8 v. Finally C0 4L 2
0 (0 , 1 ) and C1 4H 21 (0 , 1 ) from the alge-

braic standpoint, where L 2
0 is the subspace of L 2 of zero mean value functions,

and its natural norm is V QVL 2
0

»4V QVL 2 , while H 21 is the dual of H 1
0 , endowed

with the dual norm V QVH 21 4 sup
v�H 1

0 (0 , 1 )

aQ , vb /NvNH 1 (we recall that NwNH 1 »4

»4gs
0

1

(w 8 )2h1/2

is a norm on H 1
0 ). It is easy to see that L 2

0 is a dense subspace of

H 21. From Corollary 1 we immediately have the following result.

THEOREM 1. – For the case (35)-(36), uniform continuity and inf-sup con-
ditions (8)-(9) hold true with respect to the norm

w O NNNwNNN4 (kNwN2
H 1 1Vw 8 V

2
(C0 , C1 )1/2 , 2

1rVwV

2
L 2)1/2

.(37)

Now we focus our attention on NNN QNNN in (37), in order to better understand
its structure. Roughly speaking, the term Vw 8 V(C0 , C1 )1/2 , 2

is related to the skew-
symmetric part of L, which is the first order derivative. Then we expect
w O Vw 8 V(C0 , C1 )1/2 , 2

to act as a 1 /2-order norm uniformly on the operator coeffi-
cients k and r. That is in fact stated in the next theorem: we show that
Vw 8 V(C0 , C1 )1/2 , 2

stays between the H 1/2-seminorm and H 1/2
00 -norm, where H 1/2 »4

(L 2 , H 1 )1/2 , 2 and H 1/2
00 »4 (L 2 , H 1

0 )1/2 , 2 are the two usual Hilbert spaces of or-
der 1/2, endowed with the usual norms given by interpolation (see [11]), and
NwNH 1/2 is the seminorm Vw2P 0 wVH 1/2 , P 0 Q denoting the mean value of its
argument.

THEOREM 2. – For the case (35)-(36), we have

C1 NwNH 1/2 GVw 8 V(C0 , C1 )1/2 , 2
G C2 VwVH00

1/2 , (w�V .(38)

PROOF. – When r40, (38) follows from (52); we assume henceforth rD0.
We consider first the left inequality in (38), i.e.

C NwNH 1/2 GVw 8 V(C0 , C1 )1/2 , 2
, (w�V .(39)

It is easy to see that Vz 8 VL 2 CVzVH 1 and Vz 8 VH 21 CVzVL 2 , for any z�H 1 OL 2
0 ;

then, thanks to Theorem [15, §1.3.3], [15, §1.11.2] and [15, §1.17.1], the first or-
der derivative is a topological isomorphism from H 1/2 OL 2

0 into (H 21 , L 2 )1/2 , 2 ,
which means

NwNH 1/2 4Vw2P 0 wVH 1/2 CVw 8 V(H 21 , L 2 )1/2 , 2
.(40)

We introduce now the new space CA0 : from the algebraic standpoint we set
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CA0 »4L 2 , and we define V QVCA0
»4 (kV QV2

L 2 1rV QV2
H 21 )1/2. Our next step is to show

that

VfV(H 21 , L 2 )1/2 , 2
G C VfV(C

A
0 , C1 )1/2 , 2

, (f�L 2 .(41)

For that purpose we split a generic f�L 2 into

f4f high 1f low ,(42)

where f high , f low �L 2 are, roughly speaking, the high frequency part and the
low frequency part of f , respectively, in such a way that

k 1/2
Vf high VL 2 1r 1/2

Vf low VH 21 G C VfVCA0
(43)

k21/2
Vf high VH 21 1r21/2

Vf low VL 2 G C VfVC1
.(44)

For that purpose, we introduce an auxiliary problem: let c�H 1
0 the solution

of

Lsym c4f in (0 , 1 )(45)

and let f high »42kc 9 and f low »4rc.
Multiplying both members of the differential equation (45) by 2c 9 , inte-

grating over (0 , 1 ) and integrating by parts we get

kVc 9 V

2
L 2 1rVc 8 V

2
L 2 42s

0

1

fc 9 ;

then, thanks to the Cauchy-Schwartz inequality, we have

Vf high VL 2 4Vkc 9 VL 2 GVfVL 2 .(46)

Integrating (45) we have

2kc 81kc 8 (0)1rC4F ,

where C(x) 4 s
0

x

c(t) dt and analogously F(x) 4 s
0

x

f(t) dt; after multiplying by

C2P 0 C both members, integrating over (0 , 1 ) and integrating by parts we
obtain

kVcV

2
L 2 1rVC2P 0 CV

2
L 2 4s

0

1

F(C2P 0 C) ,

whence now

Vf low VH 21 4rVC2P 0 CVL 2 GVF2P 0 FVL 2 4VfVH 21 .(47)
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Collecting (46)-(47) we obtain (43). From (45) it is also easy to obtain the esti-
mate (kVc 8 V

2
L 2 1rVcV

2
L 2 )1/2 GVfVV * 4VfVC1

, which gives (44) straightforwardly.
Consider now the linear operator f O (f high , f low ) from L 2 into L 2 3L 2 ,

with f high , f low as defined above: by interpolation from the two continuity esti-
mates (43)-(44) we get

Vf high V(L 2 , H 21 )1/2 , 2
1Vf low V(H 21 , L 2 )1/2 , 2

G C VfV(C
A

0 , C1 )1/2 , 2
,(48)

whence, by using the triangle inequality and since V QV(L 2 , H 21 )1/2 , 2
4

V QV(H 21 , L 2 )1/2 , 2
, we obtain (41). Finally (40) and (41) gives (39).

Now we consider the right equivalence in (38), which is

Vw 8 V(C0 , C1 )1/2 , 2
G C VwVH00

1/2 , (w�V .(49)

Given w�H 1
0 it is easy to see that

Vw 8 VC0
4VwVV 4VwVC *1 ,

and

Vw 8 VC1
4Vw 8 VV * GVwVC

A
0* ,

whence (thanks to Theorem [15, §1.11.2])

Vw 8 V(C0 , C1 )1/2 , 2
GVwV(C1* , CA0*)1/2 , 2

4VwV(C
A

0 , C1 )*1/2 , 2
.(50)

Moreover, passing to the duals in (41), still using Theorem [15, §1.11.2], we
also have

VwV(CA0 , C1 )*1/2 , 2
GVwV(H 21 , L 2 )*1/2 , 2

4VwV(H 1 , L 2 )1/2 , 2
4VwV(H 1/2

00 ) .(51)

Inequalities (50)-(51) give (49). r

REMARK 1. – It is worth noting that Theorem 1-2 allow for r40 as well; in
that case we have Vw 8 V(C0 , C1 )1/2 , 2

4Vw 8 V(H 21 , L 2
0 )1/2 , 2

, since the coefficient k easily
cancel when interpolating. Let H 1

J

be the subspace of H 1 of functions w such
that w(0) 4w(1), endowed with the V QVH 1

J

»4V QVH 1 , and H 1/2
J

»4 (L 2 , H 1
J

)1/2 , 2

endowed with the norm given by interpolation. Given z�H 1
J

OL 2
0 , one has

Vz 8 VL 2
0
CVzVH 1

J

and Vz 8 VH 21 CVzVL 2 , whence (by using Theorem [15, §1.3.3], [15,
§1.11.2] and [15, §1.17.1]) Vz 8 V(H 21 , L 2

0 )1/2 , 2
CVzV(L 2 , H 1

J

)1/2 , 2
and therefore

Vw 8 V(H 21 , L 2
0 )1/2 , 2

CVw2P 0 wV(L 2 , H 1
J

)1/2 , 2
, for any w�H 1

0 ; this means that we
have the following characterization:

r40 ¨NwNH 1/2
J

»4Vw2P 0 wV(L 2 , H 1
J

)1/2 , 2
4Vw 8 V(C0 , C1 )1/2 , 2

, (w�V .(52)
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We may also deal with different kind of boundary conditions; consider the
example

.
/
´

L u4 f

u(0) 4u 8 (1) 40,

in (0 , 1 )
(53)

where L is still formally given by (35). The variational formulation (11) now
requires

V4 ]v�H 1 (0 , 1 ) such that v(0) 40(

a(w , v) 4ks
0

1

w 8 v 81s
0

1

w 8 v1rs
0

1

wv ;

the key point is that the bilinear form a(Q , Q) is coercive on V; accordingly, we
define V QVV as

VwVV
2 »4a(w , w) 4kNwN2

H 1 1rVwV

2
L 2 1

1

2
w(1)2 ,

and we have now

asym (w , v) 4ks
0

1

w 8 v 81rs
0

1

wv1
1

2
w(1) v(1) ,

askew (w , v) 4s
0

1

w 8 v2
1

2
w(1) v(1) .

Then we can still make use of the theory of §2 and obtain uniform inf-sup and
continuity conditions from Corollary 1.

When the bilinear form a(Q , Q) is not coercive, then we can not use the re-
sults of §2. This is the case of

.
/
´

2ku 91u 84 f

u 8 (0) 4u(1) 40 ,

in (0 , 1 )
(54)

i.e., when r40 and we prescribe Neumann boundary condition at the inflow
x40; then V4 ]v�H 1 (0 , 1 ) such that v(1) 40( and

a(w , w) 4kNwN2
H 1 1rVwV

2
L 2 2

1

2
w(1)2 ,

which is not positive in general, when k and r are small enough. However,
when f41 the solution of (54) is u(x) 4k(exp (1 /k)2exp (x/k) )1x21; for
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kK0 we have VuVL 2 Bk exp (1/k), whence we see that (54) is in fact not uni-
formly well posed with respect to k.

3.2. – The multi-dimensional case.

In this section, we analyze the multi-dimensional convection-diffusion-re-
action operator (7) with Dirichlet homogeneous boundary conditions, and the
associated bilinear form

a(w , v) 4ks
V

˜w Q˜v1s
V

b Q˜w v1s
V

rwv ,

which is defined on H 1
0 (V)3H 1

0 (V) (see, e.g., [11]). Under the assump-
tion

r2
1

2
div (b) F0(55)

the bilinear form a(Q , Q) is coercive, whence we set

V4H 1
0 (V)

VwV

2
V 4a(w , w) 4kNwN2

H 1 1gr2
1

2
div (b)h VwV

2
L 2 .

(56)

The decomposition (6) gives

.
`
/
`
´

asym (w , v) 4ks
V

˜w Q˜v1s
V

gr2
1

2
div (b)h wv ,

askew (w , v) 4s
V

b Q˜w v1
1

2 s
V

div (b) wv ;

(57)

For the sake of simplicity, we shall consider henceforth the case

div (b) 40 .(58)

In order to apply Corollary 1 to this case, we need Lskew 4b Q˜ to be injective
on V: this is assured, for example, by the assumption

there exists a smooth f : VKR such that ˜f QbF C D0 ;(59)

we refer to [10] for further details. Definition (28) says that, from the algebra-
ic standpoint, C0 is the space of the streamline derivatives b Q˜w of functions
w�H 1

0 , while C1 is H 21. Corollary 1 gives then the following result



GIANCARLO SANGALLI350

THEOREM 3. – For the case (56), (58)-(59), the uniform continuity and inf-
sup conditions (8)-(9) hold true with respect to the norm

w O NNNwNNN4 (kNwN2
H 1 1Vb Q˜wV

2
(C0 , C1 )1/2 , 2

1rVwV

2
L 2)1/2

.(60)

Roughly speaking, we expect Vb Q˜wV(C0 , C1 )1/2 , 2
to be of order 1/2 in the direc-

tion of b , and of order 0 in the directions orthogonal to b (this can be more eas-
ily seen for the case r40), but a rigorous analysis of the structure of Vb Q
˜wV(C0 , C1 )1/2 , 2

is more difficult now than for the simpler one-dimensional case
considered in §3.1. The next result shows that Vb Q˜wV(C0 , C1 )1/2 , 1

has some uni-
form bounds independent of k and r (though the anisotropy is not investigat-
ed). Then we end by a comparison between Vb Q˜wV(C0 , C1 )1/2 , 1

and Vb Q
˜wV(C0 , C1 )1/2 , 2

.

PROPOSITION 1. – For the case (56), (58)-(59), we have:

Cp VbVL Q
1/2

VwVL 2 GVb Q˜wV(C0 , C1 )1/2 , 1
G C VbVL Q

1/2
VwV(L 2 , H 1

0 )1/2 , 1
, (w�V ,(61)

where the constant Cp of the Poincaré-like inequality depends on b/VbVL Q and V.

PROOF. – Let h be the solution of b Q˜h4VbVL Q with h40 on the inflow
boundary ¯V2 »4 ]x�¯VNb(x) Qn(x) E0(, n denoting the outward normal
unit vector defined on ¯V; the existence of h is guaranteed by (59). Given w�
H 1

0 , integrating by parts, using the Cauchy-Schwartz inequality and (58) we
have

VbVL Q
VwVL 2

2 4

4

G

s
V

b Q˜h w 2

22 s
V

hw b Q˜w

2NhwNV Vb Q˜wVV * .

(62)

We have

VhwVL 2 GVhVL Q VwVL 2 ,(63)

and, using the classical Poincaré inequality, it is easy to get

NhwNH 1 G C(VhVL Q 1V˜hV(L Q )2 )NwNH 1 .(64)

Moreover, thanks to (59), we have C
A

p »4VhVL Q 1V˜hV(L Q )2 E1Q (e.g., see [10,
Theorem 3.2]), where C

A
p depends on h , i.e. on b/VbVL Q and V. Then

VhwVV G C Cp
A

VwVV ;(65)
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substituting back in (62),

VbVL Q VwVL 2
2 G

4

C Cp
A

VwVV Vb Q˜wVV *

C C
A

p Vb Q˜wVC0
Vb Q˜wVC1

,

and thanks to Theorem [15, §1.10.1] we obtain

Cp VbVL Q
1/2

VwVL 2 GVb Q˜wV(C0 , C1 )1/2 , 1
, (w�V ,

which is the left inequality of (61).
We have, thanks to Theorem [15, §1.3.3]

Vb Q˜wV

2
(C0 , C1 )1/2 , 1

G

G

Vb Q˜wVC0
Vb Q˜wVC1

k 1/2 NwNH 1 Vb Q˜wVV * 1r 1/2
VwVL 2 Vb Q˜wVV * ,

(66)

and

Vb Q˜wVV * Gk21/2
Vb Q˜wVH 21 Gk21/2

VbVL Q VwVL 2 ,

Vb Q˜wVV * Gr21/2
Vb Q˜wVL 2 Gr21/2

VbVL Q NwNH 1 ;
(67)

from (66)-(67), we get

Vb Q˜wV

2
(C0 , C1 )1/2 , 1

G2VbVL Q NwNH 1 VwVL 2 ,

and Theorem [15, §1.10.1] yields

Vb Q˜wV(C0 , C1 )1/2 , 1
G C VbVL Q

1/2
VwV(L 2 , H 1

0 )1/2 , 1
, (w�V ,

and concludes the proof of (61). r

In the previous proposition, we have shown uniform bounds (with respect
to the operator coefficients) for Vb Q˜wV(C0 , C1 )1/2 , 1

; as a general result of the in-
terpolation theory (see, e.g., [15, 1.3.3.d]), we have

Vb Q˜wV(C0 , C1 )1/2 , 2
G C Vb Q˜wV(C0 , C1 )1/2 , 1

, (w�V ,(68)

and similarly

VwV(A0 , A1 )1/2 , 2
G C VwV(A0 , A1 )1/2 , 1

, (w�V ;(69)

the converse inequality of (68), that is Vb Q˜wV(C0 , C1 )1/2 , 1
G C Vb Q˜wV(C0 , C1 )1/2 , 2

,
does not hold true; on the other hand the converse of (69) holds true, and it is,
roughly speaking, almost uniform, in the sense that the constant in it only de-
pends on a logarithm of the coefficients, as stated in the next proposition.
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PROPOSITION 2. – Consider the case (56), (58) and (59); let

a»4 max ]k 1/2 r 1/2 , k diam (V)( /VbVL Q .(70)

When aG1 we have

VwV(A0 , A1 )1/2 , 1
G C(12 log1/2 (a)) VwV(A0 , A1 )1/2 , 2

, (w�V ,(71)

while for aD1 we have

VwV(A0 , A1 )1/2 , 1
G C VwV(A0 , A1 )1/2 , 2

, (w�V ,(72)

PROOF. – We only consider here the case aG1, since when aD1 we can set
a»41 instead of (70) and follow the proof. First, recall that from the definition
(14) we have

VwVA0
GVwVA1

, (w�V ,(73)

and, since (67) and the Poincaré inequality, we also have

aVwVA1
G C VwVA0

, (w�V ,(74)

By the definition (23) and by the triangle inequality we get

VwV(A0 , A1 )1/2 , 1
G s

0

1Q

(t 21/2
Vw0 (t)VA0

1 t 1/2
Vw1 (t)VA1

)
dt

t

Gs
0

a2

(t 21/2
Vw0 (t)VA0

1 t 1/2
Vw1 (t)VA1

)
dt

t

1s
a2

1

(t 21/2
Vw0 (t)VA0

1 t 1/2
Vw1 (t)VA1

)
dt

t

1 s
1

1Q

(t 21/2
Vw0 (t)VA0

1 t 1/2
Vw1 (t)VA1

)
dt

t

4I1II1III ,

for any w0 (t) and w1 (t) with w4w0 (t)1w1 (t), wi (t) �V , i41, 2 and 0 E tE1

Q. Taking w0 (t) 4w and w1 (t) 40 for tF1 we have

IIIGVwVA0s
1

Q

t 23/2 dt

G2VwVA0
.
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In a very similar way, we deal with the first term, taking w1 (t) 4w and
w0 (t) 40 for 0 E tEa 2; thanks to (74) we obtain:

IGVwVA1s
0

a2

t 21/2 dt

G2aVwVA1

G C VwVA0
.

Thanks to the Cauchy-Schwartz inequality we have

(75) s
a2

1

(t 21/2
Vw0 (t)VA0

1 t 1/2
Vw1 (t)VA1

)
dt

t
Gy s

a2

1
dt

t
z1/2

Q

y s
a2

1

(t 21/2
Vw0 (t)VA0

1 t 1/2
Vw1 (t)VA1

)2 dt

t
z1/2

G [22 log (a) ]1/2 Q

y s
a2

1

(t 21/2
Vw0 (t)VA0

1 t 1/2
Vw1 (t)VA1

)2 dt

t
z1/2

that holds true for any choice of w0 (t) and w1 (t) on a 2 E tE1; taking the infi-
mum on w0 , w1 we obtain

IIG [22 log (a) ]1/2
VwV(A0 , A1 )1/2 , 2

.

Finally, we have from (73)

VwVA0
GVwV(A0 , A1 )1/2 , 2

and (71) follows from the previous estimates on I , II and III. r

From Proposition 1-2 we easily derive the next almost uniform bounds
(still, up to a log (a)1/2 factor, which is, roughly speaking, a weak loss of
uniformity).

COROLLARY 2. – For the case (56), (58)-(59), given a from (70), we
have:

Cp min ]1, Nlog (a)N21/2 (VbVL Q
1/2

VwVL 2 GNNNwNNN , (w�V ,(76)

Vb Q˜wV(C0 , C1 )1/2 , 2
G C VbVL Q

1/2
VwV(L 2 , H 1

0 )1/2 , 1
, (w�V .(77)

where Cp depends on b/VbVL Q and V.
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Though (76)-(77) are not sharp estimates as we got in §3.1 for the one di-
mensional case, they put in evidence the relationship between the norm NNN QNNN
defined in (60), and the skew-symmetric part Lskew 4b Q˜ of (7). Recall that
max ]k 1/2 , r 1/2 (VwVL 2 G C VwVV G C NNNwNNN , while (76) states the bound on the
L 2-norm which is mainly due to Vb Q˜wV(C0 , C1 )1/2 , 2

. Then (76) becomes relevant
when k and r are small.
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