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Bollettino U. M. 1.
(8) 7-B (2004), 61-77

A Structure Theory for Jordan H *-Pairs.

A. J. CALDERON MARTIN (*) - C. MARTIN GONZALEZ (*)

Sunto. — I concetto di H *-coppia di Jordan, appare, in modo naturale, nello studio de-
glt H *-sistemi tripli di Lie ([3]). Di fatto, nel [4, Th. 3.1] si prova che il problema
della classificazione degli H *-sistemi tripli di Lie st riduce a provare l'esistenza di
certt imwiluppi di L *-algebre e in [3] si prova anche che ¢ possibile associare H *-
coppie topologicamente semplici non quadratiche di Jordan ad un’ampia classe di
H *-sistemi tripli di Lie e che pot gli inviluppi precedenti possono essere ottenuti
da un’opportuna classificazione, in termini di H *-coppie associative, di queste
coppie. In questo lavoro viene dato un teorema di classificazione delle H *-coppie
topologicamente semplici non quadratiche di Jordan in termini di H *-coppie as-
sociative e di cevtuni loro anti-isomorfismi. Vengono anche enunciate alcune con-
sequenze di questa classificazione.

Summary. — Jordan H *-pairs appear, in a natural way, i the study of Lie H *-triple
systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification
of Lie H *-triple systems s reduced to prove the existence of certain L *-algebra en-
velopes, and it is also shown in [3] that we can associate topologically simple non-
quadratic Jordan H *-pairs to a wide class of Lie H *-triple systems and then the
above envelopes can be obtained from a suitable classification, in terms of associa-
tive H *-pairs, of these pairs. In this paper we give a classification theorem for topo-
logically simple non-quadratic Jordan H *-pairs in terms of associative H *-pairs
and certain of their anti-isomorphisms. Some consequences of this classification
are also stated.

1. - Introduction.

Recall that an H *-pair A= (A", A7) is a pair of Hilbert spaces over the
complex numbers with involution, in which the inner products (-|-), the pair
triple products (,-,-) and involution #* are «compatible». By applying the
structure theory of Jordan H *-triple systems developed by A. Castellén, J.A.
Cuenca and C. Martin in [9, 11], one could describe topologically simple Jor-
dan H *-pairs, however, we use entirely different methods to classify topologi-

(*) The authors are supported in part by the PCI of the spanish Junta de Andalucia
«Estudio analitico-algebraico de sistemas triples y de pares en diferentes clases de
estructuras no asociativas», by the PAI of the spanish Junta de Andalucia with project
number FQM-0125 and by the the spanish DGICYT.



62 A. J. CALDERON MARTIN - C. MARTIN GONZALEZ

cally simple Jordan H *-pairs. In fact, we note that the introduction of tech-
niques of tight evelopes, D’Amour’s extension theorems, Zel'manov polynomi-
als and dual spaces methods in the treatment of problems of Jordan H *-the-
ory, motivated in part by Rodriguez’s paper [24], is perhaps the most interest-
ing novelty in this paper.

The paper is organized as follows. In the second section we give the prelim-
inary results on associative and Jordan pairs and we obtain in the third section
a structure theory for topologically simple non-quadratic Jordan H *-pairs in
terms of topologically simple associative H *-pairs, by forgetting their Hilbert
space structures and starting with the remaining purely algebraic information
available on them. Jordan H *-pairs with zero annihilator are well related to
hermitian Hilbert triples introduced and classified by W. Kaup in [17, 18], (see
Remark 3). However, the new approach we give allows us to prove the exis-
tence of associative H *-algebra envelopes for certain topologically simple Lie
H *-triple systems, (what implies the classification of the last ones). We also
extend one of the results of [24] and [2] (see Remark 1).

2. — Definitions and preliminary results.

2.1. On associative pairs.

Let A= (A", A7) be a pair of modules over a commutative unitary ring K,
and (-, A°XA"xA°—A’, two trilinear maps written

(x,y,2) —(x,y,2)

for oe {+, —}. Then A is called an associative pair if the following identities
are satisfied:

<<x’ y’ Z>, 7/{/, v> = <x’<y’ z’ /M/>, /U> = <m’ y’<z7 /M/’ ,U>>

for x,z,veA’ and y, ueA "°.

The definitions of homomorphism, epimorphism, monomorphism and iso-
morphism are the usual ones. The opposite pair A of the pair A=A ", A7)
is the pair (A ~, A*) with the same triple products. An anti-homomorphism
from A to B is a K-linear mapping v = (v*, v ) from the pair A to the pair B
satisfying v’ ((x, ¥, 2)) = (v?(2), v "(y), v°(x)) for all x, 2ze A and ye A ~°.
An anti-isomorphism v= (v ", v ~) will be called involutive if v v’ =Id. An
ideal I={I*,17) of A is a couple of K-submodules such that

(I°, A7 A%+ (A%, 17, A%) + (A°, A=, I°)cI".

A pair A will be called simple if and only if (A7, A =7, A%) # 0 and its only
ideals are 0 and A.
Let us see a first example of an associative pair. A dual pair of vector



A STRUCTURE THEORY FOR JORDAN H *-PAIRS 63

spaces over a division K-algebra A is a triple (X, X', k) such that X is a left A4-
vector space, X' is a right A-vector space and % is a non-degenerate bilinear
form 2 : X X X' — A. One can consider the X '-topology of X (and the X-topolo-
gy of X'), see [16, Chapter IV Section 6]. If we have two dual pairs (X, X', &)
and (Y, Y', g), one can define L(X, Y) as the set of all continuous linear maps
from X to Y (and F(X, Y) the subset of all finite rank elements of L(X, Y)).
Any subpair of (I(X,Y), L(Y, X)) containing (F(X, Y), F(Y, X)) with the
triple products {(x, y, 2)° := xyz, is a prime associative pair with nonzero socle
(see [12]). If fe L(X, Y), we define the adjoint of f, denoted by f¥ as the only
element f'e L(Y', X') such that g(f(x), y') = k(x, fi(y")) for any X and
y' €Y' (see [16, Chapter IV, Theorem 1, p. 72] for existence and unique-
ness).
In [16, Proposition IV. 8.1], it is shown that fe F(X, Y) if and only if f(f) =

Eh(t xf)y; for all teX, with {«/}/-; in X' and {y;}/-, in Y, (the map
tr—>h(t x') y will be denoted by x ®y) We note the following rules govern-
ing the «product» ®: For all xe X, ', 2/, x5 €X', ¥, 1, ¥2€ Y,y €Y’ and
ued,

@ (@ +u)Qy=0/ QY+ QY

(i) 2" @y +y2) =2' Q1 + ' Yy

(i) ' u®@y=a'Quy

(V) (y' @u)a'@y) =29y, y') @«

W @' dP'=y®u'

The basic reference for definitions and notations about dual pairs theory
will be [16, Chapter IV].
A couple e=(e™,e7) of a pair A=(A", A7) is called an idempotent if

(e, e %, ¢e% =¢e".
We recall that the (11)-Peirce space of A associated to e, denoted by
Ay (e) = (Ayj (e), Ay (e)),
is defined as
Afi(e) ={x’eA%:(x% e % e%)=(e’, e ", x%) =a"}.
We shall need the following result that can be found in [5]:

LEMMA 1 ([5, Lemma 1]). — Let (X, X', h), (Y, Y', 9) be dual pairs and
denote

=(FX, Y), F(Y, X)).
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1. For any e eF(X,Y), e™ =0, there exists ¢ e F(Y, X) such that
(e, e ™) is an idempotent. Moreover, there is a unique ne N such that et =

> x/ Quand e = Xy Qu;, with {x;}, {x'}, {y;} and {y/} systems of
i=1 1=1

l{nearly independent vectors in X, X', Y and Y' respectively, satisfying
Wi, %) = g(y;, yj') = 04 (Kronecker delta).

2. If e=(e™, e™) is an idempotent of R, being e ™ = 2, x/ @y, and
i=1
e = ,gyzﬁ'@ﬂci

as in (1), then Ry (e) is linearly generated by {e;’; :==a/ Qy;: 1,j=1, ..., n}
and R (e) is linearly generated by

leij =y ®uii,j=1, ..., n}

3. The sets {e;’;} and {e; ;} described in (2) are systems of linearly inde-
pendent vectors of Ryi (e) and Rqj (e) respectively.

4. If X and Y are infinite dimensional vector spaces, then for e, e; idem-
potents of R, there exists es, another idempotent of R, satisfying

Rii (e1) U Ryj (e3) C Ryj (e3).
2.2. On Jordan pairs.

The basic reference for definitions and notations about Jordan pairs theory
will be [20]. Let us see some examples of Jordan pairs. The simple Jordan al-
gebra V=V(f) of a nondegenerate symmetric bilinear form gives rise to a
Jordan pair J = (V, V) by defining Q(x) = U(x), these Jordan pairs are
called of quadratic type.

If A is an associative pair, then A7 will denote the symmetrized Jordan
pair of A, that is, the Jordan pair whose underlying K-module agrees with that
of A, and whose quadratic operators are given by Q°(x)(y) = (x, ¥, x)°. Let
(X, Y, h) be a dual pair over a K-division algebra with involution (4, —), we
can define the opposite dual pair (Y, X, ~°?), considering Y and X as left and
right A-vector spaces respectively, for the actions Ay:=y2Z, xA:= 1x for all
rxeX,yeYand Le A4, and defining h?: Y X X—A4 as h?(y, x) := h(x, y) for
(y, x) e Y x X. Then, other examples of Jordan pairs are any subpair of

(Sym(L(X, Y), D), Sym(L(Y, X), ),

(where Sym(L(X, Y),l) = {feLX, V): fl'=f} and Sym(L(Y, X), ) is de-
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fined similarly), containing

Sym(FX, Y), D), Sym(F(Y, X), D),

where the quadratic operators are Q7(x)(y) =ayx and [| is the adjoint
operator
LX,Y)—=LX,Y) or L(Y,X)—LY, X)

and any subpair of

(Skw(I(X, Y), ), Skw(L(Y, X), ),

(where (Skw(L(X, Y), ) = {feLX, Y): f' = —f} and Skw(L(Y, X), ) is de-
fined similarly), containing

(Skw(F(X, Y), ), Skw(F(Y, X), ),

with the quadratic operators and | as above.

2.3. On H *-pairs.

Let V=(V*, V™) be a, non necessarily associative, complex pair with
triple products denoted by {-,-,-)°, and let * = (% *, % ~) be a couple of conju-
gate-linear mappings *?: V°—V 77 for which *%0 * ~?=Id and

@7,y 70, 27 = (D) @)

forx?,z°eVandy “eV % Then * = (%", * ~)is called an involution of
V. We say that Vis an H *-pair if V* and V ~ are also Hilbert spaces over the
complex numbers with inner products (-|-),: V°x V’—C, endowed with an
involution * = (**, % ) such that

@1 (&% y % 2 [ty = @ [(t7, ), (y )" N, =

(y " [@D), 7, DN =Ty~ @), ),

for %, 27,t°eV? and y ~? eV 7. The complete notation for an H *-pair would
be (V, = ,(-|)) but we will frequently speak of the H *-pair V (omitting the in-
volution and inner products).

We also recall that an H *-pair V is said to be topologically simple when

Vo, V=7, V) =0
and its only closed ideals, with respect to the norm topology, are {0} and V.
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A = -homomorphism f: V—W of H*-pairs is a homomorphism such that
f7o@?)*) = (f°(x?))* for any «’e V’and oe { +, — }. An * -isomorphism f
is said to be k-isogenic whenever (f°(x?)|f’(y?)) =k(x’|y?) for any
x’,y’eV? and oe {+, — }, with k a positive real number. The pair

Ann(V) = (Ann(V ), Ann(V 7))

is a self-adjoint closed ideal of V that we call the Annihilator of V. Following
[7] it is easy to prove that any H *-pair V with continuous involution splits into
the orthogonal direct sum V=Ann(V) L U, where U=(U*, U ") is an H*-
subpair of V with zero annihilator. Moreover, each H *-pair V with zero annihi-
lator satisfies V= L1, where {I,},, I,= (I, ,1,)), denotes the family of
minimal closed ideals of V, each of them being a topologically simple H *-pair.
This reduces the study of this pairs to the study of the topologically simple
ones.

3. — Jordan H *-pairs.

3.1. Previous results.

We are primarily interested in infinite-dimensional pairs since any finite-
dimensional topologically simple H *-pair is simple, and it can be proved that
any simple finite-dimensional complex Jordan pair can be endowed with an
(essentially unique) structure of H *-pair. The existence of an H *-structure
can be seen as a consequence of [22, 3.3 Satz] and [23], while the essential
uniqueness of this H *-structure follows from [6] and [23]. As the classification
of simple finite-dimensional Jordan pairs over C has been previously consid-
ered (see [20]) we shall confine ourselves to the infinite dimensional case.

IfJ=(J*,J)is aJordan H *-pair, we define the polarized Jordan triple
system of J as the Jordan H *-triple system T with Hilbert space J * L J~
whose quadratic operator P and involution are given by

P@)y) =@ (@™ )y ), Q (x )y™))

and (x*, 27 )* =@ )*, (@) forall (@™, 2 ),(y*, y ) eT (see [6] or [8]
for definition of H *-triple system). As we proved in [2, Proposition 1] that any
topologically simple Jordan H *-pair is prime, non-degenerate and with non-
zero socle, and its polarized triple system inherits these «characteristics», we
can derive from the classification of prime, non-degenerate Jordan triple sys-
tems with non-zero socle in [15, Theorem 7], that the underlying Jordan pair J
of an infinite dimensional topologically simple non quadratic Jordan H *-pair
is one of the following:

Type (i): J is a subpair of (I(X,Y), I(Y, X))’ containing (F(X,Y),
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F(Y, X))’ with the quadratic operators Q°(x)(y) = xyx, being (X, X') and
(Y, Y'") dual pairs over C.

Type (ii): J is a subpair of

(Sym(L(X, V), 1), Sym(L(Y, X), 1)

containing (Sym(F(X, Y), i), Sym(F(Y, X), ), where (X, Y, h), (Y, X, h?)
are a dual pair and its opposite over C, the quadratics operators are

Q7 (x)(y) = wyx

and [ is the adjoint operator.

Type (iii): J is a subpair of
(Skw(L(X, ), ), Skw(L(Y, X), D)

containing (Skw(F(X, Y), 1), Skw(F(Y, X), ), with (X, Y, k), (Y, X, h?), the
quadratic operators and [ as in the previous type.

Topologically simple Jordan H *-pairs of types (i) and (ii) have been stud-
ied in [2] and [5] respectively. It is proved in these references that the ones of
type (i) are k-isogenic, ( * -isometrically isomorphic up to a positive factor of
the inner product), to A’ with A a topologically simple associative H *-pair,
and that the ones of type (ii) are k-isogenic to

J=(Sym(A", E7), Sym(A~, §7))

with A=(A7", A7) as above and £=(£*, £7) an involutive * -anti-isomor-
phism from A to A,
We proceed to study the remaining type.

3.2. Study of Jordan H *-pairs such that their underlying Jordan pairs are
of Type (iii).

We are going to prove in this section that if J is a subpair of

(Skw(L(X, Y), 1), Skw(L(Y, X), 1))

containing (Skw(F(X, Y), ), Skw(F(Y, X), [)), where (X,Y, k), (Y, X, h?)
are a dual pair and its opposite over C, the quadratic operators are
Q°(x)(y) =xyx and [ is the adjoint operator, then J is k-isogenic to

(Skw(A™, &%), Skw(A~, &7))
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with A=(A*,A") a topologically simple associative H *-pair and &=
(§", £7) an involutive * -anti-isomorphism from A to A°. The techniques we
shall use are the dual vector spaces methods in Jordan pairs theory introduced
in [2] and [5]. Many technical differences with the situations that we find in
these references lead us to develop § 3.2 in detail.

We recall that any complex pair V= (V*, V) is a real pair restricting the
field of scalars to R. This real pair is denoted by V= (V)& (V )¥).

We shall also need the following result due to A. D’Amour:

We say that a Zy-graded associative algebra A = A, @ A; with graded invo-
Iution 6 is a Zy-graded OJ-envelope for a Jordan triple system 7' if T'c
Sym(A;, ) and T generates A.

A 7y-graded d-envelope A is O-tight if every nonzero graded d-ideal I = I°
of A satisfies I N T # 0. The hypothesis Z(T;) # 0 imposed in the next theorem
means that the Zel'manov polynomials, (defined in [14]), do not vanish on 7.
As a consequence T; is of hermitian type (following McCrimmons’s terminolo-
gy). The Zelmanov polynomial were applied in [21] to the study of strongly
prime quadratic Jordan algebras, and then in [1] to Jordan triple systems and
pairs. The nature of such polynomials permits to discern whether a given Jor-
dan system has a hermitian part or not [21, p. 143].

THEOREM 2 ([13, Theorem B]). — For i =1, 2 let T; be a prime Jordan triple
system with Z(T;) #0 and Zy-graded o-tight algebra envelope A;. Then any
isomorphism f: Ty — Ty extends uniquely to a graded d-isomorphism

F: A1—>A2.

LEMMA 3. — Let (M;, M;, h;), i1 =1, 2, be complex selfdual pairs relative to
hermitian forms h;. Assume that for any 0 Zm;eM; (i=1, 2) such that
hi(m;, m;) =0, we have that h;(m;, m;/) #0 for all m{ m M; such that
mi, ¢ le

1. If e is an idempotent of R := (F(M,, M,), F(M,, M,)) with rank(e) =
3 (as linear map), then there exist two idempotents of R, f, and f, with the
property of being selfadjoint, ((f7)'=f;7), and such that R} (e) = R} (f1)
and Ry (e) = Ry (f2).

2. If M;, 1 =1, 2, are infinite dimensional vector spaces, then for fi, f>

selfadjoint idempotents of R, there exists another selfadjoint idempotent of
R, fs, satisfying R (f1) U Ry1(f2) C Ry (f3).

Proor. — (1) For simplicity of notation we write (-, -) instead of #; through-
out the Proof. le e=(e”,e”) an idempotent of (F(M,, M,), F(M,, M,)),

such that e " = X a;®y,;, n =3, with {x, ..., x,} and {yy, ..., y,} free sets
i=1
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of vectors of M; and M, respectively (see Lemma 1). Since (-, -) is a hermitian
form, we have linearly independent vectors {&, ...,&,} in M; such that
Ly, .y, )) = L@y, ..., &, ), @,%)=0if ¢=j and (&;,2;) e {1, —1}.
We claim that there are no 7, k such that (;, ;) =1 and (%, ;) = — 1. Indeed,
in the opposite case, the elements &; + &), and &;, j ¢ {7, k}, satisfy (&; + &, &; +
%) =0 and (&; + ¥, &;) =0, being

{o; + @, ; }

linearly independent vectors, a contradiction with the hypothesis. There-
fore,

(@;, ;) = koy

with k a fixed element of {1, —1}. In a similar way, we can take {y;, ..., ¥, }
linearly independent vectors in M, such that L({y, ..., ¥.}) =
Ly, -, ¥, }) and (¥;, ¥;) = poij with p a fixed element of {1, —1}. Taking
1nto account Lemma 1- (2) it is easy to prove that f; = (fi", fi7) with fi" =

2 ki;@py; and fi” = E pY; Qki; is the first selfadjoint idempotent which

we are looking for. In the same manner, we can find another selfadjoint idem-
potent f; such that R; (e) = Ryj (f5).

(2) According to Lemma 1-(4), we have e an idempotent of R such that
R7(fi) UR (f;) c Ry (e), moreover, by Lemma 1-(2) we always can take e
such that rank(e) = 3. We conclude from applying (1) to e that there exists a
selfadjoint idempotent f; of R satisfying Ry (f;) U R1 (f3) ¢ R1 (fs), hence
that

(R (AN'URT () (R (N,
and finally that R (f}) U Ry (f5) c Ri7 (f3) which is our claim.

LEMMA 4. — Let J be a complex topologically simple Jordan H *-pair such
that J is a subpair of (Skw(L(X,Y), ), Skw(L(Y, X), ) containing

(Skw(F(X, Y), i), Skw(F(Y, X), [,)),

where (X,Y, h), (Y,X, h?) are an infinite-dimensional dual pair and
its opposite, and 1, is the adjoint operator, (;: L(X,Y)—>LX,7Y),
1: L(Y, X) = L(Y, X)), then:

1. There exist two selfdual pairs (M;, M;, h;) 1 =1, 2, an isomorphism
D of associative pairs and a conjugate-linear mvolutive anti-automorphism
' onto the associative pair (F(X, Y), F(Y, X)) extending * , such that the
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Sfollowing diagram commutes:

(FX, V), F(Y,X)) —  (FX,Y),F(Y,X)
@ ! ! @
(F(My, M), F(Ms, My)) —  (F(My, My), F(My, M,))

R

i, being the adjoint operator

(o F(My, My) —F(M,, M), lo: F(My, My) = F(M,, My)).

2. If 0=m;eM; (1=1,2) 1is such that h;(m;, m;) =0, then
hi(m;, mj') #0 for all m; in M; such that m; ¢ Cm,.

3. h; (1=1, 2) is hermitian.

ProoF. — (1) Consider the associative algebra

Ao FXORr  FX, V)
“\Fy, 8 F(Y)R

FXOR 0 ) A _( 0 FX, VR
) 1~

with the grading A, = ( 0 FYR F(Y, X)® 0

) and with the
product

(al fl)'(a2 fz):(al‘az*'fl'gz al'fz‘*‘fl'ﬁz)
g1 Bi/ \g2 PBo giras+Bigs gifotBiBe
where x-y:=yox.
We claim that (A, 6) and (A, 0) are Zy-graded J-tight algebra envelopes
of the real polarized Jordan triple system 7 =Skw(F(X, Y), D ®

Skw(F(Y, X), D, with
P G
g B ‘ A a”)'

Indeed, it is clear that T'c Sym(A;, d). In order to prove that T generates
A (and A ), let us consider x; @y e F(Y, X)X, x;, x5 = 0. If x5 # Ax; with A e
C, we can always find x/, x; e X and y{, y» €Y, such that {x, ®s, @/, 25 } is a
linearly independent set of vectors in X and h(x;, /) =0, h(x/, y;) = 0 for
i,je {1, 2}, (by the density of Y in the conjugate space X* of X). Then,

3.1) X Q%= (2] @y — X2, @y Ny2 Y{ — Yy QYsz ), Ry — X3 ),
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with
ys @yl —yi Qys e Skw(F(X, Y), D"

and

X Qg — X2 @y, & Xy — Xz ®xy € Skw(F(Y, X), H)R-

If x5 = Ay with 1 € C, (3.1) can be followed from the previous case, taking into
account that we can find, as before, w,, ¥3€ X and y., ys € Y such that {ux,, x5}
and {ys, y3} are linearly independent set of vectors satisfying h(x;, ;) =1,
ie {2, 3}, and then x; ® la; = (5 ® Aa; )(y3 @ ¥2)(w; ® a3). Therefore T gener-
ates F(Y, X)®. In a similar way we prove that T generates F(X, Y)* and so T
generates A;. As ACAZ@® A, then T generates A. Finally, as A is a simple al-
gebra because A is isomorphic to the simple algebra F(X®Y, X®Y) being
this one simple by [16, p. 75], the O-tight condition holds clearly.

The infinite dimensional nature of 7' forces its hermitian character, and
this implies that the Zel'manov polynomials do not vanish on 7. Thus Z(T) = 0
and by D’Amour’s theorem (Theorem 2), the involution * of J extends to a o-
isomorphism of two-graded algebras v : A— A, hence by an easy argument
# = ((*")",(*")7) with

()" = V|F(X, VR: F(X, Y)R—>F(Y, X
and
(=) =v|py, xr: F(Y, X —>FX, V)

is an involutive anti-automorphism of the associative pair (F(X, )%,
F(Y, X)®). With [Theorem 4] we complete the proof of (1).

(2) Our proof starts with the observation that the isomorphism of associa-
tive pairs @ given by (1), implies the existence of a conjugate-linear involutive
anti-isomorphism of associative pairs ¢ = (¢ *, ¢ ~) such that the following di-
agram commutes:

FX, ), F(Y, X)) — (F(Y, X), F(X, Y))
D J ! D
(F(My, M), F(M3, My)) —  (FMy, My), F(M,, My))
2

The identities f; o *' = *' o[l; (consequence of the fact that v is a d-isomor-
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ﬁ)hism of two-graded algebras), @ ov = ll, o ® and @ oll; = ¢ o @ imply @ oy =
20Q.

Applying [12, Theorem 3] to @, we obtain linear or conjugate-linear home-
omorphisms a : X—M;, and B :Y— M, such that @ ~(f) :=aff L

For simplicity of notation we write (-, -) instead of &,. If (m;, m;) =0 and
(my, my) =0 with m; ¢ Cm;, there exist 0 # x;, 0 # 2, € X such that a(x;) =
m{ and a(x,) = m,, the density of the dual pairs, (see [16, Chapter IV, Section
6]), gives us the existence of 0 #y,, 0 # y, €Y such that (x;, y;) =0,. As

2 @y — 0, @y € Skw(F(Y, X), 1)

and
(4, @y — 2 @1, Y2 QU1 — Y1 QYz, 1 QU — X, R Xy) =, QX — X @ity
then
D(x, @xy — 1, Q1) € Skw(F (M, My), ¢ ),

D(y2 @Y1 — Y1 ®Yz) € Skw(F(My, M), )
and
(D) @itz — 22 @01), PY R Y1 — Y1 DY), P @p — X, R xy)) =
D(x) @y — X2 Q).
Since @~ (1; @ x,)(2) = (B (2), ®1) alws) and
D (0 ®@y)(2) = (B~ (2), ) ;)

for all z e M,, then [16, Lemma on page 72] implies the existence of 0 = my,
0 = my € M, such that @ (v, ®x) =mJ @m; and @ (2, Rx;) =My Qmy .
The commutativity @ ofl; = ¢ o @ and the identity ¢ o[, = ;0 ¢ yield

n

p(my @my) = @~ (2, Q1) = My’ @ my

mn

and p(m; @ my') =m; @my'.
We can consider the completion

(Skw(F(M,, M), ¢ *), Skw(F(My, M), ¢ ~))
of the pre-Hilbert space structure induced on
(Skw(F(Mh MZ)’ @ * ); Sk'lU(F(Mg, M1)7 (p B ))

by the isomorphism . This completion has an H *-structure induced by the
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unique extension

@ : J— (Skw(F(M,;, M), ¢ ), Skw(F(My, My), ¢ ),

by continuity of &. The identities (2.1) of the Jordan H *-pair

((Skw(F(My, M), ¢ ), Skw(F(Ms, My), ¢ ~)); 123 ([ )

give
[ms @ my — gp(mg @my)|F = (b — @(b) |b— @(b)) =

(b= @(b), D2 @Y1 = Y1 ®Y2), b — @(b)) |b = (b)) =

(D(y2 @Y1 — Y1 ®Ys) [{a — @(a), b — ¢(b), a — ¢(a)))
being a =m; @ my and b =my @ m,. The facts that
(a, b, a)={a, b, p(a)) = (a, ¢b), a) ={pa), b, a)=0
and the involutive anti-isomorphism character of ¢, enable us to write
(a = g(a), b= q(b), a — ¢pla)) =0

and then |mg @ m; — @(my ®m;)|| =0, hence my = 0 and my = 0, a contradic-
tion.

(3) The bilinear forms %&; and h, are alternate or hermitian, (see [12, Theo-
rem 4]). Suppose h; is alternate then A(m; @my) = Am; @ my =m; @ Am,,
AeC, myeM; and mye M,. By (1), 1 is the involution of a complex H *-pair
then (A(my @ my —my @ my )" = T(my @my — mi @my )" for

my @ me — my @ my € Skw(F (M, My), (P+),

now taking m; ® my, — m; @my #0 and 1 =1 we obtain a contradiction, and
consequently /; is hermitian.

THEOREM 5. — Let J be a topologically simple Jordan H *-pair such that J
is a subpair of (Skw(L(X,Y), ), Skw(L(Y, X), 1)) containing

(Skw(F(X, Y), 1), Skw(F(Y, X), D)

where (X, Y, h), (Y, X, h°P) are an infinite dimensional dual pair and its
opposite pair, and 1 is the adjoint operator. Thew J 1is k-isogenic to

(Skw(A ™, &%), Skw(A~, §7))
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with A=(A",A”) a topologically simple associative H *-pair and &=
(E", E7) an involutive * -anti-isomorphism from A to A°P.

PRrOOF. — As (Skw(F(X, Y), ), Skw(F(Y, X), ) is a non-zero ideal of J, the
topological simplicity of J and Lemma 4 allow us to suppose that (J,*,(-|-)) is a
subpair of

(Skw(L(Mh MZ)’ (p)7 SkW(L(Mz, M1)7 @))

containing (Skw(F(M,, M,), @), Skw(F(My, My), ¢)), where (M;, M;, h;),
1=1, 2, are under the hypothesis of Lemma 3 and ¢ is a conjugate-linear in-
volutive anti-isomorphism of associative pairs from

(LM, Mz), L(M3, M)

to (L(Msy, My), L(M;, M,)), and that (a°)* = (a°)" [ being the adjoint of a’
with respect to h; for

o eSkw(F(M,, M), ) and o~ eSkw(F(My, My), ¢).
For simplicity of notation we write R instead of
(F(My, M), F(My, M,)).

Taking into account Lemma 3-(2), we can refine Loos’ result in [19, Theo-
rem 3] as in [2, Theorem 2] or [5, Theorem 2], so as to prove that the families
{Skw(Ry;1(f), @)} and {Ry;(f)} are direct systems of finite dimensional Jor-
dan and associative H *-pairs (relative to inclusion), respectively, when f
ranges over the directed set of the selfadjoint idempotents of E. Finally, by
applying direct limits arguments as in [2, Theorem 2] or [5, Theorem 2] we
complete the proof.

It follows easily as in [5, Corollary 1] the following

COROLLARY 1. — Let A=(A", A7) be a prime associative pair and
E=(EY,E7) an involutive anti-isomorphism from A to A°. Suppose
that

J=(SkwA ™", &), SkwA ™, 7)),

(where Skw(A?, £%) denotes {aeA’: £%(a) = —a}), is an infinite dimen-
stonal and topologically simple Jordan H *-pair. Then A is a topologically
simple associative H *-pair.

Summarizing we can claim:

THEOREM 6 (Main Theorem). — Let J = (J ©, J 7) be a topologically simple
mfinite-dimensional non-quadratic Jordan H *-pair. Then, J is k-isogenic
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(isometrically = -isomorphic up to a positive factor of the inner products) to
one of the followings:

1. A’ where A is a topologically simple associative H *-pair.

2. Sym(A, &), where A 1is a topologically simple associative H *-pair
and & is an tmvolutive * -anti-isomorphism from A to A.

3. Skw(A, &), with A and & as in the previous case.

We finally note that the classification of topologically simple associative
H *-pairs can be obtained easily from ([10, Main theorem]).

REMARK 1. - It is proved in [2] that if J is a topologically simple Jordan H *-
pair such that J is the symmetrized Jordan pair of A, for an associative pair A,
then A is necessarily an associative topologically simple H *-pair and the inner
products and involution of J agree with the ones in A. This result supposes a
version for Jordan pairs of a previous result for Jordan algebras given in [24].
Corollary 1 extends the above results.

REMARK 2. — In [3, Theorem 3.1] we describe the equivalence between the
categories of topologically simple polarized L *-triples, (see [3] for definitions),
and topologically simple Jordan H *-pairs. From here, Theorem 6 allows us to
obtain easily a complete classification of topologically simple polarized
L *-triples.

REMARK 3. — Theorem 6 gives us a new approach to the structure theory of
infinite dimensional hermitian Hilbert triples given by W. Kaup in [17, 3.9] and
[18] (see the same references for definitions and details), taking into account
that

(i) Any hermitian Hilbert triple V gives us a Jordan H *-pair J(V) =
(V*, V7)) defining V* :=V, V™~ as V up to the scalar and inner products de-

fined by Av:= 2-v and (u|v)" := (u|v), where - and (-|-) are the scalar and in-
ner products of V. The triple products as an V and the involutions are the
identity.

@) If (V*, V) is a Jordan H *-pair, then T((V*,V")) =V * with the triple
product defined by {x, y, 2} :={x, y*, 2}" is a hermitian Hilbert triple,
and

(iii) It is easy to prove that if V is a hermitian Hilbert triple then

TJV)=V,
and that if (V*, V") is a Jordan H *-pair with zero annihilator then
JTW(V*, V7))

is a Jordan H *-pair * -isometrically isomorphic to (V*, V7).
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