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A Structure Theory for Jordan H *-Pairs.

A. J. CALDERÓN MARTÍN (*) - C. MARTÍN GONZÁLEZ (*)

Sunto. – Il concetto di H *-coppia di Jordan, appare, in modo naturale, nello studio de-
gli H *-sistemi tripli di Lie ([3]). Di fatto, nel [4, Th. 3.1] si prova che il problema
della classificazione degli H *-sistemi tripli di Lie si riduce a provare l’esistenza di
certi inviluppi di L *-algebre e in [3] si prova anche che è possibile associare H *-
coppie topologicamente semplici non quadratiche di Jordan ad un’ampia classe di
H *-sistemi tripli di Lie e che poi gli inviluppi precedenti possono essere ottenuti
da un’opportuna classificazione, in termini di H *-coppie associative, di queste
coppie. In questo lavoro viene dato un teorema di classificazione delle H *-coppie
topologicamente semplici non quadratiche di Jordan in termini di H *-coppie as-
sociative e di certuni loro anti-isomorfismi. Vengono anche enunciate alcune con-
seguenze di questa classificazione.

Summary. – Jordan H *-pairs appear, in a natural way, in the study of Lie H *-triple
systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification
of Lie H *-triple systems is reduced to prove the existence of certain L *-algebra en-
velopes, and it is also shown in [3] that we can associate topologically simple non-
quadratic Jordan H *-pairs to a wide class of Lie H *-triple systems and then the
above envelopes can be obtained from a suitable classification, in terms of associa-
tive H *-pairs, of these pairs. In this paper we give a classification theorem for topo-
logically simple non-quadratic Jordan H *-pairs in terms of associative H *-pairs
and certain of their anti-isomorphisms. Some consequences of this classification
are also stated.

1. – Introduction.

Recall that an H *-pair A4 (A 1 , A 2 ) is a pair of Hilbert spaces over the
complex numbers with involution, in which the inner products (QN Q), the pair
triple products aQ, Q, Qb and involution ˜ are «compatible». By applying the
structure theory of Jordan H *-triple systems developed by A. Castellón, J.A.
Cuenca and C. Martín in [9, 11], one could describe topologically simple Jor-
dan H *-pairs, however, we use entirely different methods to classify topologi-
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«Estudio analítico-algebraico de sistemas triples y de pares en diferentes clases de
estructuras no asociativas», by the PAI of the spanish Junta de Andalucía with project
number FQM-0125 and by the the spanish DGICYT.
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cally simple Jordan H *-pairs. In fact, we note that the introduction of tech-
niques of tight evelopes, D’Amour’s extension theorems, Zel’manov polynomi-
als and dual spaces methods in the treatment of problems of Jordan H *-the-
ory, motivated in part by Rodriguez’s paper [24], is perhaps the most interest-
ing novelty in this paper.

The paper is organized as follows. In the second section we give the prelim-
inary results on associative and Jordan pairs and we obtain in the third section
a structure theory for topologically simple non-quadratic Jordan H *-pairs in
terms of topologically simple associative H *-pairs, by forgetting their Hilbert
space structures and starting with the remaining purely algebraic information
available on them. Jordan H *-pairs with zero annihilator are well related to
hermitian Hilbert triples introduced and classified by W. Kaup in [17, 18], (see
Remark 3). However, the new approach we give allows us to prove the exis-
tence of associative H *-algebra envelopes for certain topologically simple Lie
H *-triple systems, (what implies the classification of the last ones). We also
extend one of the results of [24] and [2] (see Remark 1).

2. – Definitions and preliminary results.

2.1. On associative pairs.

Let A4 (A 1 , A 2 ) be a pair of modules over a commutative unitary ring K ,
and aQ, Q, Qb: A s3A 2s3A sKA s , two trilinear maps written

(x , y , z) O ax , y , zb

for s� ]1 , 2(. Then A is called an associative pair if the following identities
are satisfied:

aax , y , zb, u , vb 4 ax , ay , z , ub, vb 4 ax , y , az , u , vbb

for x , z , v�A s and y , u�A 2s.
The definitions of homomorphism, epimorphism, monomorphism and iso-

morphism are the usual ones. The opposite pair A op of the pair A4 (A 1 , A 2 )
is the pair (A 2 , A 1 ) with the same triple products. An anti-homomorphism
from A to B is a K-linear mapping n4 (n1 , n2 ) from the pair A to the pair B op

satisfying ns (ax , y , zb) 4 ans (z), n2s (y), ns (x)b for all x , z�A s and y�A 2s.
An anti-isomorphism n4 (n1 , n2 ) will be called involutive if n2s ns4Id. An
ideal I4 (I 1 , I 2 ) of A is a couple of K-submodules such that

aI s , A 2s , A s b1 aA s , I 2s , A s b1 aA s , A 2s , I s b %I s .

A pair A will be called simple if and only if aA s , A 2s , A s b c0 and its only
ideals are 0 and A.

Let us see a first example of an associative pair. A dual pair of vector
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spaces over a division K-algebra D is a triple (X , X 8 , h) such that X is a left D-
vector space, X 8 is a right D-vector space and h is a non-degenerate bilinear
form h : X3X 8KD. One can consider the X 8-topology of X (and the X-topolo-
gy of X 8), see [16, Chapter IV Section 6]. If we have two dual pairs (X , X 8 , h)
and (Y , Y 8 , g), one can define L(X , Y) as the set of all continuous linear maps
from X to Y (and F(X , Y) the subset of all finite rank elements of L(X , Y)).
Any subpair of (L(X , Y), L(Y , X) ) containing (F(X , Y), F(Y , X) ) with the
triple products ax , y , zbs »4xyz , is a prime associative pair with nonzero socle
(see [12]). If f�L(X , Y), we define the adjoint of f , denoted by f l--l, as the only
element f l--l �L(Y 8 , X 8 ) such that g( f (x), y 8 ) 4h(x , f l--l(y 8 ) ) for any x�X and
y 8�Y 8 (see [16, Chapter IV, Theorem 1, p. 72] for existence and unique-
ness).

In [16, Proposition IV. 8.1], it is shown that f�F(X , Y) if and only if f (t) 4

!
i41

n

h(t , xi8 ) yi for all t�X , with ]xi8(i41
n in X 8 and ]yi (i41

n in Y , (the map

t O h(t , x 8 ) y will be denoted by x 87y). We note the following rules govern-
ing the «product» 7: For all x�X , x 8 , x18 , x28�X 8 , y , y1 , y2 �Y , y 8�Y 8 and
m�D ,

(i) (x181x28 )7y4x187y1x287y

(ii) x 87 (y1 1y2 ) 4x 87y1 1x 87y2

(iii) x 8 m7y4x 87my

(iv) (y 87x)(x 87y) 4x 8 g(y , y 8 )7x

(v) (x 87y) l--l 4y7x 8.

The basic reference for definitions and notations about dual pairs theory
will be [16, Chapter IV].

A couple e4(e 1 , e 2 ) of a pair A4(A 1 , A 2 ) is called an idempotent if

ae s , e 2s , e s b 4e s .

We recall that the (11)-Peirce space of A associated to e , denoted by

A11 (e) 4 (A11
1 (e), A11

2 (e) ),

is defined as

A11
s (e) 4 ]x s�A s : ax s , e 2s , e s b 4 ae s , e 2s , x s b 4x s(.

We shall need the following result that can be found in [5]:

LEMMA 1 ([5, Lemma 1]). – Let (X , X 8 , h), (Y , Y 8 , g) be dual pairs and
denote

R»4 (F(X , Y), F(Y , X) ).
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1. For any e 1�F(X , Y), e 1
c0, there exists e 2�F(Y , X) such that

(e 1 , e 2 ) is an idempotent. Moreover, there is a unique n�N such that e 14

!
i41

n

xi87yi and e 24 !
i41

n

yi87xi , with ]xi (, ]xi8(, ]yi ( and ]yi8( systems of

linearly independent vectors in X , X 8 , Y and Y 8 respectively, satisfying
h(xi , xj8 ) 4g(yi , yj8 ) 4d ij (Kronecker delta).

2. If e4 (e 1 , e 2 ) is an idempotent of R , being e 14 !
i41

n

xi87yi and

e 24 !
i41

n

yi87xi

as in (1), then R11
1 (e) is linearly generated by ]ei , j

1 »4xi87yj : i , j41, R , n(

and R11
2 (e) is linearly generated by

]ei , j
2 »4yi87xj : i , j41, R , n(.

3. The sets ]ei , j
1 ( and ]ei , j

2 ( described in (2) are systems of linearly inde-
pendent vectors of R11

1 (e) and R11
2 (e) respectively.

4. If X and Y are infinite dimensional vector spaces, then for e1 , e2 idem-
potents of R , there exists e3 , another idempotent of R , satisfying

R11
1 (e1 )NR11

1 (e2 ) %R11
1 (e3 ).

2.2. On Jordan pairs.

The basic reference for definitions and notations about Jordan pairs theory
will be [20]. Let us see some examples of Jordan pairs. The simple Jordan al-
gebra V4V( f ) of a nondegenerate symmetric bilinear form gives rise to a
Jordan pair J4 (V , V) by defining Q s (x) 4U(x), these Jordan pairs are
called of quadratic type.

If A is an associative pair, then A J will denote the symmetrized Jordan
pair of A , that is, the Jordan pair whose underlying K-module agrees with that
of A , and whose quadratic operators are given by Q s (x)(y) 4 ax , y , xbs. Let
(X , Y , h) be a dual pair over a K-division algebra with involution (D , 2), we
can define the opposite dual pair (Y , X , h op ), considering Y and X as left and
right D-vector spaces respectively, for the actions ly»4yl, xl»4 lx for all
x�X , y�Y and l�D , and defining h op : Y3XKD as h op (y , x) »4 h(x , y) for
(y , x) �Y3X. Then, other examples of Jordan pairs are any subpair of

(Sym(L(X , Y), l l--), Sym(L(Y , X), l l--) ),

(where Sym(L(X , Y), l l--) 4 ] f�L(X , Y) : f l--l 4 f ( and Sym(L(Y , X), l l--) is de-
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fined similarly), containing

(Sym(F(X , Y), l l--), Sym(F(Y , X), l l--) ),

where the quadratic operators are Q s (x)(y) 4xyx and l l-- is the adjoint
operator

L(X , Y) KL(X , Y) or L(Y , X) KL(Y , X);

and any subpair of

(Skw(L(X , Y), l l--), Skw(L(Y , X), l l--) ),

(where (Skw(L(X , Y), l l--) 4 ] f�L(X , Y) : f l--l 42f ( and Skw(L(Y , X), l l--) is de-
fined similarly), containing

(Skw(F(X , Y), l l--), Skw(F(Y , X), l l--) ),

with the quadratic operators and l l-- as above.

2.3. On H *-pairs.

Let V4 (V 1 , V 2 ) be a, non necessarily associative, complex pair with
triple products denoted by aQ, Q, Qbs, and let ˜4 (˜1 , ˜2 ) be a couple of conju-
gate-linear mappings ˜s : V sKV 2s for which ˜s

i ˜2s4Id and

ax s , y 2s , z s b˜s
4 a(z s )˜s

, (y 2s )˜2s
, (x s )˜s

b

for x s , z s�V s and y 2s�V 2s. Then ˜4 (˜1 , ˜2 ) is called an involution of
V. We say that V is an H *-pair if V 1 and V 2 are also Hilbert spaces over the
complex numbers with inner products (QN Q)s : V s3V sKC , endowed with an
involution ˜4 (˜1 , ˜2 ) such that

(2.1) (ax s , y 2s , z s bNt s )s4 (x s Nat s , (z s )˜s
, (y 2s )˜2s

b)s4

(y 2s Na(x s )˜s
, t s , (z s )˜s

b)2s4 (z s Na(y 2s )˜2s
, (x s )˜s

, t s b)s

for x s , z s , t s�V s and y 2s�V 2s. The complete notation for an H *-pair would
be (V , ˜ , (QN Q) ) but we will frequently speak of the H *-pair V (omitting the in-
volution and inner products).

We also recall that an H *-pair V is said to be topologically simple when

aV s , V 2s , V s b c0

and its only closed ideals, with respect to the norm topology, are ]0( and V.
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A ˜-homomorphism f : VKW of H *-pairs is a homomorphism such that
f 2s ( (x s )*) 4 ( f s (x s ) )* for any x s�V s and s� ]1 , 2(. An ˜-isomorphism f
is said to be k-isogenic whenever ( f s (x s )Nf s (y s ) ) 4k(x s Ny s ) for any
x s , y s�V s , and s� ]1 , 2(, with k a positive real number. The pair

Ann(V) 4 (Ann(V 1 ), Ann(V 2 ) )

is a self-adjoint closed ideal of V that we call the Annihilator of V. Following
[7] it is easy to prove that any H *-pair V with continuous involution splits into
the orthogonal direct sum V4Ann(V) »U , where U4 (U 1 , U 2 ) is an H *-
subpair of V with zero annihilator. Moreover, each H *-pair V with zero annihi-
lator satisfies V4 »Ia where ]Ia(a , (Ia4 (I 1

a , I 2
a ) ), denotes the family of

minimal closed ideals of V , each of them being a topologically simple H *-pair.
This reduces the study of this pairs to the study of the topologically simple
ones.

3. – Jordan H *-pairs.

3.1. Previous results.

We are primarily interested in infinite-dimensional pairs since any finite-
dimensional topologically simple H *-pair is simple, and it can be proved that
any simple finite-dimensional complex Jordan pair can be endowed with an
(essentially unique) structure of H *-pair. The existence of an H *-structure
can be seen as a consequence of [22, 3.3 Satz] and [23], while the essential
uniqueness of this H *-structure follows from [6] and [23]. As the classification
of simple finite-dimensional Jordan pairs over C has been previously consid-
ered (see [20]) we shall confine ourselves to the infinite dimensional case.

If J4 (J 1 , J 2 ) is a Jordan H *-pair, we define the polarized Jordan triple
system of J as the Jordan H *-triple system T with Hilbert space J 1»J 2

whose quadratic operator P and involution are given by

P(x)(y) 4 (Q 1 (x 1 )(y 2 ), Q 2 (x 2 )(y 1 ) )

and (x 1 , x 2 )* »4 ( (x 2 )* , (x 1 )*) for all (x 1 , x 2 ), (y 1 , y 2 ) �T (see [6] or [8]
for definition of H *-triple system). As we proved in [2, Proposition 1] that any
topologically simple Jordan H *-pair is prime, non-degenerate and with non-
zero socle, and its polarized triple system inherits these «characteristics», we
can derive from the classification of prime, non-degenerate Jordan triple sys-
tems with non-zero socle in [15, Theorem 7], that the underlying Jordan pair J
of an infinite dimensional topologically simple non quadratic Jordan H *-pair
is one of the following:

Type (i): J is a subpair of (L(X , Y), L(Y , X) )J containing (F(X , Y),
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F(Y , X) )J with the quadratic operators Q s (x)(y) 4xyx , being (X , X 8 ) and
(Y , Y 8 ) dual pairs over C.

Type (ii): J is a subpair of

(Sym(L(X , Y), l l--), Sym(L(Y , X), l l--) )

containing (Sym(F(X , Y), l l--), Sym(F(Y , X), l l--) ), where (X , Y , h), (Y , X , h op )
are a dual pair and its opposite over C , the quadratics operators are

Q s (x)(y) 4xyx

and l l-- is the adjoint operator.

Type (iii): J is a subpair of

(Skw(L(X , Y), l l--), Skw(L(Y , X), l l--) )

containing (Skw(F(X , Y), l l--), Skw(F(Y , X), l l--) ), with (X , Y , h), (Y , X , h op ), the
quadratic operators and l l-- as in the previous type.

Topologically simple Jordan H *-pairs of types (i) and (ii) have been stud-
ied in [2] and [5] respectively. It is proved in these references that the ones of
type (i) are k-isogenic, (˜-isometrically isomorphic up to a positive factor of
the inner product), to A J with A a topologically simple associative H *-pair,
and that the ones of type (ii) are k-isogenic to

J4 (Sym(A 1 , j1 ), Sym(A 2 , j2 ) )

with A4 (A 1 , A 2 ) as above and j4 (j1 , j2 ) an involutive ˜-anti-isomor-
phism from A to A op .

We proceed to study the remaining type.

3.2. Study of Jordan H *-pairs such that their underlying Jordan pairs are
of Type (iii).

We are going to prove in this section that if J is a subpair of

(Skw(L(X , Y), l l--), Skw(L(Y , X), l l--) )

containing (Skw(F(X , Y), l l--), Skw(F(Y , X), l l--) ), where (X , Y , h), (Y , X , h op )
are a dual pair and its opposite over C , the quadratic operators are
Q s (x)(y) 4xyx and l l-- is the adjoint operator, then J is k-isogenic to

(Skw(A 1 , j1 ), Skw(A 2 , j2 ) )
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with A4 (A 1 , A 2 ) a topologically simple associative H *-pair and j4

(j1 , j2 ) an involutive ˜-anti-isomorphism from A to A op . The techniques we
shall use are the dual vector spaces methods in Jordan pairs theory introduced
in [2] and [5]. Many technical differences with the situations that we find in
these references lead us to develop § 3.2 in detail.

We recall that any complex pair V4 (V 1 , V 2 ) is a real pair restricting the
field of scalars to R. This real pair is denoted by V R4 ( (V 1 )R , (V 2 )R ).

We shall also need the following result due to A. D’Amour:
We say that a Z2-graded associative algebra A4A0 5A1 with graded invo-

lution d is a Z2-graded d-envelope for a Jordan triple system T if T%
Sym(A1 , d) and T generates A .

A Z2-graded d-envelope A is d-tight if every nonzero graded d-ideal I4I d

of A satisfies IOTc0. The hypothesis Z(Ti ) c0 imposed in the next theorem
means that the Zel’manov polynomials, (defined in [14]), do not vanish on Ti .
As a consequence Ti is of hermitian type (following McCrimmons’s terminolo-
gy). The Zelmanov polynomial were applied in [21] to the study of strongly
prime quadratic Jordan algebras, and then in [1] to Jordan triple systems and
pairs. The nature of such polynomials permits to discern whether a given Jor-
dan system has a hermitian part or not [21, p. 143].

THEOREM 2 ([13, Theorem B]). – For i41, 2 let Ti be a prime Jordan triple
system with Z(Ti ) c0 and Z2-graded d-tight algebra envelope Ai . Then any
isomorphism f : T1 KT2 extends uniquely to a graded d-isomorphism

F : A1 KA2 .

LEMMA 3. – Let (Mi , Mi , hi ), i41, 2 , be complex selfdual pairs relative to
hermitian forms hi . Assume that for any 0 cmi �Mi (i41, 2 ) such that
hi (mi , mi ) 40, we have that hi (mi , mi8 ) c0 for all mi8 in Mi such that
mi8�Cmi .

1. If e is an idempotent of R»4 (F(M1 , M2 ), F(M2 , M1 ) ) with rank(e) F

3 (as linear map), then there exist two idempotents of R , f1 and f2 , with the
property of being selfadjoint, ( ( fi

s ) l--l 4 fi
2s ), and such that R11

1 (e) 4R11
1 ( f1 )

and R11
2 (e) 4R11

2 ( f2 ).

2. If Mi , i41, 2 , are infinite dimensional vector spaces, then for f1 , f2

selfadjoint idempotents of R , there exists another selfadjoint idempotent of
R , f3 , satisfying R11 ( f1 )NR11 ( f2 ) %R11 ( f3 ).

PROOF. – (1) For simplicity of notation we write (Q , Q) instead of h1 through-
out the Proof. Fix e4 (e 1 , e 2 ) an idempotent of (F(M1 , M2 ), F(M2 , M1 ) ),

such that e 14 !
i41

n

xi 7yi , nF3, with ]x1 , R , xn ( and ]y1 , R , yn ( free sets
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of vectors of M1 and M2 respectively (see Lemma 1). Since (Q , Q) is a hermitian
form, we have linearly independent vectors ]xA1 , R , xAn ( in M1 such that
L(]x1 , R , xn () 4 L(]xA1 , R , xAn (), (xAi , xAj ) 40 if ic j and (xAi , xAi ) � ]1, 21(.
We claim that there are no i , k such that (xAi , xAi ) 41 and (xAk , xAk ) 421. Indeed,
in the opposite case, the elements xAi 1xAk and xAj , j� ]i , k(, satisfy (xAi 1xAk , xAi 1

xAk ) 40 and (xAi 1xAk , xAj ) 40, being

]xAi 1xAk , xAj (

linearly independent vectors, a contradiction with the hypothesis. There-
fore,

(xAi , xAj ) 4kdij

with k a fixed element of ]1, 21(. In a similar way, we can take ]yA1 , R , yAn (

linearly independent vectors in M2 such that L(]y1 , R , yn () 4

L(]yA1 , R , yAn () and (yAi , yAj ) 4pdij with p a fixed element of ]1, 21(. Taking
into account Lemma 1-(2), it is easy to prove that f1 4 ( f1

1 , f1
2 ) with f1

14

!
i41

n

kxAi 7pyAi and f1
24 !

i41

n

pyAi 7kxAi is the first selfadjoint idempotent which

we are looking for. In the same manner, we can find another selfadjoint idem-
potent f2 such that R11

2 (e) 4R11
2 ( f2 ).

(2) According to Lemma 1-(4), we have e an idempotent of R such that
R11

1 ( f1 )NR11
1 ( f2 ) %R11

1 (e), moreover, by Lemma 1-(2) we always can take e
such that rank(e) F3. We conclude from applying (1) to e that there exists a
selfadjoint idempotent f3 of R satisfying R11

1 ( f1 )NR11
1 ( f2 ) %R11

1 ( f3 ), hence
that

(R11
1 ( f1 ) ) l--lN(R11

1 ( f2 ) ) l--l % (R11
1 ( f3 ) ) l--l,

and finally that R11
2 ( f1 )NR11

2 ( f2 ) %R11
2 ( f3 ) which is our claim.

LEMMA 4. – Let J be a complex topologically simple Jordan H *-pair such
that J is a subpair of (Skw(L(X , Y), l l--), Skw(L(Y , X), l l--) ) containing

(Skw(F(X , Y), l l-- 1 ), Skw(F(Y , X), l l-- 1 ) ),

where (X , Y , h), (Y , X , h op ) are an infinite-dimensional dual pair and
its opposite, and l l-- 1 is the adjoint operator, (l l-- 1 : L(X , Y) KL(X , Y),
l l-- 1 : L(Y , X) KL(Y , X) ), then:

1. There exist two selfdual pairs (Mi , Mi , hi ) i41, 2 , an isomorphism
F of associative pairs and a conjugate-linear involutive anti-automorphism

8̃ onto the associative pair (F(X , Y), F(Y , X) ) extending ˜ , such that the
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following diagram commutes:

F
(F(X , Y), F(Y , X) )

I
(F(M1 , M2 ), F(M2 , M1 ) )

8̃
K

K
l l-- 2

(F(X , Y), F(Y , X) )
I

(F(M1 , M2 ), F(M2 , M1 ) )
F

l l-- 2 being the adjoint operator

(l l-- 2 : F(M1 , M2 ) KF(M2 , M1 ), l l-- 2 : F(M2 , M1 ) KF(M1 , M2 ) ).

2. If 0 cmi �Mi (i41, 2 ) is such that hi (mi , mi ) 40, then
hi (mi , mi8 ) c0 for all mi8 in Mi such that mi8�Cmi .

3. hi (i41, 2 ) is hermitian.

PROOF. – (1) Consider the associative algebra

A4u F(X)R

F(Y , X)R

F(X , Y)R

F(Y)R
v

with the grading A0 4gF(X)R

0
0

F(Y)Rh , A1 4g 0
F(Y , X)R

F(X , Y)R

0
h and with the

product

ga 1

g1

f1

b 1
hQ ga 2

g2

f2

b 2
h4ga 1 Qa 2 1 f1 Qg2

g1 Qa 2 1b 1 Qg2

a 1 Q f2 1 f1 Qb 2

g1 Q f2 1b 1 Qb 2
h

where x Qy»4y i x .
We claim that (A , d) and (A op , d) are Z2-graded d-tight algebra envelopes

of the real polarized Jordan triple system T4Skw(F(X , Y), l l--)R5
Skw(F(Y , X), l l--)R , with

ga

g

f

b
hd

»4g b l--l

2g l--l

2f l--l

a l--l
h .

Indeed, it is clear that T%Sym(A1 , d). In order to prove that T generates
A (and A op), let us consider x1 7x2 �F(Y , X)R , x1 , x2 c0. If x2 clx1 with l�
C , we can always find x18 , x28�X and y18 , y28�Y , such that ]x1 , x2 , x18 , x28( is a
linearly independent set of vectors in X and h(xi , yj8 ) 40, h(xi8 , yj8 ) 4d ij for
i , j� ]1, 2(, (by the density of Y in the conjugate space X * of X). Then,

(3.1) x1 7x2 4 (x187x2 2x2 7x18 )(y287y182y187y28 )(x1 7x282x287x1 ),
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with

y287y182y187y28�Skw(F(X , Y), l l--)R

and

x187x2 2x2 7x18 , x1 7x282x287x1 �Skw(F(Y , X), l l--)R .

If x2 4lx1 with l�C , (3.1) can be followed from the previous case, taking into
account that we can find, as before, x2 , x3 �X and y2 , y3 �Y such that ]x2 , x3 (

and ]y2 , y3 ( are linearly independent set of vectors satisfying h(xi , yi ) 41,
i� ]2, 3(, and then x1 7lx1 4 (x2 7lx1 )(y3 7y2 )(x1 7x3 ). Therefore T gener-
ates F(Y , X)R. In a similar way we prove that T generates F(X , Y)R and so T
generates A1 . As A%A1

2 5A1 , then T generates A. Finally, as A is a simple al-
gebra because A is isomorphic to the simple algebra F(X5Y , X5Y) being
this one simple by [16, p. 75], the d-tight condition holds clearly.

The infinite dimensional nature of T forces its hermitian character, and
this implies that the Zel’manov polynomials do not vanish on T. Thus Z(T) c0
and by D’Amour’s theorem (Theorem 2), the involution ˜ of J extends to a d-
isomorphism of two-graded algebras n : AKA op , hence by an easy argument

8̃4 ( ( 8̃ )1 , ( 8̃ )2 ) with

( 8̃ )1 »4nNF(X , Y)R : F(X , Y)RKF(Y , X)R

and

( 8̃ )2 »4nNF(Y , X)R : F(Y , X)RKF(X , Y)R

is an involutive anti-automorphism of the associative pair (F(X , Y)R ,
F(Y , X)R ). With [Theorem 4] we complete the proof of (1).

(2) Our proof starts with the observation that the isomorphism of associa-
tive pairs F given by (1), implies the existence of a conjugate-linear involutive
anti-isomorphism of associative pairs W4 (W1 , W2 ) such that the following di-
agram commutes:

F
(F(X , Y), F(Y , X) )

I
(F(M1 , M2 ), F(M2 , M1 ) )

l l-- 1

K

K
W

(F(Y , X), F(X , Y) )
I

(F(M2 , M1 ), F(M1 , M2 ) )
F

The identities l l-- 1 i 8̃4 8̃ i l l-- 1 (consequence of the fact that n is a d-isomor-
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phism of two-graded algebras), F i n4 l l-- 2 i F and F i l l-- 1 4W i F imply W i l l-- 2 4

l l-- 2 i W .
Applying [12, Theorem 3] to F , we obtain linear or conjugate-linear home-

omorphisms a : XKM1 , and b : YKM2 such that F2 ( f ) »4afb21.
For simplicity of notation we write (Q , Q) instead of h1 . If (m1 , m1 ) 40 and

(m1 , m18 ) 40 with m18�Cmi , there exist 0 cx1 , 0 cx2 �X such that a(x1 ) 4

m18 and a(x2 ) 4m1 , the density of the dual pairs, (see [16, Chapter IV, Section
6]), gives us the existence of 0 cy1 , 0 cy2 �Y such that (xi , yj ) 4d ij . As

x1 7x2 2x2 7x1 �Skw(F(Y , X), l l-- 1 )

and

ax1 7x2 2x2 7x1 , y2 7y1 2y1 7y2 , x1 7x2 2x2 7x1 b 4x1 7x2 2x2 7x1

then

F(x1 7x2 2x2 7x1 ) �Skw(F(M2 , M1 ), W2 ),

F(y2 7y1 2y1 7y2 ) �Skw(F(M1 , M2 ), W1 )

and

aF(x1 7x2 2x2 7x1 ), F(y2 7y1 2y1 7y2 ), F(x1 7x2 2x2 7x1 )b 4

F(x1 7x2 2x2 7x1 ).

Since F2 (x1 7x2 )(z) 4 (b21 (z), x1 ) a(x2 ) and

F2 (x2 7x1 )(z) 4 (b21 (z), x2 ) a(x1 )

for all z�M2 , then [16, Lemma on page 72] implies the existence of 0 cm29 ,
0 cm2R�M2 such that F2 (x1 7x2 ) 4m297m1 and F2 (x2 7x1 ) 4m2R7m18 .
The commutativity F i l l-- 1 4W i F and the identity W i l l-- 2 4 l l-- 2 i W yield

W(m297m1 ) 4F2 (x2 7x1 ) 4m2R7m18

and W(m1 7m29 ) 4m187m2R .
We can consider the completion

(Skw(F(M1 , M2 ), W1 ), Skw(F(M2 , M1 ), W2 ))

of the pre-Hilbert space structure induced on

(Skw(F(M1 , M2 ), W1 ), Skw(F(M2 , M1 ), W2 ) )

by the isomorphism F. This completion has an H *-structure induced by the
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unique extension

F
A : JK (Skw(F(M1 , M2 ), W1 ), Skw(F(M2 , M1 ), W2 )),

by continuity of F. The identities (2.1) of the Jordan H *-pair

( (Skw(F(M1 , M2 ), W1 ), Skw(F(M2 , M1 ), W2 )); l l-- 2 ; (QN Q) )

give

Vm297m1 2W(m297m1 )V

2 4 (b2W(b)Nb2W(b) ) 4

(ab2W(b), F(y2 7y1 2y1 7y2 ), b2W(b)bNb2W(b) ) 4

(F(y2 7y1 2y1 7y2 )Naa2W(a), b2W(b), a2W(a)b)

being a4m1 7m29 and b4m297m1 . The facts that

aa , b , ab 4 aa , b , W(a)b 4 aa , W(b), ab 4 aW(a), b , ab 40

and the involutive anti-isomorphism character of W , enable us to write

aa2W(a), b2W(b), a2W(a)b 40

and then Vm297m1 2W(m297m1 )V40, hence m2940 and m2R40, a contradic-
tion.

(3) The bilinear forms h1 and h2 are alternate or hermitian, (see [12, Theo-
rem 4]). Suppose h1 is alternate then l(m1 7m2 ) 4lm1 7m2 4m1 7lm2 ,
l�C , m1 �M1 and m2 �M2 . By (1), l l-- is the involution of a complex H *-pair
then (l(m1 7m2 2m187m28 ) ) l--l 4 l(m1 7m2 2m187m28 ) l--l for

m1 7m2 2m187m28�Skw(F(M1 , M2 ), W1 ),

now taking m1 7m2 2m187m28c0 and l4 i we obtain a contradiction, and
consequently hi is hermitian.

THEOREM 5. – Let J be a topologically simple Jordan H *-pair such that J
is a subpair of (Skw(L(X , Y), l l--), Skw(L(Y , X), l l--) ) containing

(Skw(F(X , Y), l l--), Skw(F(Y , X), l l--) )

where (X , Y , h), (Y , X , h op ) are an infinite dimensional dual pair and its
opposite pair, and l l-- is the adjoint operator. Then J is k-isogenic to

(Skw(A 1 , j1 ), Skw(A 2 , j2 ) )
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with A4 (A 1 , A 2 ) a topologically simple associative H *-pair and j4

(j1 , j2 ) an involutive ˜-anti-isomorphism from A to A op .

PROOF. – As (Skw(F(X , Y), l l--), Skw(F(Y , X), l l--) ) is a non-zero ideal of J , the
topological simplicity of J and Lemma 4 allow us to suppose that (J ,* , (QN Q) ) is a
subpair of

(Skw(L(M1 , M2 ), W), Skw(L(M2 , M1 ), W) )

containing (Skw(F(M1 , M2 ), W), Skw(F(M2 , M1 ), W) ), where (Mi , Mi , hi ),
i41, 2 , are under the hypothesis of Lemma 3 and W is a conjugate-linear in-
volutive anti-isomorphism of associative pairs from

(L(M1 , M2 ), L(M2 , M1 ) )

to (L(M2 , M1 ), L(M1 , M2 ) ), and that (a s )*4 (a s ) l--l, l l-- being the adjoint of a s

with respect to hi for

a 1�Skw(F(M1 , M2 ), W) and a 2�Skw(F(M2 , M1 ), W).

For simplicity of notation we write R instead of

(F(M1 , M2 ), F(M2 , M1 ) ).

Taking into account Lemma 3-(2), we can refine Loos’ result in [19, Theo-
rem 3] as in [2, Theorem 2] or [5, Theorem 2], so as to prove that the families
]Skw(R11 ( f ), W)( and ]R11 ( f )( are direct systems of finite dimensional Jor-
dan and associative H *-pairs (relative to inclusion), respectively, when f
ranges over the directed set of the selfadjoint idempotents of R. Finally, by
applying direct limits arguments as in [2, Theorem 2] or [5, Theorem 2] we
complete the proof.

It follows easily as in [5, Corollary 1] the following

COROLLARY 1. – Let A4 (A 1 , A 2 ) be a prime associative pair and
j4 (j1 , j2 ) an involutive anti-isomorphism from A to A op. Suppose
that

J4 (Skw(A 1 , j1 ), Skw(A 2 , j2 ) ),

(where Skw(A s , js ) denotes ]a�A s : js (a) 42a(), is an infinite dimen-
sional and topologically simple Jordan H *-pair. Then A is a topologically
simple associative H *-pair.

Summarizing we can claim:

THEOREM 6 (Main Theorem). – Let J4 (J 1 , J 2 ) be a topologically simple
infinite-dimensional non-quadratic Jordan H *-pair. Then, J is k-isogenic
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(isometrically ˜-isomorphic up to a positive factor of the inner products) to
one of the followings:

1. A J , where A is a topologically simple associative H *-pair.

2. Sym(A , j), where A is a topologically simple associative H *-pair
and j is an involutive ˜-anti-isomorphism from A to A op.

3. Skw(A , j), with A and j as in the previous case.

We finally note that the classification of topologically simple associative
H *-pairs can be obtained easily from ([10, Main theorem]).

REMARK 1. – It is proved in [2] that if J is a topologically simple Jordan H *-
pair such that J is the symmetrized Jordan pair of A , for an associative pair A ,
then A is necessarily an associative topologically simple H *-pair and the inner
products and involution of J agree with the ones in A. This result supposes a
version for Jordan pairs of a previous result for Jordan algebras given in [24].
Corollary 1 extends the above results.

REMARK 2. – In [3, Theorem 3.1] we describe the equivalence between the
categories of topologically simple polarized L *-triples, (see [3] for definitions),
and topologically simple Jordan H *-pairs. From here, Theorem 6 allows us to
obtain easily a complete classification of topologically simple polarized
L *-triples.

REMARK 3. – Theorem 6 gives us a new approach to the structure theory of
infinite dimensional hermitian Hilbert triples given by W. Kaup in [17, 3.9] and
[18] (see the same references for definitions and details), taking into account
that

(i) Any hermitian Hilbert triple V gives us a Jordan H *-pair J(V) 4

(V 1 , V 2 ) defining V 1 »4V , V 2 as V up to the scalar and inner products de-
fined by lv»4 l Qv and (uNv)8 »4 (uNv), where Q and (QN Q) are the scalar and in-
ner products of V. The triple products as an V and the involutions are the
identity.

(ii) If (V 1 , V 2 ) is a Jordan H *-pair, then T((V + ,V - ))»=V + with the triple
product defined by ]x , y , z( »4 ]x , y *, z(1 is a hermitian Hilbert triple,
and

(iii) It is easy to prove that if V is a hermitian Hilbert triple then

TJ(V) 4V ,

and that if (V 1 , V 2 ) is a Jordan H *-pair with zero annihilator then

JT( (V 1 , V 2 ) )

is a Jordan H *-pair ˜-isometrically isomorphic to (V 1 , V 2 ).
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[9] A. CASTELLÓN - J. A. CUENCA, Jordan H *-triple systems, in Nonassociative Alge-
bras and its Applications, S. González editor, Kluwer Academic Publishers (1994),
66-72.
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[11] A. CASTELLÓN - J. A. CUENCA - C. MARTÍN, Special Jordan H *-triple systems,
Comm. Alg, 28, no. 10 (2000), 4699-4706.
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