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Algebraic Cycles on Abelian Varieties
and their Decomposition.

GIAMBATTISTA MARINI

Sunto. – In questo lavoro consideriamo una varietà abeliana X ed il suo anello di
Chow CH l (X) dei cicli algebrici modulo equivalenza razionale. Tramite la decom-
posizione di Künneth della diagonale D%X3X è possibile ottenere delle formule
esplicite per i proiettori associati alla decomposizione di Beauville (1) di CH l (X),
tali formule sono espresse in termini delle immagini dirette e inverse dei morfismi
di moltiplicazione per un intero m . Il teorema (4) fornisce delle drastiche semplifi-
cazioni di tali formule, la Proposizione (9) ed il Corollario (10) forniscono alcuni
risultati ad esse correlati.

Summary. – For an Abelian Variety X , the Künneth decomposition of the rational
equivalence class of the diagonal D%X3X gives rise to explicit formulas for the
projectors associated to Beauville’s decomposition (1) of the Chow ring CH l (X), in
terms of push-forward and pull-back of m-multiplication. We obtain a few simplifi-
cations of such formulas, see theorem (4) below, and some related results, see propo-
sition (9) below.

0. – Introduction.

Let X be an abelian variety of dimension n and denote by CHl (X)
its Chow group of algebraic cycles modulo rational equivalence. In our
notation, CHd (X) is the subgroup of d-dimensional cycles and CH p (X) »4

CHn2d (X) is the subgroup of p-codimensional cycles. For m�Z , let mult (m)
denote the multiplication map XKX , x O mx . By the use of Fourier-Mukai
transform for abelian varieties (see [M] and [Be]), Beauville has established
a decomposition

CHd (X)Q4 5
s42d

n2d
[CHd (X)Q ]s(1)

where, by definition, CHd (X)Q4CHd (X)7Q is the Chow group with Q-
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coefficients and the right-hand-side subgroups are defined as follows:

[CHd (X)Q ]s »4

4

]W�CHd (X)Q Nmult(m)x W4m 2d1s W , (m�Z(

]W�CH p (X)Q Nmult(m)x W4m 2p2s W , (m�Z( ,
(2)

where p4n2d is the codimension of W .
This decomposition is a tool to understand cycles and rational equivalence

on abelian varieties and it would give a beautiful answer to many questions
concerning the Chow groups of abelian varieties (see [Be], [Bl], [J], [Ku] and
[S]), provided that Beauville’s vanishing conjecture [Be] holds. This conjec-
ture states that the factors of CHd (X) with sE0 vanish (see B.C. below). As
pointed out in the abstract, by the use of Deninger-Murre projectors d i , (see
[DM], [Ku]), the projections CHd (X) K [CHd (X) ]s with respect to Beauville’s
decomposition (1) can be written as linear forms of mult(m)x and mult(m)x .
Theorem (4) simplifies such explicit descriptions. A further simplification is
given for the case where one works modulo a piece of the decomposition, see
proposition (9); see corollary (10) for a reformulation of Beauville’s conjec-
ture.

1. – The algebraic set up.

We denote by v(z) the series expansion of log(z11). Namely,

v(z) »4z2
1

2
z 2 1

1

3
z 3

R .

Furthermore, for k and j non-negative integers we define constants ak , j via
the formal equality

!
j40

Q

ak , j z j4
1

k!
v(z)k

Let Ar �Mr11, r11 (Q) be the matrix (ak , j ), where k and j run in [0 , R , r].
Let Br �Mr11, r11 (Z) be the matrix (bj , h ), where j and h run in [0 , R , r] and

where, by definition, bj , h 4 (21) j2hg j
h
h . It is understood that g j

h
h40 provided

that hD j . For k40, 1 , R , r we define linear forms L (r)
k (x0 , R , xr ) by the

following equality:

uL (r)
0

QQ
Q

L (r)
r

v4Ar Brux0

QQ
Q

xr

v ,



ALGEBRAIC CYCLES ON ABELIAN VARIETIES ETC. 233

namely we define (observe that ak , j 40, if jEk and bj , h 40, if hD j)

L (r)
k (x0 , R , xr ) 4 !

j4k

r

!
h40

j

ak , j (21)j2hg j
h
h xh ,

and for kDr we define L (r)
k 40.

We now introduce a numerical lemma, the proof of which is very straight-
forward (and omitted).

LEMMA 3. – Let jF1 and sF0 be integers. Then

!
h40

j

(21)j2hg j
h
h h s4

.
/
´

0
s!

if sE j
if s4 j .

2. – Projections of cycles.

Next, using linear forms L (r)
k , we give a criterium to identify components

(with respect to Beauville’s decomposition 1) of the algebraic cycles. In the se-
quel, X denotes an abelian variety of dimension n ; W�CHd (X)Q denotes a ra-
tional algebraic cycle of dimension d and p4n2d its codimension; further-
more, Ws denotes a component of W with respect to Beauville’s decomposition
(1), in particular s is an integer in the range [2d , n2d]. We also consider lin-
ear forms L (r)

k as introduced in the previous section. The interpretation, in
terms of push-forward and pull-back of multiplication maps, of the decomposi-
tion of the diagonal D�CHn (X3X) (see [DM], [Ku]) gives

Ws4([ log (D) ]yrel 2d1s
i W)O(2d1s) !4(t[ log (D) ]yrel 2n22d2s

i W)O(2n22d2s) ! ,

where yrel denotes the relative Pontryagin product on CHl (X3X) with re-
spect to projection on the first factor and where, for a�CHl (X3X),ta de-
notes its transpose. This equality in turn, in terms of our L (r)

k gives

Ws4L (r)
2d1s (mult(0)x , R , mult(r)x)W

4L (r)
2p2s(mult(0)x , R , mult(r)x)W , (rF2n .

It is worthwhile to stress that the linear forms L (r)
k enter in a natural way (for

r42n) as an explicit version of Deninger-Murre-Künnemann projectors in
terms of push-forward and pull-back of multiplication maps. The following
theorem (4) goes further, it says that such equalities hold for r that takes
smaller values (see (4a ) and (4b ) below). We also want to stress that linear
forms L (r)

k have an increasing length with respect to r (see the list at the next
page).
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THEOREM 4. – Let X , W and Ws be as above. Then

Ws 4L (r)
2d1s (mult(0)x , R , mult(r)x )W , (rFn1d ;(4a)

Ws 4L (r)
2p2s (mult(0)x , R , mult(r)x )W , (rFn1p .(4b)

Formulas (4a ) and (4b ) are obtained by using lemma (7) below. We shall
also see that (4b ) can be refined: the equality there also holds for rFn1p2

min ]d , 2(. A similar achievement does not hold for (4a ). As an explicit
example we want to point out that for a 4-dimensional abelian variety and a
2-cycle W the known formula for projectors would give

W1 48W214 mult(2)x W1
56

3
mult(3)x W2

35

2
mult(4)x W1

56

5
mult(5)x W2

14

3
mult(6)x W1

8

7
mult(7)x W2

1

8
mult(8)x W

meanwhile, by theorem (4), or better by remark (8), one has the simpler ex-

pression W1 44W23 mult(2)x W1
4

3
mult(3)x W2

1

4
mult(4)x W .

REMARK. – Beauville’s conjecture (see [Be]) states that

[CHd (X)Q ]s 40, if sE0.(B.C.)

As a consequence of theorem (4), proving the conjecture is equivalent
to proving that either

L (n1d)
2d1s (mult(0)x , R , mult(n1d)x ) or L (n1p)

2p2s (mult(0)x , R , mult(n1p)x )

acts trivially on CHd (X)Q , for sE0. Another equivalent formulation for
Beauville’s conjecture (B.C.) is that the property (4b ) holds also for rF2p
(this is trivial: since L (2p)

2p2s 40 for sE0, if (4b ) holds for r42p , B.C. holds as
well; it is straightforward to check that the converse implication follows from
the proof of theorem 4).

REMARK. – Let us look at (4a ) and (4b ). The operators

L (r)
2d1s (mult(0)x , R , mult(r)x )

are non-trivial for rFn1d and the operators L (r)
2p2s (mult(0)x , R , mult(r)x )

are non-trivial for rFn1p . Infact, since 2dGsGn2d , then 2d1sGn1d
as well as 2p2sGn1p .
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Clearly, one has

mult(0)x W4
.
/
´

0

degW Qo

if d4dimWD0 ;

if W is a 0-cycle , where o is the origin of X .

mult(1)x W4W

For n1d that takes the indicated value, the operators Lk 4

L (n1d)
k (R , mult(i)x , R ) act as follows.

n+d=1

L0 W4 mult(0)x W
L1 W42mult(0)x W1W

n+d=2

L0 W4 mult(0)x W

L1 W42
3

2
mult(0)x W12W2

1

2
mult(2)x W

L2 W4
1

2
mult(0)x W2W1

1

2
mult(2)x W

n+d=3

L0 W4 mult(0)x W

L1 W42
11

6
mult(0)x W13W2

3

2
mult(2)x W1

1

3
mult(3)x W

L2 W4 mult(0)x W2
5

2
W12 mult(2)x W2

1

2
mult(3)x W

L3 W42
1

6
mult(0)x W1

1

2
W2

1

2
mult(2)x W1

1

6
mult(3)x W

n+d=4

L0 W4 mult(0)x W

L1 W42
25

12
mult(0)x W14W23 mult(2)x W1

4

3
mult(3)x W2

1

4
mult(4)x W

L2 W4
35

24
mult(0)x W2

13

3
W1

19

4
mult(2)x W2

7

3
mult(3)x W1

11

24
mult(4)x W

L3 W42
5

12
mult(0)x W1

3

2
W22 mult(2)x W1

7

6
mult(3)x W2

1

4
mult(4)x W

L4 W4
1

24
mult(0)x W2

1

6
W1

1

4
mult(2)x W2

1

6
mult(3)x W1

1

24
mult(4)x W

From Beauville’s conjecture point of view the first interesting case is
W21 4L5

(8) (R , mult(i)x , R ) 4L5
(7) (R , mult(i)x , R), for W�CH 2 (X)Q and

dim X45, see [Be]. Indeed, we have also W21 4L5
(r) (R , mult(i)x , R), for

rF5 4n1p2min ]d , 2(.
Next we prove theorem (4) and some related results. First, we recall that
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the Chow group of an abelian variety has two ring structures: the first one is
given by the intersection product, the second one is given by the Pontryagin
product, which we shall always denote by y . Consider the ring CHl (X3X)
with the natural sum of cycles and the relative Pontryagin product with re-
spect to projection on the first factor X3XKX (in other terms, we consider
Pontryagin product on X3X regarded as an abelian scheme over X via the
first-factor-projection). Let D�CHn (X3X) be the diagonal and let E4X3

]o( �CHn (X3X) be the unit of CHl (X3X) with respect to the product
above, where o is the origin of X . The projectors d 0 , R , d 2n are defined by
(see [Ku], pag. 200)

d j4
1

(2n2 j) !
[ log (D) ]yrel 2n2 j

4
1

(2n2 j) !
k(D2E)2

1

2
(D2E)yrel 2 1

1

3
(D2E)yrel 3

Rlyrel 2n2 j

.

Since (D2E)yrel 2n11 40 (see [Ku]), the series above are infact finite sums.
Now let D m denote the graph of mult(m). By Deninger, Murre and Künne-
mann theorem (see [DM], [Ku]) we have

[tD m ] i d j 4m j d j , (m�Z , 0 G jG2n ;
td j 4d 2n2 j , ( 0 G jG2n ;

(5)

where the composition above is the composition of correspondences and
where, for s� Corr(A , B), ts� Corr(B , A) denotes its transpose. As a conse-
quence, for W�CHd (X)Q and 0 G jG2n , one has

mult(m)x (d j i W)4 [tD m ] i(d j i W)

4m j(d j i W) , (m�Z .

Clearly, one identifies CHl (X) with Corr(Spec C , X) 4CHl (Spec C3X).
Thus, by the definition (2) one has

d j i W� [CHd (X)Q ]s , s»42n22d2 j .(58)

Since ! d j 4D acts as the identity map, (5) and (58) give

Ws 4d 2n22d2s i W4td 2d1s i W(59)

where, as usual, Ws denotes the component of W with respect to Beauville’s
decomposition (1).

For the proof of theorem (4) we need the following.
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LEMMA 6. – Let W be as in the theorem. Then

[ (D2E)yrel j ] i W4 !
h40

j

(21)j2hg j
h
h mult(h)x W

t[ (D2E)yrel j ] i W4 !
h40

j

(21)j2hg j
h
h mult(h)x W

PROOF. – Since E is the unit for relative Pontryagin product and since
Dyrel h

i W4 mult(h)x W as well as t[Dyrel h ] i W4 mult(h)x W , the two equali-
ties follow by a straightforward computation. r

LEMMA 7. – Let W be as in the theorem. Then

[ (D2E)yrel j ] i W40, ( jFn1d11 ;(7a)

t[ (D2E)yrel j ] i W40, ( jFn1p11 .(7b)

PROOF. – We prove (7b), the proof of (7a) is very similar. By lemma (6), we
have to show that for jFn1p11 one has

!
h40

j

(21)j2hg j
h
h mult(h)x W40 .

By linearity of the left-hand-side operator we are free to assume that W be-
longs to one of the factors from Beauville decomposition (1), namely we are
free to assume that W� [CHd (X)Q ]s for some s� [2d , n2d]. Thus (see 2), we
assume that mult(m)x W4m 2p2s W , (m�Z . It follows

!
h40

j

(21)j2hg j
h
hmult(h)x W4 !

h40

j

(21)j2hg j
h
h h 2p2s W .

For s in the range above, the range for 2p2s is [p , n1p]; in particular, we

have 2p2sE j . By lemma (3), the coefficient !
h40

j

(21)j2hg j
h
h h 2p2s vanishes.

Then we are done. r

PROOF (of theorem 4). – We start with formula (4a ). Let k42d1s . Then,
we have

Ws 4d 2n22d2s i W4
1

(2d1s) !
[ log (D)yrel 2d1s ] i W

4 !
j4k

2n

ak , j (D2E)yrel j
i W .

Now observe that by lemma (7), we have (D2E)yrel j
i W40 for jFn1d11.
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Thus, the summation above can be taken up to r , provided that rFn1d . It
follows that

Ws 4 !
j4k

r

ak , j (D2E)yrel j
i W , (rFn1d .

Looking at the definition of the operators L (r)
k it is then clear that (4a ) follows

from the first equality from lemma (6),

(D2E)yrel j
i W4 !

h40

j

(21)j2hg j
h
h mult(h)x W .

The proof of formula (4b ) is similar. For rFn1p we have

Ws 4
td 2d1s i W4

1

(2p2s) !
t[ log (D)xrel 2p2s ] i W

4 !
j42p2s

2n

a2p2s , j
t[ (D2E)xrel j ] i W

4 !
j42p2s

r

a2p2s , j
t[ (D2E)xrel j ] i W

4 !
j42p2s

r

a2p2s , j !
h40

j

(21)j2hg j
h
h mult(h)x W

4L (r)
2p2s (mult(0)x , R , mult(r)x ) W

where the 4th equality follows by lemma (7), the 5th equality follows by lem-
ma (6) and the 6th equality follows by the definition of the operators
L (r)

k . r

REMARK 8. – The equality (7b) can be improved. We have,

t[ (D2E)xrel j ] i W40, (jFn1p112d(88)

where d4min ]d, 2(. Infact, since [CHd(X)Q]s40 provided that sGmin ]2d11,
21( (see [Be]), the actual range for s can be shrinked to min ]2d12, 0( G

sGn2d . Thus in turn, one obtains (88) by the same proof of (7b). As a conse-
quence, (4b) can be refined: the equality there also holds for all rFn1p2d
(where d is as above).

Furthermore, for the same reason, if Beauville’s conjecture (B.C.) men-
tioned above holds, then

t[ (D2E)xrel j ] i W40, ( jF2p11

In particular, if W is a divisor (hence it satisfies B.C.), then t[(D2E)xrel3] i
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W40, namely 3W23 mult(2)x W1mult(3)x W40, which is obvious (in the
case of divisors, this kind of computations provide trivial results).

Now fix s , working modulo 5
lFs11

[CHd (X)Q ]l , or rather modulo

5
lGs21

[CH p (X)Q ]l , yields simpler formulas than the ones from theorem (4); fur-

thermore, it can be used to provide a reformulation for Beauville’s conjecture
(B.C.), see corollary (10) and the example below.

PROPOSITION 9. – Let W and Ws be as in the theorem. Then

Ws 4
1

(2d1s) !
!
h40

2d1s

(21)2d1s2hg2d1s

h
h mult(h)x W ,

modulo 5
lFs11

[CHd (X)Q ]l

(9a)

Furthermore,

Ws 4
1

(2p2s) !
!
h40

2p2s

(21)2p2s2hg2p2s

h
h mult(h)x W ,

modulo 5
lGs21

[CH p (X)Q ]l

(9b)

PROOF. – We prove (9b). Let K4
1

(2p2s) !
!

h40

2p2s

(21)2p2s2hg2p2s
h

h mult(h)x .

It suffices to prove that

KW4
.
/
´

0

W

if W� [CHd (X)Q ]l , lFs11

if W� [CHd (X)Q ]s .

This is clear by the proof of (7b); as for the case W� [CHd (X)Q ]s , the equality

KW4W follows since, by lemma (3), the coefficient !
h40

s

(21)s2hgs

h
h h s equals

s! (here s42p2s). The proof of (9a ) is similar. r

A straightforward consequence of (9b ) is the following.

COROLLARY 10. – Let X be as in the theorem. Then, it satisfies Beauville’s
conjecture for d-dimensional cycles if and only if

!
h40

k

(21)k2hgk

h
h mult(h)x

acts trivially on CHd (X)Q for kF2p11, where p4n2d as usual.

For 5-dimensional abelian varieties the only bad component that might
exist is [CH3 (X)Q ]21 . Then, by the corollary above it follows that a 5-dimen-
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sional abelian variety X satisfies Beauville’s conjecture (B.C.) if and only if

5W210 mult(2)x W110 mult(3)x W25 mult(4)x W1mult(5)x W40,

for all W�CH3 (X)Q .
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