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Determining Two Coefficients in Elliptic Operators
via Boundary Spectral Data: a Uniqueness Result.

BRUNO CANUTO - OTARED KAVIAN

Sunto. – Sia V un dominio limitato e sufficientemente regolare di RN , NF2, e siano
(l k )k41

Q e (W k )k41
Q rispettivamente gli autovalori e le autofunzioni corrispondenti

del problema (con condizioni al bordo di Neumann)

2div (a(x) ˜W k )1q(x) W k4l k r(x) W k in V , a
¯

¯n
W k40 su ¯V .

Dimostriamo che i dati spetrali al bordo di Dirichlet (l k )k41
Q , (W kN¯V )k41

Q determi-
nano in modo unico la mappa g di Neumann-Dirichlet (o la mappa di Steklov-
Poincaré) per un problema ellittico relativo. Sotto opportune ipotesi sui coefficienti
a , q , r proviamo in seguito la loro identificabilità. Dimostriamo risultati analoghi
nel caso di condizioni al bordo di Dirichlet.

Summary. – For a bounded and sufficiently smooth domain V in RN , NF2, let
(l k )k41

Q and (W k )k41
Q be respectively the eigenvalues and the corresponding eigen-

functions of the problem (with Neumann boundary conditions)

2div (a(x) ˜W k )1q(x) W k4l k r(x) W k in V , a
¯

¯n
W k40 su ¯V .

We prove that knowledge of the Dirichlet boundary spectral data (l k )k41
Q ,

(W kN¯V )k41
Q determines uniquely the Neumann-to-Dirichlet (or the Steklov-

Poincaré) map g for a related elliptic problem. Under suitable hypothesis on the co-
efficients a , q , r their identifiability is then proved. We prove also analogous re-
sults for Dirichlet boundary conditions.

1. – The main results.

Let V be a bounded and sufficiently smooth domain in RN , NF2, and let
a , r be two strictly positive functions defined in V. We denote by (l k )k41

Q and
(W k )k41

Q respectively the eigenvalues (in increasing order) and the correspond-
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ing eigenfunctions of the following problem (with Neumann boundary
conditions):

.
`
/
`
´

2div (a˜W k )1qW k

a
¯

¯n
W k

s
V

NW k (x)N2 r(x) dx

4l k rW k

40

41.

in V ,

on ¯V ,
(1.1)

We denote by

Dbsd (a , q , r) »4 ](l k , W kN¯V ); kF1( ,(1.2)

the Dirichlet boundary spectral data of problem (1.1). Under suitable as-
sumptions on the regularity of the coefficients a , q , r , we ask the following
question: does knowledge of the Dirichlet boundary spectral data
Dbsd(a , q , r) (1.2) determine the coefficients a , q , r uniquely in V?

Many authors have focused their attention to study similar problems. In
1946 G. Borg [1] and N. Levinson [9] asked the question whether knowledge
of the eigenvalues (l k )k41

Q of the Sturm-Liouville problem

.
/
´

2W k9 1q(x) W k

W k (0) 4W k (l)

4l k W k

0,

in (0 , l),
(1.3)

determine q�L Q (0 , l) uniquely. It is clear that the operators associated with
the potentials q(x) and q(l2x) have the same eigenvalues, therefore the spec-
trum alone, in general, is not sufficient to determine the potential q uniquely.
They proved the identifiability of q in (1.3) from knowledge of eigenvalues
(l k )k41

Q and of normalizing constants

ck »4s
0

l

NW kN2 dx ,

by supposing W k8 (0) 41. Later on I.M. Gel’fand & B.M. Levitan [7] have given
a reconstruction formula of the potential q from the sequence of eigenvalues
(l k )k41

Q and of normalizing constants (ck )k41
Q (under the hypothesis that

W k8 (0) 41). More recently A.I. Nachman, J. Sylvester & G. Uhlmann [12] have
studied a similar problem in the multidimensional setting. More precisely, let
V be a bounded and sufficiently smooth domain in RN , NF2, and let (l k )k41

Q

and (W k )k41
Q be respectively the eigenvalues and the eigenfunctions of the
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problem (with Dirichlet boundary conditions):

.
`
/
`
´

2DW k 1qW k

W k

s
V

NW k (x)N2 dx

4l k W k

40

41.

in V ,

on ¯V ,
(1.4)

They show that the boundary spectral data (l k )k41
Q , g ¯

¯n
W kN¯Vh

k41

Q

determine

q�C Q (V) uniquely. The idea of the proof is the following. For W�H
1

2 (¯V),
and l�C , l� ]2l k ; kF1(, let ul�H 1 (V) solve

.
/
´

2Dul1 (q1l) ul

ul

40

4W

in V ,

on ¯V .
(1.5)

Let us denote by g l
A the Dirichlet-to-Neumann map related to problem (1.5),

that is

g l
A : W O

¯

¯n
ulN¯V .

A.I. Nachman, J. Sylvester & G. Uhlmann prove, in a first step, that the

boundary spectral data (l k )k41
Q , g ¯

¯n
W kN¯Vh

k41

Q

determine g l
A uniquely, for all

l�C , l� ]2l k ; kF1( (see [12], Lemmas 3.1, 3.2). Then, in a second step,
they show that the coefficient q in (1.5) is uniquely determined by the Dirich-
let-to-Neumann map g l

A (see [12], Theorem 1.5). Using a similar method B.
Canuto & O. Kavian [5] have proved the same result by supposing only
q�L Q (V).

Now assume that the functions a , q , r in (1.1) satisfy the following
assumptions:

V%RN is a bounded Lipschitz domain , and NF2,(1.6)

a , q , r�L Q (V),(1.7)

aFa a.e. in V , for some constant aD0,(1.8)

rFb a.e. in V, for some constant bD0.(1.9)

We shall denote by l* a real number satisfying

l*Dl * »4 inf ]l�R ; q1lrF0 a.e. in V( .(1.10)

Observe also that if qj , r j satisfy (1.7)-(1.9) for j41, 2 , then we shall suppose
that l*D max (l *1 , l *2 ).
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Then for lFl*, c�L 2 (¯V), cg0, there exists a unique ul�H 1 (V)
solving

.
/
´

2div (a(x) ˜ul )1 (q(x)1lr(x) ) ul

a
¯

¯n
ul

40

4c

in V ,

on ¯V .
(1.11)

Let us denote by g l the Neumann-to-Dirichlet map related to problem (1.11),
that is

g l : c O ulN¯V .

We ask the question: do the Dirichlet boundary spectral data Dbsd (a , q , r)
(1.2) determine the Neumann-to-Dirichlet map g l uniquely?

Our first result in the present paper is the following

THEOREM 1.1. – Assume that V satisfies (1.6). For j41, 2 , let aj , qj , r j sat-
isfy assumption (1.7), and aj , r j assumptions (1.8), (1.9) respectively. Let us
denote by ujl , (l jk )k41

Q and (W jk )k41
Q respectively the solution of (1.11) and the

eigenvalues and the eigenfunctions of (1.1) when a»4aj , q»4qj , r»4r j . With
the notations introduced in (1.2), suppose that

Dbsd (a1 , q1 , r 1 ) 4Dbsd (a2 , q2 , r 2 ).(1.12)

Then

g 1l4g 2l(1.13)

for all lFl*, where g jl (c) »4ujlN¯V .

We note that, due to the analycity of l O g jl on C0(2l k ; kF1(, the con-
clusion of Theorem 1.1 holds true for all l�C , l� ]2l k ; kF1(, where we de-
note l k »4l 1k 4l 2k .

A similar result remains valid if we replace in (1.1) the Neumann boundary
conditions with the corresponding Dirichlet boundary conditions. More pre-
cisely let (l k )k41

Q and (W k )k41
Q be respectively the eigenvalues (in increasing

order) and the corresponding eigenfunctions of the following problem (with
Dirichlet boundary conditions):

.
`
/
`
´

2div (a(x) ˜W k )1q(x) W k

W k

s
V

NW k (x)N2 r(x) dx

4l k r(x)W k

40

41.

in V ,

on ¯V ,(1.14)



DETERMINING TWO COEFFICIENTS IN ELLIPTIC OPERATORS ETC. 211

We denote by

Nbsd (a , q , r) »4mgl k , a
¯

¯n
W kN¯Vh ; kF1n ,(1.15)

the Neumann boundary spectral data of problem (1.14). For lFl*, l* as in
(1.10), and W�H

1

2 (¯V), Wg0, let ul�H 1 (V) solve

.
/
´

2div (a(x) ˜ul )1 (q(x)1lr(x) ) ul

ul

40

4W

in V ,

on ¯V .
(1.16)

Let us denote by g l
A the Dirichlet-to-Neumann map related to problem (1.16),

that is

g l
A : W O a

¯

¯n
ulN¯V .

In what follows we shall denote by

d(x) »4dist (x , ¯V)(1.17)

the euclidean distance of the point x�V from the boundary ¯V , and by Ve an
e-neighborhood of ¯V in V, that is

Ve »4 ]x� V s.t. d(x) Ee((1.18)

for some eD0 given.
If we suppose that Na1 2a2N and Nr 1 2r 2N vanish on the boundary ¯V at

the same order as d 2 (see below for a more precise statement), we can prove
that if the Neumann boundary spectral data Nbsd (aj , qj , r j ) coincide then the
Dirichlet-to-Neumann map g jl

A are the same. As a matter of fact we show the
following

THEOREM 1.2. – Assume that V satisfies (1.6). For j41, 2 , let us denote by
ujl , (l jk )k41

Q and (W jk )k41
Q respectively the solution of (1.16) and the eigenva-

lues and the eigenfunctions of (1.14) when a»4aj , q»4qj , r»4r j . With the
notations introduced in (1.15), suppose that

Nbsd (a1 , q1 , r 1 ) 4Nbsd (a2 , q2 , r 2 ),(1.19)

and, for some constant cD0,

Na1 2a2NGcd 2 in V ,(1.20)

Nr 1 2r 2NGcd 2 in V .(1.21)
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Then

g 1l
A 4 g 2l

A(1.22)

for all lFl*, where g jl
A(W) »4aj

¯

¯n
ujlN¯V .

We observe that, as in Theorem 1.1, the conclusion of Theorem 1.2 holds
true for all l�C0]2l k ; kF1(, where we denote by l k »4l 1k 4l 2k .

We point out that if in Theorem 1.2 we assume that a1 2a2 and r 1 2r 2 are
in C 1 (Ve ), for some eD0, then assumptions (1.20), (1.21) can be respectively
expressed and somewhat weakened into the assumptions

(a1 2a2 )N¯V4N˜(a1 2a2 )NN¯V40 on ¯V ,

and

(r 1 2r 2 )N¯V4N˜(r 1 2r 2 )NN¯V40 on ¯V .

Concerning the identifiability of the coefficients a , q , r in (1.1) from the
Dirichlet boundary spectral data Dbsd (a , q , r) we may state the following re-
sults. If we suppose that the coefficients q1 fq2 in V , then we prove the identi-
fiability of the coefficients a in V and r in V. More precisely we show the
following

COROLLARY 1.3. – Under the assumptions of Theorem 1.1, for j41, 2 let

aj �W 2, p (V), pD
N

2
for NF3, p4Q for N42, and let q1 4q2 4: q in V. As-

sume that

Dbsd (a1 , q , r 1 ) 4Dbsd (a2, q , r 2 ).

Then

a1 4a2 in V, and r 1 4r 2 in V .

If we suppose that the coefficient a is known in V, then we prove the iden-
tifiability of the coefficients q and r in V , i.e the following result holds:

COROLLARY 1.4. – Under the assumptions of Theorem 1.2, for j41, 2

let a»4a1 4a2 �W 2, p (V), pD
N

2
for NF2. Assume that

Dbsd (a , q1 , r 1 ) 4Dbsd (a , q2 , r 2 ).

Then

q1 4q2 in V , and r 1 4r 2 in V .

Concerning the identification of the coefficients a , q , r in (1.14) from
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the Neumann boundary spectral data Nbsd (a , q , r), we can prove similar
results to that of Corollaries 1.3, 1.4. We begin by proving the following

COROLLARY 1.5. – Under the assumptions of Theorem 1.2, for j41, 2 let

aj �W 2, p (V), pD
N

2
for NF3, p4Q for N42, and let q»4q1 4q2 in V. As-

sume that

Nbsd (a1 , q , r 1 ) 4Nbsd (a2, q , r 2 ),

and

˜a1 4˜a2 on ¯V ,(1.23)

and r 1 2r 2 satisfies (1.21). Then

a1 4a2 in V, and r 1 4r 2 in V .

We observe that under the assumption that the coefficients aj �W 2, p (V),

pD
N

2
hypothesis (1.23) is weaker than hypothesis (1.20) of Theorem 1.2. (Ac-

tually we are able to prove that the assumptions of the Corollary imply indeed
a1 4a2 .

In the following corollary we assume that the coefficient a is known in V
and we prove the identifiability of the coefficients q and r in V (under the hy-
pothesis (1.21)).

COROLLARY 1.6. – Under the assumptions of Theorem 1.2, for j41, 2 let

a»4a1 4a2 �W 2, p (V), pD
N

2
for NF2. Assume that

Nbsd (a , q1 , r 1 ) 4Nbsd (a , q2 , r 2 ) ,

and r 1 2r 2 satisfies (1.21). Then

q1 4q2 in V , and r 1 4r 2 in V .

Finally, if we assume that the coefficient r is known in V , then we prove
the identifiability of the coefficients a in V and q in V (under the hypotesis
(1.23) and (1.21)).

COROLLARY 1.7. – Under the assumptions of Theorem 1.2, for j41, 2 let

aj �W 2, p (V), pD
N

2
for NF3, p4Q for N42 and let r»4r 1 4r 2 a.e. in V.

Assume that

Nbsd (a1 , q1 , r) 4Nbsd (a2, q2 , r),

and

˜a1 4˜a2 on ¯V .



BRUNO CANUTO - OTARED KAVIAN214

Then

a1 4a2 in V, and q1 4q2 in V .

The paper is organized as follows: in the next section we prove Theo-
rem 1.1, in section § 3 we prove Theorem 1.2, finally in section § 4 we show
Corollaries 1.3-1.7.

2. – Proof of Theorem 1.1.

Our task in this section is to prove Theorem 1.1. Before doing so we need to
establish some preliminary results. We shall denote Lr

2 (V) »4L 2 (V)
equipped with the scalar product ( fNg) »4 s

V
f (x) g(x) r(x) dx.

LEMMA 2.1. – For c�L 2 (¯V), cg0, and lFl* let ul�H 1 (V) solve (1.11).
Then

Vul VLr
2 (V)

2 K0 as lK1Q .(2.1)

PROOF OF LEMMA 2.1. – Since the sequence of eigenfunctions (W k )k41
Q of

(1.1) is a Hilbert basis in Lr
2 (V), we can write ul in the following Fourier

expansion

ul4 !
k41

Q

(ulNW k ) W k in Lr
2 (V).(2.2)

After multiplying (1.11) by W k and integrating by parts over V we obtain

(ulNW k ) 4
a k

l k 1l
,(2.3)

where a k »42aW k , cb (here and in the sequel aQ , Qb denotes the duality in
H

1

2 (¯V), H
2

1

2 (¯V)). Next (2.2) and (2.3) yield

Vul VLr
2 (V)

2 4 !
k41

Q g a k

l k 1l
h2

.(2.4)

Hence (2.1) follows by the uniform convergence in l of the series in
(2.4). r

LEMMA 2.2. – For j41, 2 , lFl*, let ujl�H 1 (V) solve (1.11) when a»4aj ,
q»4qj , r»4r j . Let us denote by g jl (c) »4ujlN¯V . Assume that (1.12) holds,
i.e.

Dbsd (a1 , q1 , r 1 ) 4Dbsd (a2 , q2 , r 2 ).
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Then

g 1l* 2g 2l* 4g 1l2g 2l(2.5)

for all lFl*.

PROOF OF LEMMA 2.2. – Let zjl »4ujl2ujl* . Then zjl�H 1 (V) solve

(2.6)
.
/
´

2div(aj (x) ˜zjl )1(qj (x)1lr j (x) ) zjl

aj
¯

¯n
zjl

42(l2l*) r j (x) ujl*

40

in V ,

on ¯V .

We can write zjl in the following Fourier expansion

zjl4 !
k41

Q

(zjlNW jk ) W jk in Lr j
2 (V).(2.7)

Multiplying (2.6) by W jk , and integrating by parts over V , we obtain

(zjl NW jk ) 4
2(l2l*) a k

(l k 1l)2
,

where l k »4l 1k 4l 2k , a k »42aW k , cb, and W k »4W 1k 4W 2k on ¯V.
One can verify that, thanks to the decay of its terms, the series in (2.7) con-

verges to zjl in H 1 (V) (see B. Canuto & O. Kavian [4], Lemma 3.2). Therefore,
the trace operator u O uN¯V being continuous from H 1 (V) into H

1

2 (¯V), we
have

zjlN¯V42 !
k41

Q (l2l*) a k

(l k 1l)2
W kN¯V in H

1

2 (¯V).

So one has:

z1lN¯V4z2lN¯V in H
1

2 (¯V),

that is

g 1l* (c)2g 2l* (c) 4g 1l (c)2g 2l (c) in H
1

2 (¯V),(2.8)

for all lFl*, for all c�L 2 (¯V). r

PROOF OF THEOREM 1.1. – By Lemma 2.2 we have

(u1l* 2u2l* )N¯V4 (u1l2u2l )N¯V in H
1

2 (¯V)(2.9)

for all lFl*, for all c�L 2 (V). We claim that there exists a subsequence l (n) ,
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l (n) K1Q as nK1Q , such that

ujl (n) � 0 in H
1

2 (¯V) as nK1Q .(2.10)

For a moment assume that (2.10) is true. Then (2.9) implies that

u1l2u2l40 in H
1

2 (¯V)

for all lFl*, for all c�L 2 (¯V). Hence Theorem 1.1 is proved.
So it remains to prove claim (2.10). We show this for j41, the case j42 be-

ing clearly analogous. Multiplying the equation in (1.11) when j41 by u1l , and
integrating by parts over V we obtain

(2.11) s
V

a1 N˜u1lN
2 dx1s

V

(q1 1lr 1 )Nu1lN
2 dxGNau1l , cbN

GVu1l V

H
1

2 (¯V)
VcVH 21/2 (¯V)

GCVu1l VH 1 (V) VcVH 21/2 (¯V) .(2.12)

Next, as q1 1lr 1 F (l*2l *) r 1 ,

s
V

a1 N˜u1lN
2 dx1s

V

(q1 1lr 1 )Nu1lN
2 dxFaVu1l VH 1 (V)

2 ,(2.13)

for all lFl*, where we have set a»4 min (1 , l*2l *). From (2.11)-(2.13) we
deduce

Vu1l VH 1 (V) G
1

a
VcVH 21/2 (¯V) .(2.14)

The embedding H 1 (V) %L 2 (V) being compact, (2.12) yields that there exists a
subsequence l (n) K1Q as nK1Q and u�H 1 (V), such that u1l (n) � u in
H 1 (V). By Lemma 2.1 we have Vu1l VL 2 (V) K0 as lK1Q , therefore

u1l (n) � 0 in H 1 (V) as nK1Q .

Finally since the trace operator u O uN¯V is continuous from H 1 (V) into

H
1

2 (¯V), we obtain that u1l (n) N¯V � 0 in H
1

2 (¯V) as nK1Q. The claim (2.10)
is proved, and the proof of Theorem 1.1 is complete. r

3. – Proof of Theorem 1.2.

In what follows we shall use the letter c to denote various constants inde-
pendent of the data and the letter C to denote constants depending on the
data.
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LEMMA 3.1. – For W�H
1

2 (¯V), Wg0, let ul�H 1 (V) solve (1.16) for lFl*.
Then

Vul VLr
2 (V) K0 as lK1Q ,(3.1)

and

lim
lK1Q

V˜ul VL 2 (V) 41Q .(3.2)

PROOF OF LEMMA 3.1. – The proof of (3.1) is identical to that of (2.1), there-
fore we can skip it.

In order to prove (3.2), suppose, by contradiction, that there exists a con-
stant CD0 such that V˜ul VL 2 (V) GC for all lFl*. Then Vul VH 1 (V) is bounded,
and, since Vul VL 2 (V) K0 as lK1Q , and using again as above the compactness
of the embedding H 1 (V) %L 2 (V), there exists a subsequence ul (n) � 0 in
H 1 (V) as l (n) K1Q. The trace operator ul O ulN¯V being continuous from
H 1 (V) into H

1

2 (¯V), we derive that Wf0, which leads to a contradic-
tion. r

In the following lemma we prove that the energy V˜ul VL 2(V0Ve) of the solu-
tion ul of (1.16), evaluated in the domain V0Ve , Ve as in (1.18), goes to zero as
lK1Q.

LEMMA 3.2. – Let 0 E2eEdiam (V) be fixed. Then

V˜ul VL 2 (V0 Ve ) K0 as lK1Q .(3.3)

PROOF OF LEMMA 3.2. – Let us denote by h�C Q (V) a cut-off function such
that 0 GhG1, and

.
/
´

h40 in Ve/2 ,

h41 in V0Ve ,
and N˜hNG

4

e
.

Multiplying the equation in (1.16) by h 2 ul , and integrating by parts over V we
obtain

042s
V

div(a˜ul ) h 2 ul dx1s
V

(q1lr) h 2 ul
2 dx

4s
V

ah 2 N˜ulN
2 dx12 s

V

ahul ˜h˜ul dx1s
V

(q1lr) h 2 ul
2 dx .
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Hence the Cauchy-Schwarz inequality yields

s
V

ah 2 N˜ulN
2 dx1s

V

(q1lr) h 2 ul
2 dxG2 s

V

Nahul ˜h˜ulNdxG

2VaVL Q (V) Vh˜ul VL 2 (V) Vul ˜hVL 2 (V) .

That is, since q1lrF (l*2l *) rD0,

Vh˜ul VL 2 (V) GCVul VL 2 (V)

(since lFl*), where C»48e21
VaVL Q (V) / inf

V
a. So we have the upper bound

V˜ul VL 2 (V0 Ve ) GCVul VL 2 (V) .

But, by the above Lemma 3.1, we have that Vul VL 2 (V) K0 as lK1Q. The
proof of Lemma 3.2 is complete. r

LEMMA 3.3. – Under the assumptions of Lemma 3.1, let s * be a point of
¯V , and D a neighborhood of s * relative to V. If W�H

1

2 (¯V) is such that
supp (W) %%DO¯V , then

V˜ul VL 2 (V0 D) K0 as lK1Q .(3.4)

PROOF OF LEMMA 3.3. – Let G be a neighborhood of s * relative to ¯V , such
that G%%DO¯V , and let W�H

1

2 (¯V) be such that supp(W) %G. We denote by
h�C Q (V) a cut-off function such that 0 GhG1, with h40 in a neighborhood
of G , while h41 in a neighborhood of V0D, and N˜hNG4d 21 , where d»4

dist(V0D , G). Multiplying the equation in (1.16) by h 2 ul , and integrating by
parts over V we obtain (since supp(W) %G , and hf0 in G)

042s
V

div(a˜ul ) h 2 wl dx1s
V

(q1lr) h 2 ul
2 dx

4s
V

ah 2 N˜ulN
2 dx12 s

V

ahul ˜h ˜ul dx1s
V

(q1lr) h 2 ul
2 dx .

Hence the Cauchy-Schwarz inequality yields

s
V

ah 2 N˜ulN
2 dx1s

V

(q1lr) h 2 ul
2 dxG2 s

V

Nahul ˜h˜ulNdxG

2VaVL Q (V) Vh˜ul VL 2 (V) Vul ˜hVL 2 (V) ,

that is

Vh˜ul VL 2 (V) GCVul ˜hVL 2 (V) ,
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where C»48d 21
VaVL Q (V) / inf

V
a. In particular we have

V˜ul VL 2 (V0 D) GCVul VL 2 (V) .

Since Vul VL 2 (V) K0 as lK1Q , Lemma 3.3 is proved. r

LEMMA 3.4. – Under the assumptions of Lemma 3.1, the following identi-
ties hold

(3.5) s
V

aW 1 N˜ulN
2 dx1

1

2
s

V

(q1(2l1l 1 ) r) W 1 ul
2 dx4

21

2
s

¯V

aW 2 ¯

¯n
W 1 ds ,

(3.6) s
V

aW 1
2 N˜ulN

2 dx1 (l1l 1 )s
V

rW 1
2 ul

2 dx4s
V

aul
2 N˜W 1 N2 dx ,

where l 1 and W 1 are respectively the first eigenvalue and eigenfunction of the
corresponding eigenvalue problem (1.14).

PROOF OF LEMMA 3.4. – We begin by proving identity (3.5). Multiplying the
equation in (1.16) by W 1 ul , and integrating by parts over V we obtain

(3.7)

042s
V

div(a˜ul ) W 1 ul dx1s
V

(q1lr) W 1 ul
2 dx

4s
V

aW 1 N˜ulN
2 dx1

1

2 s
V

a˜W 1 ˜(ul
2 ) dx1s

V

(q1lr) W 1 ul
2 dx .

Now integrating by parts the second term of the right hand side of the last
equality, and using the fact that we have 2div (a˜W 1 ) 4 (l 1 r2q)W 1

1

2
s

V

a˜W 1 ˜(ul
2 ) dx42

1

2
s

V

(q2l 1 r) W 1 ul
2 dx1

1

2
s

¯V

aW 2 ¯

¯n
W 1 ds .

Hence inserting this in (3.7) we obtain (3.5).
Similarly multiplying the equation in (1.16) by W 1

2 ul , and integrating by
parts over V , we obtain

(3.8)

042s
V

div (a˜ul ) W 1
2 ul dx1s

V

(q1lr) W 1
2 ul

2 dx

4s
V

aW 1
2 N˜ulN

2 dx1s
V

aW 1 ˜W 1 ˜(ul
2 ) dx1s

V

(q1lr) W 1
2 ul

2 dx .

Now integrating by parts the second term of the right hand side of the above
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equality we have

s
V

aW 1 ˜W 1 ˜ul
2 dx42s

V

div (a˜W 1 ) W 1 ul
2 dx2s

V

aul
2 N˜W 1 N2 dx .

Again using the equation satisfied by W 1 , we obtain (3.6). r

The following lemma is the analogous of Lemma 2.2 for the case of Dirich-
let boundary conditions.

LEMMA 3.5. – For j41, 2 , lFl*, let ujl�H 1 (V) solve (1.16) when a»4aj ,

q»4qj , r»4r j . Let us denote by g jl
A(W) »4aj

¯

¯n
ujlN¯V . Assume that (1.19)

holds, that is

Nbsd (a1 , q1 , r 1 ) 4Nbsd (a2 , q2 , r 2 ).

Then

g 1l*
A2g 2l*

A4 g 1l
A2g 2l

A(3.9)

for all lFl*.

PROOF OF LEMMA 3.5. – Let zjl »4ujl2ujl* . Then zjl�H 1 (V) solves

.
/
´

2div(aj (x) ˜zjl )1 (qj (x)1lr j (x) ) zjl

zjl

42(l2l*) r j (x) ujl*

40

in V ,

on ¯V .

As in the proof of Lemma 2.2, we can write zjl in the following Fourier
expansion

zjl4 !
k41

Q

(zjlNW jk ) W jk in Lr j
2 (V),(3.10)

(recall that (W jk )k41
Q are the eigenfunctions of (1.1) when a»4aj , q»4qj ,

r»4r j) where

(zjlNW jk ) 4s
V

zjl W jk r j dx4
2(l2l*) a k

(l k 1l)2
,

and l k »4l 1k 4l 2k , a k »42ac k , Wb, and c k »4a1
¯

¯n
W 1k 4a2

¯

¯n
W 2k on

¯V.
Let

X»4 ]u�H0
1 (V); div (a(x) ˜u) �L 2 (V)( .

It is well-known (see for instance J.-L. Lions [10]) that the trace operator

u O a ¯

¯n
uN¯V is continuous from X , endowed with the norm VuVX »4VuVH 1 (V) 1
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Vdiv (a˜u)VL 2 (V) , into H 21/2 (¯V). One can verify that the series in (3.10) con-
verges to zjl in the norm V QVX (see B. Canuto & O. Kavian [5], Lemma 3.2). Then
we have

aj
¯

¯n
zjl42 !

k41

Q (l2l*) a k

(l k 1l)2
c k in H 21/2 (¯V),

So we obtain

a1
¯

¯n
z1l4a2

¯

¯n
z2l in H 21/2 (¯V),

that is

g 1l*
A(W)2g 2l*

A(W) 4 g 1l
A(W)2g 2l

A(W) in H 21/2 (¯V),

for all lFl*, for all W�H
1

2 (V). r

LEMMA 3.6. – Under the hypothesis of Lemma 3.5 we have

Vu1l VLr 1
2 (V) 4Vu2l VLr 2

2 (V) ,(3.11)

and

(3.12) s
V

(a2 (N˜u1lN
2 2N˜u2lN

2 )1q2 (Nu1lN
2 2Nu2lN

2 ) dx) F

ls
V

(r 1 2r 2 )Nu1lN
2 dx .

PROOF OF LEMMA 3.6. – We begin by proving (3.11). We can write ujl in the
following Fourier expansion

ujl »4 !
k41

Q

(ujl NW jk ) W jk in Lr j
2 (V),

where

(ujlNW jk ) 4s
V

ujl W jk r j dx4
a k

l k 1l

(we recall that l k »4l 1k 4l 2k , and a k »42ac k , Wb, where c k »4a1
¯

¯n
W 1k 4

a2
¯

¯n
W 2k on ¯V). Since Vujl VLr j

2 (V)
2 4 !

k41

Q g a k

l k 1l
h2

, we obtain (3.11).
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In order to prove (3.12) we observe that by (3.11) we have

4

F

4

1

2 s
V

(a2N˜u1lN
21q2Nu1lN

2) dx1
l

2
gs

V

(r 22r 1)Nu1lN
2dx1s

V

r 2Nu2lN
2dxh

1

2
s

V

(a2N˜u1lN
21q2Nu1lN

2) dx1
l

2
s

V

r 2Nu1lN
2dxF

1

2
min

v�HW
1(V)

s
V

(a2N˜vN21q2NvN2) dx1ls
V

r 2NvN2dx4

1

2
s

V

(a2N˜u2lN
21q2Nu2lN

2) dx1
l

2
s

V

r 2Nu2lN
2dx.

Hence (3.12) follows. (Here we use the notation

H 1
W (V) »4 ]v�H 1 (V) ; v4W on ¯V(,

and the fact that u2l is the minimizer of the functional

v Os
V

a2 N˜vN2 dx1s
V

(q1lr) v 2 dx

on H 1
W (V)). r

We are now in a position to prove Theorem 1.2.

PROOF OF THEOREM 1.2. – For j41, 2 , lFl*, l* as in (1.10), W�H
1

2 (¯V),
Wg0, we recall that ujl�H 1 (V) solves

.
/
´

2div (aj (x) ˜ujl )1 (qj (x)1lr j (x) ) ujl

ujl

40

4W

in V ,

on ¯V .
(3.13)

Multiplying the equation in (3.13) for j41 by u2l and integrating by parts over
V we obtain

2ag 1l
A(W), Wb1s

V

a1 ˜u1l ˜u2l dx1s
V

(q1 1lr 1 ) u1l u2l dx40.(3.14)

Similarly, multiplying the equation in (3.13) for j42 by u1l and integrating by
parts over V we obtain

2ag 2l
A(W), Wb1s

V

a2 ˜u1l ˜u2l dx1s
V

(q2 1lr 2 ) u1l u2l dx40.(3.15)
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Subtracting (3.14) from (3.15), and using (3.9), we have

(3.16) a(g 2l*
A2g 1l*

A)(W), Wb 4

s
V

(a1 2a2 ) ˜u1l ˜u2l dx1s
V

(q1 2q2 ) u1l u2l dx1ls
V

(r 1 2r 2 ) u1l u2l dx .

We claim that

s
V

Na1 2a2NN˜ujlN
2 dxK0 as lK1Q ,(3.17)

and

ls
V

Nr 1 2r 2NNujlN
2 dxK0 as lK1Q .(3.18)

For a moment assume that (3.17) and (3.18) hold true, therefore, since by (3.1)
we know that Vujl VL 2 (V) K0 as lK1Q , (3.16) and (3.9) imply that

g 1l
A(W) 4 g 2l

A(W)

for all lFl*, for all W�H
1

2 (¯V), and Theorem 1.2 is proved.
So it remains to prove (3.17) and (3.18). It is a classical consequence of the

maximum principle that there exist constants c1 , c2 D0 such that

c1 dGW 1 j Gc2 d in V ,(3.19)

that is W 1 j and the distance function d are of the same order near the bound-
ary. So by hypothesis (1.20) we obtain, for some constant independent of l ,

s
V

Na1 2a2NN˜ujlN
2 dxGcs

V

W 1 j
2 N˜ujlN

2 dx ,

which by (3.6) yields

s
V

Na1 2a2NN˜ujlN
2 dxGCs

V

NujlN
2 dx .

Now (3.1) implies claim (3.17). In order to prove (3.18) we can proceed in the
same manner. In fact by hypothesis (1.21) and (3.19) we obtain

s
V

Nr 1 2r 2NNujlN
2 dxGcs

V

W 1 j
2 NujlN

2 dx ,

which, by (3.6), yields

s
V

Nr 1 2r 2NN˜ujlN
2 dxGCs

V

NujlN
2 dx .
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Invoking (3.1) we obtain (3.18). This concludes the proof of Theorem
1.2. r

4. – Proof of Corollaries 1.3-1.7.

In order to prove Corollaries 1.3-1.7 we need some results concerning
Calderón’s problem. The so-called Calderón’s problem [4], introduced in the
1980’s, is the following. For W�H

1

2 (¯V), Wg0, let u�H 1 (V) solve

.
/
´

2div (a(x) ˜u)

u

40

4W

in V ,

on ¯V
(4.1)

(recall that the coefficient a�L Q (V) and there exists a positive constant a
such that aFa a.e. in V). Let us denote

K»4 ]a�L Q (V) such that aFa a.e. in V(

and F the nonlinear operator

F : a O gAa ,

where ga is the Dirichlet-to-Neumann map related to (4.1). A.P. Calderón
posed the following question:

is the operator F is injective on K?

Since then many results are obtained. We recall here the most recent ones.
In what follows we shall assume that V is a bounded domain of Lipschtiz

class in RN , NF2.

THEOREM 4.1 (A. I. Nachman [11] for NF3, V. Isakov [8] for N42). – For

j41, 2 , let qj �L p (V), pD
N

2
, for NF3, while for N42 let qj �L p (V), pD1,

and qj F0 a.e. in V. Assume that for all c�L 2 (¯V), there exists a unique
uj �H 1 (V) solving

.
/
´

2Duj 1qj (x) uj

¯

¯n
uj

40

4c

in V ,

on ¯V ,

and that

g 1 4g 2 ,

where g j (c) »4ujN¯V . Then q1 4q2 in V.
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THEOREM 4.2 (R.M. Brown [2] for NF3, R.M. Brown & G. Uhlmann [3] for
N42). – For j41, 2 , let aj be two strictly positive functions in V such that

aj �C
1, 1

2
1a

(V), for some 0 EaG
1

2
, when NF3, while, when N42, let

aj �W 1, p (V), pD2. For c�L 2 (¯V) with s
¯V

cds40, let uj �H 1 (V) solve

.
`
/
`
´

2div (aj (x) ˜uj )

aj
¯

¯n
uj

s
V

uj (x) dx

40

4c

40.

in V ,

on¯V ,

Suppose that

g 1 4g 2 ,

Then a1 4a2 in V.

Observe that Theorems 4.1, 4.2 are proved in their original version in the

case of Dirichlet boundary conditions. More precisely, denote by gAj (W) »4
¯uj

¯ngresp. gAj (W) »4aj
¯uj

¯n
h where 2Duj 1qj uj 40 (resp. 2div (aj ˜uj ) 40) and

uj 4W on the boundary ¯V. Then under appropriate regularity conditions,
such as those of the above theorems, on the coefficients qj (resp. aj), if gA1 4 gA2 ,
then q1 4q2 (resp. a1 4a2). However our operators g j are essentially the in-
verses of the operators gAj and also the proofs of the original theorems can be
easily adapted to the case of Neumann boundary conditions.

PROOF OF COROLLARY 1.3. – By Theorem 1.1 we have

g 1l 4g 2l

for all lF0 (in this case l*40). In particular

g 1 4g 2 ,

where we define g j »4g j0 . Invoking theorem 4.2 we have

a1 4a2 in V .

Now we consider the following so-called Liouville transform of ujl , (see for
example A. I. Nachman [11]), that is we denote by

vjl »4aj
1/2 ujl in V .
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It is easy to verify that vjl�H 1 (V) solve

.
/
´

2Dvjl1a 21/2 (x)(Dka(x)1lr j (x) ) vjl

¯

¯n
vjl

40

4 c
A

in V ,

on ¯V ,

and that

v1l4v2l in H 1/2 (¯V),

for all lF0, for all c
A

�L 2 (V), where a»4a1 4a2 in V . Therefore using Theo-
rem 4.1 (when N42, we may choose l such that a 21/2 (Dka1lr j ) F0 a.e.
in V) we have

r 1 4r 2 in V .

The proof of Corollary 1.3 is complete. r

The proof of Corollary 1.4 is very similar to that of Corollary 1.3, and is left
to the reader.

Before proceeding further in the proofs of Corollaries 1.5-1.7 we need a
lemma in which we prove that if we assume that the Nbsd(aj , qj , r j) are the
same and Nr 1 2r 2NGcd in V , then the coefficients a1 and a2 coincide on ¯V.
More precisely we prove the following

LEMMA 4.3. – Under the assumptions of Theorem 1.2, assume that aj �
L Q (V)OC(Ve ), Ve as in (1.18), for some eD0. If

Nbsd (a1 , q1 , r 1 ) 4Nbsd (a1 , q1 , r 1 ),

and

Nr 1 2r 2NGcd in V ,(4.2)

then

a1 4a2 on ¯V .

PROOF OF LEMMA 4.3. – By contradiction let s * be a point of ¯V such that
a1 (s *) ca2 (s *). Without loss of generality we can suppose that a1 (s *) D

a2 (s *), and that there exists a neighborhood D of s * relative to V and a positi-
ve constant cD0 such that

a1 Fa2 1c in D .(4.3)

Let W�H
1

2 (¯V) be as in Lemma 3.3. Computing ag jl (W), Wb, after an integra-
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tion by parts over V, one obtains the identity

ag jl (W), Wb 4s
V

aj N˜ujlN
2 dx1s

V

(qj 1lr j )NujlN
2 dx .

Therefore using (3.9) and (3.11) we have, for all lFl*,

s
V

a1 N˜u1l*N2 dx2s
V

a2 N˜u2l*N2 dx1s
V

q1 Nu1l*N2 dx2s
V

q2 Nu2l*N2 dx4

s
V

a1 N˜u1lN
2 dx2s

V

a2 N˜u2lN
2 dx1s

V

q1 Nu1lN
2 dx2s

V

q2 Nu2lN
2 dx4

s
V

(a1 2a2 )N˜u1lN
2 dx1s

V

a2 (N˜u1lN
2 2N˜u2lN

2 ) dx1

s
V

q2 (Nu1lN
2 2Nu2lN

2 ) dx1s
V

(q1 2q2 )Nu1lN
2 dx .

Recalling that by (3.12), (4.2), and (3.5) we have

s
V

a2 (N˜u1lN
22N˜u2lN

2 ) dx1s
V

q2 (Nu1lN
22Nu2lN

2 ) dxFls
V

(r 12r 2 )Nu1lN
2 dx ,

F2C ,

we obtain

(4.4) s
V

a1 N˜u1l*N2 dx2s
V

a2 N˜u2l*N2 dx1s
V

q1 Nu1l*N2 dx2s
V

q2 Nu2l*N2 dxF

s
V

(a1 2a2 )N˜u1lN
2 dx1s

V

(q1 2q2 )Nu1lN
2 dx2C4

s
V0 D

(a1 2a2 )N˜u1lN
2 dx1s

D

(a1 2a2 )N˜u1lN
2 dx2C1o(1),

where in the last step we use the fact that Vu1l VL 2 (V) K0 as lK1Q. Concern-
ing the first integral on the right hand side of (4.4), we observe that by (3.4),
for a»4a1 , q»4q1 , r»4r 1 , we have

V˜u1l VL 2 (V0 D) K0 as lK1Q .

Since by (3.2) we know that lim
lK1Q

V˜u1l VL 2 (V) 41Q , we derive

lim
lK1Q

V˜u1l VL 2 (D) 41Q ,
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and since by (4.3) we have

s
D

(a1 2a2 )N˜u1lN
2 dxFcs

D

N˜u1lN
2 dx ,

passing to the lim sup in (4.4), we get a contradiction. Therefore a1 4a2 on
¯V. r

Now we may prove Corollaries 1.6.

PROOF OF COROLLARY 1.6. – By Lemma 4.3 we have

a1 4a2 on ¯V .

Since by assumption we have ˜a1 4˜a2 on ¯V , we can suppose that there
exists a positive constant cD0 such that

Na1 2a2NGcd 2 in V .

Therefore by Theorem 1.2 it follows that

g 1l
A 4 g 2l

A

for all lFl*. As before we consider the Liouville transform of ujl , that is we
denote by

vjl »4aj
1/2 ujl in V .

Hence vjl�H 1 (V) solves

.
/
´

2Dvjl1aj
21/2 (x)(Dkaj (x)1q(x)1lr j (x) ) vjl

vjl

40

4 WA

in V ,

on ¯V ,

and

¯

¯n
v1l4

¯

¯n
v2l in H 21/2 (¯V),

for all lFl*, for all WA �H
1

2 (V). Invoking Theorem 4.1 (with Dirichlet bound-
ary conditions) — by choosing, when N42, lFl* large enough such that
aj

21/2 (Dkaj 1lr j ) F0 a.e. in V — we have

a1
21/2 (Dka1 1q1lr 1 ) 4a2

21/2 (Dka2 1q1lr 2 ) in V .

So, deriving in l , we have

a1
21/2 r 1 4a2

21/2 r 2 in V ,
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hence

a1
21/2 (Dka1 1q) 4a2

21/2 (Dka2 1q) »4p in V .

Now we observe that aj solve the following Cauchy problem

.
`
/
`
´

2Dkaj 1p(x) kaj

kaj

¯

¯n
kaj

4q(x)

4W

4c

in V ,

on ¯V ,

on ¯V ,

where we have set W»4ka1 4ka2 and c»4
¯

¯n
ka1 4

¯

¯n
ka2 . Therefore by

well-known results on unique continuation for elliptic operators (see for in-
stance N. Garofalo & F. H. Lin [6]), it follows that

a1 4a2 in V

The proof of Corollary 1.6 is complete. r

Corollaries 1.7, 1.8 can be proved in much a similar way, and leave the de-
tails to the reader.

REMARK. – The technical assumptions r 1 4r 2 and ˜a1 2˜a2 4˜r 1 2

˜r 2 40 on the boundary ¯V , are not much restrictive in those applications
where the density r and the conductivity a are to be determined, via boundary
measurements, in the interior of the domain V , far from the boundary. It is
not too unreasonable, in these applications, to assume that those coeffecients
are known up to order one. Nevertheless in a mathematical point of view we
must admit that these technical assumptions are not satisfactory and might be
removed. Unfortunately at this point we are not able to remove these
assumptions. r
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