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Bollettino U. M. 1.
(8) 7-B (2004), 207-230

Determining Two Coefficients in Elliptic Operators
via Boundary Spectral Data: a Uniqueness Result.

BRrRUNO CANUTO - OTARED KAVIAN

Sunto. - Sia 2 un dominio limitato e sufficientemente regolare di RN, N =2, e siano
A= e (@)= rispettivamente gli autovalori e le autofunzioni corrispondenti
del problema (con condizioni al bordo di Neumann)

)
—div(a(x) Vo) + @) g =A,0x) ¢, in Q, aa—(pkzo su 09 .
n

Dimostriamo che i dati spetrali al bordo di Dirichlet (A1)i-1, (¢ rjo0)i-1 determi-
nano n modo unico la mappa y di Neumann-Dirichlet (o la mappa di Steklov-
Poincaré) per un problema ellittico relativo. Sotto opportune ipotesi sui coefficienti
a, q, 0 proviamo in seguito la lovo identificabilita. Dimostriamo risultati analoghi
nel caso di condizioni al bordo di Dirichlet.

Summary. — For a bounded and sufficiently smooth domain Q in RYN, N=2, let
Ap)i=1 and (@ )r-1 be respectively the eigenvalues and the corresponding eigen-
functions of the problem (with Neumann boundary conditions)

d
—div(a(x) Vo) + q@) ¢, =A0x) ¢, in Q, aa—qzk:O su 09Q.
n

We prove that knowledge of the Dirichlet boundary spectral data (A;)7-,
(Qroe)i-1 determines wuniquely the Newmann-to-Dirichlet (or the Steklov-
Poincaré) map y for a related elliptic problem. Under suitable hypothesis on the co-
efficients a, q, o their identifiability is then proved. We prove also analogous re-
sults for Dirichlet boundary conditions.

1. — The main results.

Let 2 be a bounded and sufficiently smooth domain in RY, N =2, and let
a, o be two strictly positive functions defined in 2. We denote by (1;)7-; and
(@)= respectively the eigenvalues (in increasing order) and the correspond-



208 BRUNO CANUTO - OTARED KAVIAN

ing eigenfunctions of the following problem (with Neumann boundary
conditions):

—div(aVe,) + qp =209, in Q,

0
a—q@,=0 on 0%,
1.1) an '

flwk(ac) |?o(x) de=1.

L\ Q

We denote by
(1-2) DbSd(aa q, Q) = {(lka (pk|39); k= 1}7

the Dirichlet boundary spectral data of problem (1.1). Under suitable as-
sumptions on the regularity of the coefficients a, ¢, o, we ask the following
question: does knowledge of the Dirichlet boundary spectral data
Dbsd(a, q, 0) (1.2) determine the coefficients a, q, ¢ uniquely in Q?

Many authors have focused their attention to study similar problems. In
1946 G. Borg[1] and N. Levinson [9] asked the question whether knowledge
of the eigenvalues (1,);-; of the Sturm-Liouville problem

3 { — @it q@) @p=Arp, in (0,0)
¢ (0) = ¢, (DO,

determine q e L (0, I) uniquely. It is clear that the operators associated with

the potentials q(x) and g(I — «) have the same eigenvalues, therefore the spec-

trum alone, in general, is not sufficient to determine the potential ¢ uniquely.

They proved the identifiability of ¢ in (1.3) from knowledge of eigenvalues

(A1)i-=1 and of normalizing constants

!
Ck 3:f|(ﬂk|2d-%‘,
0

by supposing ¢ (0) = 1. Later on I.M. Gel'fand & B.M. Levitan [7] have given
a reconstruction formula of the potential ¢ from the sequence of eigenvalues
(A1)i=1 and of normalizing constants (c,)y—; (under the hypothesis that
@:(0) =1). More recently A.I. Nachman, J. Sylvester & G. Uhlmann [12] have
studied a similar problem in the multidimensional setting. More precisely, let
Q be a bounded and sufficiently smooth domain in RY, N =2, and let (4,)7_,
and (¢.)F-1 be respectively the eigenvalues and the eigenfunctions of the
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problem (with Dirichlet boundary conditions):

—App+qp=2A,¢, in 2,
©.=0 on 09,

[leu@ |2de=1.
Q

(1.4)

©

1

_ =1 1
q e C* (L) uniquely. The idea of the proof is the following. For ¢ € H 2 (9Q),
and 1eC, A¢ {—A,; k=1}, let u; e H'(Q) solve

They show that the boundary spectral data (1,);-1, (aiqakwg) determine
n k

—Au;+(g+A)u; =0 in Q,
(15) { .+ (g ) U,

u, =@ on 0L.

Let us denote by y; the Dirichlet-to-Neumann map related to problem (1.5),
that is

Vi ¢'_>5%A|asz-

A.I. Nachman, J. Sylvester & G. Uhlmann prove, in a first step, that the
boundary spectral data (4;);-1, (ai(pmg) determine y; uniquely, for all
n k=1

AeC, A¢{—21;; k=1} (see [12], Lemmas 3.1, 3.2). Then, in a second step,
they show that the coefficient ¢ in (1.5) is uniquely determined by the Dirich-
let-to-Neumann map y; (see [12], Theorem 1.5). Using a similar method B.
Canuto & O. Kavian [5] have proved the same result by supposing only
qeL > (Q).

Now assume that the functions a, q, ¢ in (1.1) satisfy the following
assumptions:

(1.6) QcRY is a bounded Lipschitz domain, and N =2,
(1.7 a,q,0eL™(Q),

1.8) a=o ae. in 2, for some constant a >0,
1.9 o0=p ae. in Q, for some constant > 0.

We shall denote by 1* a real number satisfying
(1.10) A¥>A, =inf{leR;q¢+10=0 ae. in Q}.

Observe also that if g;, o; satisfy (1.7)-(1.9) for j =1, 2, then we shall suppose
that A* > max (4.1, 4 42).
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Then for A=1%*, yeL?(9Q), y#0, there exists a unique u;, e H(RQ)
solving

—div (a(x) Vu,) + (g(x) + Ao(x)) u; =0 in Q,
(1.11)

0
a—u; =1 on 0R.
l on

Let us denote by y; the Neumann-to-Dirichlet map related to problem (1.11),
that is

Vit YU e0-

We ask the question: do the Dirichlet boundary spectral data Dbsd (a, q, 0)
(1.2) determine the Neumann-to-Dirichlet map y,; uniquely?
Our first result in the present paper is the following

THEOREM 1.1. — Assume that Q2 satisfies (1.6). Forj=1, 2, let a;, q;, 0, sat-
wsfy asswmption (1.7), and a;, 0; assumptions (1.8), (1.9) respectively. Let us
denote by wj;, (A)i-1 and (@ )i -1 respectively the solution of (1.11) and the
etgenvalues and the eigenfunctions of (1.1) when a = a;, q:= q;, 0 :=0;. With
the notations ntroduced in (1.2), suppose that

(1.12) Dbsd (a4, g1, 01) = Dbsd (az, gz, 02).
Then
(1.13) Y1a=VYei

for all A= 2%, where y ;;(y) = ujs0.

We note that, due to the analycity of A~y on C\(=4;; k =1}, the con-
clusion of Theorem 1.1 holds true for all Ae C, A ¢ { —1;; k =1}, where we de-
note A, =244, =219;.

A similar result remains valid if we replace in (1.1) the Neumann boundary
conditions with the corresponding Dirichlet boundary conditions. More pre-
cisely let (A1,)7~1 and (¢ ;)1 be respectively the eigenvalues (in increasing
order) and the corresponding eigenfunctions of the following problem (with
Dirichlet boundary conditions):

—div(a(x) Vo) + q(x) 9. =A0(@)p, in L2,

(1.14) @r=0 on 012,

[ 1o 2ot do=1.

Q
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We denote by

3
(1.15) Nbsd(a, q, 0) := {(lk, aa—quklag) s k= 1},
n

the Neumann bozgndm‘y spectral data of problem (1.14). For A = 1%, 1* as in
(1.10), and @ e H=(3R), ¢#0, let u, e H' () solve

(1.16)

—div (a(x) Vuy) + (q(x) + do(x)) u; =0 in Q,
U, =@ on 0R.

Let us denote by 77 the Dirichlet-to-Neumann map related to problem (1.16),
that is

Vi @Haauuag-

In what follows we shall denote by
(1.17) o(x) := dist (x, 0Q)

the euclidean distance of the point x € 2 from the boundary 992, and by Q¢ an
e-neighborhood of 82 in Q, that is

(1.18) Qf:={reQ st. dx)<e}

for some & >0 given.

If we suppose that |a; —az| and |@; — 02| vanish on the boundary o2 at
the same order as 02 (see below for a more precise statement), we can prove
that if the Neumann boundary spectral data Nbsd (a;, g;, 0;) coincide then the
Dirichlet-to-Neumann map y;; are the same. As a matter of fact we show the
following

THEOREM 1.2. — Assume that 2 satisfies (1.6). Forj =1, 2, let us denote by
Uiz, (Ajpdi=1 and (@ )i -1 respectively the solution of (1.16) and the eigenva-
lues and the eigenfunctions of (1.14) when a:=a;, q:=q;, 0:=0;. With the
notations introduced in (1.15), suppose that

(1.19) Nbsd (a4, g1, 01) = Nbsd (ag, g3, 02),
and, for some constant ¢ >0,
(1.20) la; —az| <cd* in Q,

(1.21) |Q1—Q2|$C(§2 in Q.
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Then

1.22) V12 ="Va
for all 2= 2%, where y;,(¢) :=q; %umag.

We observe that, as in Theorem 1.1, the conclusion of Theorem 1.2 holds
true for all Ae C\{—1;; k =1}, where we denote by A; :=21;=44;.

We point out that if in Theorem 1.2 we assume that a; — a, and ¢ — 0, are

in C1(Q¢), for some & > 0, then assumptions (1.20), (1.21) can be respectively
expressed and somewhat weakened into the assumptions

(al_a2)|8{2= |V(a1_a2)||a_@=0 on 39,
and
(01— 02)152 = |V(@1—02) 150 =0 on 99Q.

Concerning the identifiability of the coefficients a, ¢, ¢ in (1.1) from the
Dirichlet boundary spectral data Dbsd (a, q, 0) we may state the following re-
sults. If we suppose that the coefficients ¢; = ¢, in 2, then we prove the identi-
fiability of the coefficients a in Q and ¢ in . More precisely we show the
following

COROLLARY 1.3. — Under the assumptions of Theorem 1.1, for j=1, 2 let

ajeWz’p(Q),p> %forNBS,p = oo for N=2,and let q; = g, =: q in Q. As-
sume that

Dbsd (a4, q, 01) = Dbsd (az,q, 02).
Then
a=ay in Q, and o0,=0, n Q.

If we suppose that the coefficient @ is known in Q, then we prove the iden-
tifiability of the coefficients ¢ and ¢ in Q, i.e the following result holds:

COROLLARY 1.4. — Under the assumptions of Theorem 1.2, for j=1, 2
let a:=a;=ay,e W>P(Q), p> g for N=2. Assume that
Dbsd (a, g1, 01) = Dbsd (a, g2, 02).
Then
G1=¢q n 2, and 0,=0y n L.

Concerning the identification of the coefficients a, ¢, ¢ in (1.14) from
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the Neumann boundary spectral data Nbsd(a, q, 0), we can prove similar
results to that of Corollaries 1.3, 1.4. We begin by proving the following
COROLLARY 1.5. — Under the assumptions of Theorem 1.2, for j=1, 2 let

aje W2P(Q), p > gforNB?),p: o for N=2, and let ¢ :=q, = g5 in L. As-
sume that

Nbsd (e, q, 01) = Nbsd (as,q, 02),
and
1.23) Va, =Va, on 09,
and 01— 02 satisfies (1.21). Then
a=a, in Q, and 0,=0, n Q.
We observe that under the assumption that the coefficients a;e W*?(£2),

p> % hypothesis (1.23) is weaker than hypothesis (1.20) of Theorem 1.2. (Ac-
tually we are able to prove that the assumptions of the Corollary imply indeed
ap = Ag.

In the following corollary we assume that the coefficient @ is known in Q
and we prove the identifiability of the coefficients ¢ and ¢ in 2 (under the hy-
pothesis (1.21)).

COROLLARY 1.6. — Under the assumptions of Theorem 1.2, for j=1, 2 let
a:=a;=aye W>P(Q), p> % for N =2. Assume that

Nbsd (a, ¢;, 01) = Nbsd (a, ¢s, 02),
and 01— 03 satisfies (1.21). Then
G1=¢q n Q, and 0,=0, in Q.

Finally, if we assume that the coefficient o is known in £, then we prove
the identifiability of the coefficients @ in Q and ¢ in Q (under the hypotesis
(1.23) and (1.21)).

COROLLARY 1.7. — Under the assumptions of Theorem 1.2, for j=1, 2 let

aje W2P(2),p > %forNBS,p= o for N=2and let 0:=0, =03 a.e. in Q.
Assume that

Nbsd (a;, ¢;, 0) = Nbsd (a3, ¢z, 0),
and

Va, =Va, on 99Q.
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Then
=0y m Q, ond ¢ =¢ in Q.

The paper is organized as follows: in the next section we prove Theo-
rem 1.1, in section § 3 we prove Theorem 1.2, finally in section § 4 we show
Corollaries 1.3-1.7.

2. — Proof of Theorem 1.1.

Our task in this section is to prove Theorem 1.1. Before doing so we need to
establish some preliminary results. We shall denote LQZ(Q) =L2%2(Q)
equipped with the scalar product (f|g) := [f(x) g(x) o(x) d.

Q

LEMMA 2.1. — For v e L%(3R), %0, and 1 = 1* let u; € H*(Q) solve (1.11).
Then

2.1) ||%z||ig(g)—>0 as A— + .

Proor oF LEMMA 2.1. — Since the sequence of eigenfunctions (¢;)i—; of
(1.1) is a Hilbert basis in LQZ(Q), we can write u; in the following Fourier
expansion

2.2) u; = IZI(W l@r) @ in L(Q).

After multiplying (1.11) by ¢, and integrating by parts over 2 we obtain

ag

2. =
2.3) (wr | @) Pt

where a, := —1<g0 w W) (here and in the sequel (-, -} denotes the duality in
H=(82), H 2(892)). Next (2.2) and (2.3) yield

2 i aj 2
2.4 HWHLj(m = S\ 7t .

Hence (2.1) follows by the uniform convergence in 1 of the series in
24). =

LEMMA 2.2. - Forj=1,2, A= A%, let uj e H1(Q) solve (1.11) when a := a;,
q:=q;, 0:=0;. Let us denote by y;; () = ujs0. Assume that (1.12) holds,
i.e.

Dbsd (a4, g1, 01) = Dbsd (az, gz, 02).
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Then
(2.5) Yiir —Varr=Y1— Y2l
for all A =A%,

PrROOF OF LEMMA 2.2. — Let zj; :=uj; — ujy+. Then z; € H'(Q) solve

—div(a;(x) Vz;) + (g;(0) + 20, (x)) 2 = —(A—=4%) 0;(X) w=  in 2,
(2.6) )

a/]%ZM:O on 08.

We can write z;; in the following Fourier expansion
2.7 i = kgl(zjl l@i) @ in L (Q).

Multiplying (2.6) by ¢, and integrating by parts over £, we obtain

—(A=2A%) a,
(Ap+ A7

(zp |@ ) = ’
where A, =211, = Ao, 0 = (@, ¥), and @ = @1, = @ on Q.

One can verify that, thanks to the decay of its terms, the series in (2.7) con-
verges to z;; in H 1(Q) (see B. Canuto & O. Kavian [4], Lemma 3.2). ’ll‘herefore,
the trace operator u+—u 5o being continuous from H 1(Q) into Hz (3R), we
have

> A-Aa, in H%(50)
2 = — - in .
7AE) = (lk+l)2 Prloe
So one has:
1
R11)90 = 200 In H 2(09Q),
that is
2.8) V1) = you=() =y 12(9) =y, () in H=(9Q),

for all A= 1%, for all peL?(3Q2). =
Proor or THEOREM 1.1. — By Lemma 2.2 we have

2.9) (Uy70 = U+ )ja = (U1; — Ugz) s I H=(09Q)

for all 1 = A*, for all y e L2(2). We claim that there exists a subsequence 1™,
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AW — + o as n— + o, such that

1
(2.10) upm—0 in Hz(0Q2) as n— + .

For a moment assume that (2.10) is true. Then (2.9) implies that

Uy, — Uz =0 in Hz(09Q)

for all A= 1%, for all y e L?(8R2). Hence Theorem 1.1 is proved.

So it remains to prove claim (2.10). We show this for j = 1, the case j = 2 be-
ing clearly analogous. Multiplying the equation in (1.11) when j = 1 by u,,, and
integrating by parts over 2 we obtain

(2.11) fal | Vs, |2d90 + f(% +A01) | U1z |2d9€ < |(ua, ) |
Q Q
< [lour HHé(m) ]l -120)
(2.12) S C”“MHHI(Q)”V}”H*UZ(aQ)'
Next, as ¢; + 1012 (A* —1,) 01,

(2.13) fCh | Vs, |2d90 + f((h +A01) | U1z |2d9€ = alluy, ”125(1(9)7
Q Q

for all 1 = A*, where we have set a := min(1, 1* — 1,). From (2.11)-(2.13) we
deduce

1
(2.14) e[|z ) < ;”1/1”111*1/2(99)-

The embedding H'(Q) c L2(R) being compact, (2.12) yields that there exists a
subsequence 1" — + o as n— + © and ueH'(Q), such that u;;mw—u in
H'(Q). By Lemma 2.1 we have |u;;||,2(0)—>0 as 41— + o, therefore

Umw—0 in HY(Q) as n— + .

Flnally since the trace operator u'—>u|39 is continuous from H!(R) into

H > (88), we obtain that u;;w ‘agAO in H2(39Q) as n— + «. The claim (2.10)
is proved, and the proof of Theorem 1.1 is complete. =

3. = Proof of Theorem 1.2.

In what follows we shall use the letter ¢ to denote various constants inde-
pendent of the data and the letter C to denote constants depending on the
data.
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1
LEMMA 3.1. - For g e H2 (8R), ¢ #0, let u, € H(2) solve (1.16) for A = A*,
Then

8.1) HuAHLZ(.Q)_)O as A—+ o,
and
3.2) AETPOO”VM/I”LZ(.Q) =t .

Proor oF LEMMA 3.1. — The proof of (3.1) is identical to that of (2.1), there-
fore we can skip it.

In order to prove (3.2), suppose, by contradiction, that there exists a con-
stant C > 0 such that ||[Va,||,20) < C for all 1 = A*. Then |ju;||z1o) is bounded,
and, since ||u; ||;2(0)—0 as 1 — + o, and using again as above the compactness
of the embedding H'(Q)cL?*(RQ), there exists a subsequence u;w—0 in
HY(Q) as ﬂ’”ﬁl + . The trace operator u;— u; s, being continuous from

HY(Q) into H=(3R), we derive that ¢ =0, which leads to a contradic-
tion. =

In the following lemma we prove that the energy [Vu,||.2(0\ o+ of the solu-
tion u; of (1.16), evaluated in the domain 2\ Q°¢, Q¢ as in (1.18), goes to zero as
A— + o,

LEMMA 3.2. — Let 0 <2¢ < diam () be fixed. Then

3.3) Ve |2 09 —0  as A— + .

PROOF OF LEMMA 3.2. — Let us denote by 1 € C *(2) a cut-off function such
that 0 <» <1, and

=0 in Q% 4
77_ ) , and |Vp[<—.
n=1 in Q\Q°, €

Multiplying the equation in (1.16) by 52u,, and integrating by parts over 2 we
obtain

0= —fdiv(aVul)nzuidanf(q+/1@)772ufdm
Q Q

= fan2 |Vu1|2dac+2fanuAVnVuidachf(q%—lQ) nZuld.
Q Q Q
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Hence the Cauchy-Schwarz inequality yields

fom2 |V, |2 dee + f(q+/'LQ) niufde <2 f |anu; YV, |de <
Q Q Q

2||“||L°°<Q) ||']V%1 ||L2(Q> ||7M V77||L2(9)-
That is, since ¢ +1p0= (1* —1,) 0>0,
HWVW HLZ(Q) S CHW ”LZ(Q)

(since A1=1%), where C:=88’1HaHLw(9)/i2f a. So we have the upper bound

[Vats [l2 o\ 06) < Cllaz [|z2 ).

But, by the above Lemma 3.1, we have that ||u,1||Lz(Q)—>O as A— + . The
proof of Lemma 3.2 is complete. =

LEMMA 3.3. — Under the assumptions of Lemma 3.1, let o, be a point of
32, and D a neighborhood of o velative to Q. If ¢ € H2(3Q) is such that
supp (¢) cc D N 082, then

(3.4) Vet L2y =0 as A— + oo

ProOF oF LEMMA 3.3. — Let Il“ be a neighborhood of o, relative to 992, such

that I'cc D N 992, and let ¢ € H 2 (92) be such that supp(¢) c I'. We denote by
neC”(Q) a cut-off function such that 0 <5 <1, with = 0 in a neighborhood
of I', while 7 =1 in a neighborhood of Q\D, and |Vy|<4d !, where d:=
dist(2\ D, I'). Multiplying the equation in (1.16) by n2u;, and integrating by
parts over £ we obtain (since supp(¢)cl’, and =0 in I

0= — [[div(aVu,) n*wdec + [(q+20) n*uf de
o Q

= fcmz |V, |2 de + 2 fanu,anVu,ldm + f(q + o) n?ufdx.
Q Q Q
Hence the Cauchy-Schwarz inequality yields

fcm2 | Vo |2 dac + f(q+/lg) n2ulde <2 f |anu, VyVu, |de <
Q Q Q

2 ”a”L *(Q) ”UVW ||L2(Q) ||% V77HLZ(Q)’
that is

7V l120) < Cllw; Vllp2 0y,
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where C:=8d ‘1||a||Loc<Q>/igf a. In particular we have

[V, HLZ(Q\D) < Cllug 20

Since |l |2 —0 as A— + ©, Lemma 3.3 is proved. =

LEMMA 3.4. — Under the assumptions of Lemma 3.1, the following identi-
ties hold

1 -1 )
(3.5) faqol | Vay |2 doc + —f(q+(21+/11) 0) prufde=— fa(p2 — @, do,
Q 2!2 2 Q2 an

(3.6) faqo% | Vo |2 dee + (A +/11)f9q0%ufdx= fauf Ve, |*de,
Q

Q Q

where A, and @ are respectively the first eigenvalue and eigenfunction of the
corresponding eigenvalue problem (1.14).

Proor or LEMMA 3.4. — We begin by proving identity (3.5). Multiplying the
equation in (1.16) by ¢;u;, and integrating by parts over £ we obtain

0=— fdiv(aVul) @, de + f(q +20) ¢ uldx
3.7 Q e

1
= faqal |V, |2 dac + > fqu;lV(uf) dx + f(q + A0) @ ufde.
Q Q Q

Now integrating by parts the second term of the right hand side of the last
equality, and using the fact that we have —div(aVe,) =10 —q) ¢,

1 1 1 0
= fquJlV(uf)dxz - = f(q—/llg)(plufdx+ = fa(pz—tplda.
2 P 2 ps 2 4 on

Hence inserting this in (3.7) we obtain (3.5).
Similarly multiplying the equation in (1.16) by ¢%u,, and integrating by
parts over £, we obtain

0= [divaVu,) giu;de + [(q+i0) p}uide
(3.8) Q Q
= fagpf |V, |2 dee + fa(pl Vo, V(u?) de + f(q +20) piuldx.
Q Q Q

Now integrating by parts the second term of the right hand side of the above
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equality we have

fac;al Vo, Vuide = — fdiv(quol) @ ulde — f(mf [V, |?da.
o Q o

Again using the equation satisfied by ¢, we obtain (3.6). =

The following lemma is the analogous of Lemma 2.2 for the case of Dirich-
let boundary conditions.

LEMMA 85. - Forj=1,2, A= A%, let u; € H'(R) solve (1.16) when a := a;,

q:=q;, 0:=0;. Let us denote by y;(¢):= ajiuj/llag. Assume that (1.19)
. Y on
holds, that s

Nbsd (a;, ¢1, 01) = Nbsd (az, gz, 02).
Then
(3.9 Vize = Vear = V12— Vaa
for all 2= A%
ProoF oF LEMMA 3.5. — Let zj; :=uj; — uj;+. Then zj; € H'(Q) solves
L 2 =0 on 0Q.

As in the proof of Lemma 2.2, we can write z;; in the following Fourier
expansion

(3.10) 2= 1241 (z| @) @ in LY (),

(recall that (¢, )f-, are the eigenfunctions of (1.1) when a:=a;, q:=g¢,
0:=0;) where

Gilow = [ g = — A
jA §0]Ic . ],1§0]ij (lk'f'/‘t)z
e) 2]
and Ay :=Ay=2s, o= —(Yy, @), and P, 3:a1a—¢1k :aza_(ka on
29. " "
Let

X:={ueH{(Q); div(a(x) Vu) e L(Q)}.

It is well-known (see for instance J.-L. Lions [10]) that the trace operator

uHaaﬁm 20 is continuous from X, endowed with the norm |uly := ||u||H1<Q> +
n
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[div (aVa)||,20), into H ~12(8R). One can verify that the series in (3.10) con-
verges to zj; in the norm ||l (see B. Canuto & O. Kavian [5], Lemma 3.2). Then
we have

2 o (A—24%) ay .
O — 7 = — E — "y, in H Y2(0Q),
i an T T A T e (09)

So we obtain

o) 0
U —2y; =0y —25; in H 12(3Q),
on on

that is

712:(@) = Vare(@) = 71:(@) — y2.(@) in H 12(39),

1
for all A= A%, for all pe H2(Q). =

LEMMA 3.6. — Under the hypothesis of Lemma 3.5 we have

(3.11) o1, ||L§1(Q) = |Jus; L2 (@)

and

(312)  [(aa(|Vuns | = | Vits [*) + qo a2 = |1z |?) do) =
Q
lf(Ql —02) |uu|2d9€-
Q

ProoF oF LEMMA 3.6. — We begin by proving (3.11). We can write u;; in the
following Fourier expansion

wj = El(“ﬂ | @) @ae in L (Q),
where

ag
Ar+ 4

(i | @) = fuj/l @0 de =
Q

(we recall that A, := 4, =15, and a;, := — (¥, @), where ¢, := alaigolk =
2 n

( il ) , we obtain (3.11).
P

k-
3 . L
@z — @y on 99). Since ||uj/1||i§j(9)= >
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In order to prove (3.12) we observe that by (3.11) we have

—f(azwum oy |+ & (f(Qz 01)|uu|2d9ﬁ+fQ2|u2/1|d90)

E f(a2|Vuu|2+q2|uM|2)dx+ Ef@z|“u|2‘7l95B

\%

— min f(a2|Vv| +q2|v|2)dx+/lfg2|v|2dx—
2 veHyQ) ¥

A
- f(a2|Vu2,1|2+q2|u2,1|2)dac+— f02|%2/1|2d90-
23 2

Hence (3.12) follows. (Here we use the notation
H}(Q):={veH"(Q);v=¢ on 92},

and the fact that u,; is the minimizer of the functional
v'—>fa2 | Vo|®da + f(q + o) vidax
Q Q
on Hy(R2)). =
We are now in a position to prove Theorem 1.2.

1
PROOF OF THEOREM 1.2. - Forj=1,2,A= 1%, 1* as in (1.10), p € H 2 (8Q),
@#0, we recall that uﬂeHl(.Q) solves

J —div (a;(x) Vuy) + (g;(@) + 20 () uj =0  in Q,
U =@ on 9.

(3.13)

Multiplying the equation in (3.13) for j = 1 by u»; and integrating by parts over
£ we obtain

B14)  —(ule), @)+ fCh Vuy; Vg, de + f((h +A01) Uy Uz, dx = 0.
Q Q

Similarly, multiplying the equation in (3.13) for j = 2 by u,; and integrating by
parts over Q we obtain

3.15)  —(ya(e), §0>+fa2VuMVu2/1dac+f(q2+/192)u1,1u21d90=0.
Q Q
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Subtracting (3.14) from (3.15), and using (3.9), we have

B.16)  ((Yazr —V1:)@), @) =
f((h — ay) Vg, Vg, do + f(‘h = q2) Uy Uz, d + lf(Ql —032) Uy, Uz dir.
Q Q Q

We claim that

(3.17) f|a1—az| |Vu; |2de—0 as A— + o,
Q

and

(3.18) 2 lor— ool |u|Pde—0 as A— + .
Q

For a moment assume that (3.17) and (3.18) hold true, therefore, since by (3.1)
we know that ||u; [|120)—0 as A— + «, (3.16) and (3.9) imply that

71(@) = 72:(@)

1
for all A= A%, for all ¢ e H2(3R2), and Theorem 1.2 is proved.
So it remains to prove (3.17) and (3.18). It is a classical consequence of the
maximum principle that there exist constants c¢;, ¢, >0 such that

(3.19) Cq o< P1j < (326 in .Q,

that is ¢;; and the distance function 6 are of the same order near the bound-
ary. So by hypothesis (1.20) we obtain, for some constant independent of 4,

f|a1 — ay | |Vuj,1|2dx$cfg0§j | Vaj |2 dee,
Q Q
which by (3.6) yields
f|a1—a2| |Vuj,1|2dx$0f|uﬂ|zdac.
Q Q

Now (3.1) implies claim (3.17). In order to prove (3.18) we can proceed in the
same manner. In fact by hypothesis (1.21) and (3.19) we obtain

[1e1= ool lupl?de<c [ o% |u; | de,
o Q
which, by (3.6), yields

[ 101 =02V |Pde < C [ |uy |*dec.
Q Q
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Invoking (3.1) we obtain (3.18). This concludes the proof of Theorem
12. =

4. — Proof of Corollaries 1.3-1.7.

In order to prove Corollaries 1.3-1.7 we need some results concerning
Calderén’s problem. The so-called 1Calderén’s problem [4], introduced in the

1980’s, is the following. For ¢ € H2 (3Q), ¢ #0, let u e H'(Q2) solve

4.1)

—div(a(x) Vu)=0 in Q,
u=¢ on 0Q

(recall that the coefficient a e L *(£2) and there exists a positive constant a
such that a = a a.e. in Q). Let us denote

K:={aeL>(Q) such that a =« a.e. in Q}
and @ the nonlinear operator
D:ar> Y,

where y, is the Dirichlet-to-Neumann map related to (4.1). A.P. Calderén
posed the following question:

is the operator @ is injective on K?

Since then many results are obtained. We recall here the most recent ones.
In what follows we shall assume that £ is a bounded domain of Lipschtiz
class in RY, N=2.

THEOREM 4.1 (A. I. Nachman [11] for N = 3, V. Isakov [8] for N = 2). — For
J=1,2,let ;e L*(L2),p> g,fm"NB 3, while for N =2 let q;e L*(2),p>1,

and ¢;=0 a.e. in Q. Assume that for all y e L*(99), there exists a unique
uje H'(22) solving

—Auj+ qi(x) u;=0 in Q,

0
a—u7-=1/) on 0%,
n -

and that
Y1=7e,
where y; () :=uja0. Then q=qz in Q.
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THEOREM 4.2 (R.M. Brown [2] for N = 3, R.M. Brown & G. Uhlmann [3] for
N=2). - Forj=1,2, let a; be two strictly positive functions in Q such that

ajeCl’Ew(ﬁ), for some 0<a<%, when N =3, while, when N =2, let

a; e WP (Q), p>2. For yweL?*(8Q) with [ ydo=0, let uje H'(R2) solve
Ele)

[ —div(a;(®) Vu;)) =0 in Q,

) Cl;j 57/6] = 1/) 07’689,

L fuj(x) de=0.
Q

Suppose that
Y1=VY2,
Then a;=ay in Q.

Observe that Theorems 4.1, 4.2 are proved in their original version in the

.. " . ~ u;
case of Dirichlet boundary conditions. More precisely, denote by y;(¢) := a—u“
n

~ au; .
(resp. Vi(@) 1= aja—lj:) where —Au;+ qju; =0 (resp. —div(a;Vu;) =0) and

u; =@ on the boundary 092. Then under appropriate regularity conditions,
such as those of the above theorems, on the coefficients g; (resp. a)), if y; = s,
then ¢; = ¢, (resp. a; = ay). However our operators y; are essentially the in-
verses of the operators y; and also the proofs of the original theorems can be
easily adapted to the case of Neumann boundary conditions.

ProorF oF COROLLARY 1.3. — By Theorem 1.1 we have
Yia =722
for all A =0 (in this case A* =0). In particular
Yi=7VYe,
where we define y; :=y;,. Invoking theorem 4.2 we have
a,=a, in Q.

Now we consider the following so-called Liouville transform of u;, (see for
example A. I. Nachman [11]), that is we denote by
/

e 12 :
vy =0 uy  in Q.
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It is easy to verify that v, e H'(2) solve

—Avy + a (@) A Va@) +do;(®) v, =0  in Q,

) ~
avﬂ= ¥ on 09,

and that
v =0y in H'?(09Q),

for all A =0, for all y e L%(2), where @ := a, = a, in Q. Therefore using Theo-
rem 4.1 (when N =2, we may choose 4 such that ¢ "#(4Va + 10,) =0 a.e.
in Q) we have

01=0z in Q.

The proof of Corollary 1.3 is complete. =

The proof of Corollary 1.4 is very similar to that of Corollary 1.3, and is left
to the reader.

Before proceeding further in the proofs of Corollaries 1.5-1.7 we need a
lemma in which we prove that if we assume that the Nbsd(a;, g;, 0,) are the

same and |01 — 02| <cd in 2, then the coefficients a; and ay coincide on 9.
More precisely we prove the following

LEMMA 4.3. — Under the assumptions of Theorem 1.2, assume that a;e
L*(2)NC(R%, QF as in (1.18), for some ¢ > 0. If

Nbsd (a4, g1, 01) = Nbsd (a4, g1, 01),
and
4.2) o1 — 02| <cd n 2,
then

a;=ay on 08.

Proor oF LEMMA 4.3. — By contradiction let o, be a point of 3£ such that
a1(0y) # ay(04). Without loss of generality we can suppose that a,(o,) >
a5(0 ), and that there exists a neighborhood D of o, relative to Q and a positi-
ve constant ¢ > 0 such that

4.3) ay=as+c inD.

Let ¢ € H2(322) be as in Lemma 3.3. Computing (y;; (¢), @), after an integra-
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tion by parts over £, one obtains the identity

il @) = [a; |V [Pdie+ [[(g+ 2o)) | de.
Q Q

Therefore using (3.9) and (3.11) we have, for all 1 = 1%,

fa/l |V/Mu_*|2d90_ fag |Vu2ﬂ|2dx+ fql |?/L1p.<
Q

zdﬂc_f(IQ |%21*|2d9€=
Q Q Q

fal | Vo, |2 doe — fa2 | Vit |2 dac + f(h |2, |2 dac — fC]2 |tz |2 dac =
Q Q

Q Q

(= @) |Vur; [Pde + [an(| Vo |2 = | Vugs |) dee +
Q Q

fQZ( | %1, |2 — | Uz, |2) dx + f((h = q2) |1 |2d90~
Q Q
Recalling that by (3.12), (4.2), and (3.5) we have

fa2(|VuM|2— |Vu21|2) dx+f‘]2(|%1/1|2_ |%2/1|2)d90?lf(01_92) |%1A|2d90a
Q Q Q

> —(,

we obtain

(4.4) fa/l |V%1/1*|2d9(f—fa/2 |V/U/21*|2d90+fql |/U/U.*|2dx_qu |/M21*|2d902
Q

Q Q Q

f(al —ay) |V, |Pdoe + f(ql —q2) |u1;|*de— C =
o o

[ (@ = @) |V |2de + (@ = @) [Vi |2 dec = C + (1),
Q\D D

where in the last step we use the fact that |juy; |2, — 0 as A — + «. Concern-
ing the first integral on the right hand side of (4.4), we observe that by (3.4),
for a:=ay, ¢:=¢q, 0:= 01, We have

[V lp2npy—0  as A— + .

Since by (3.2) we know that Tm |[Vauy, |20 = + ©, we derive
A— +

AETPOC [Ver; Iz = + o,
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and since by (4.3) we have

[ = a0) |V |2de = ¢ [ |V, |2 e,
D D

passing to the lim sup in (4.4), we get a contradiction. Therefore a; = a, on
0. =m

Now we may prove Corollaries 1.6.

ProOOF OF COROLLARY 1.6. — By Lemma 4.3 we have
a;=ay on 09Q.

Since by assumption we have Va, = Va, on 92, we can suppose that there
exists a positive constant ¢ > 0 such that

|a1_a2|$062 in Q.
Therefore by Theorem 1.2 it follows that
71 = V22

for all A = A2*. As before we consider the Liouville transform of u;;, that is we
denote by

e 172 :
fl)j;b = (],7 uﬂ in Q.

Hence vj; e H'(Q) solves

{ — vy, + a;” (@) (A a; (@) + (@) + Ao () vy, = 0 in Q,

v =@ on 9%,

and

2 2
—v = —y,; in H #(09Q),
on on

1
for all A = A*, for all ¢ € H > (). Invoking Theorem 4.1 (with Dirichlet bound-
ary conditions) — by choosing, when N =2, 1 =1%* large enough such that
a7 2(A\/a; + 20;) = 0 ae. in 2 — we have
ar (AN + g+ Ao1) = a5 2 (AVay + ¢ + Aoy) in Q.
So, deriving in 1, we have

-1/2 _ 412 :
aq 01=0 02 In Q s
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hence

a AV + q) =ay P(AVa + @) i=p in Q.

Now we observe that a; solve the following Cauchy problem

—Av/a; + p(x)\/a;=q(x) in Q,
Va;=¢ on 0Q,

)
—\/a; = on 02,
5 V=V

where we have set ¢ :=Va, =Va, and = ai\/az ai\/@. Therefore by
n n

well-known results on unique continuation for elliptic operators (see for in-
stance N. Garofalo & F. H. Lin [6]), it follows that

ap = Ay in §
The proof of Corollary 1.6 is complete. =

Corollaries 1.7, 1.8 can be proved in much a similar way, and leave the de-
tails to the reader.

REMARK. — The technical assumptions ¢;=90, and Va; —Va,= Vo, —
Vo, =0 on the boundary 9£2, are not much restrictive in those applications
where the density o and the conductivity a are to be determined, via boundary
measurements, in the interior of the domain Q, far from the boundary. It is
not too unreasonable, in these applications, to assume that those coeffecients
are known up to order one. Nevertheless in a mathematical point of view we
must admit that these technical assumptions are not satisfactory and might be
removed. Unfortunately at this point we are not able to remove these
assumptions. ™=
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ing discussions on the subject.
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