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Bollettino U. M. 1.
(8) 7-B (2004), 189-206

Pointwise Decay for Solutions
of the 2D Neumann Exterior Problem
for the Wave Equation.

PAoLO SECCHI

Sunto. — In questo articolo si considera il problema esterno nel piano per le equazioni
delle onde con una condizione di Neumann al bordo. Lo studio riguarda il compor-
tamento per tempi grandi della soluzione, con particolare attenzione per la dipen-
denza dalla norma dei dati iniziali nella stima del tasso di decadimento puntuale.
Nell’articolo si prova una tale stima, mediante una combinazione della stima di
decadimento dell’energia locale e stime per la soluzione in tutto il piano.

Summary. — We consider the exterior problem in the plane for the wave equation with a
Newmann boundary condition. We are interested to the asymptotic behavior for
large times for the solution, and in particular to the dependence on the norms of the
mitial data in the estimate for the pointwise decay rate. In the paper we prove such
an estimate, by a combination of the estimate of the local energy decay and decay
estimates for the free space solution.

1. — Introduction.

Let 2 be an exterior domain in R?; the boundary 92 is a smooth, convex
and compact hypersurface. Given r > 0, we denote 2, = Q2 N B,, where B, =
{weR?||x| <r}. Below, 1, > 0 is a fixed constant such that °c B, (2° is the
complement of Q). We set Q =[0, )X Q, ¥ =[0, ©) X 9RQ.

In this paper we study the decay property of solutions to the mixed prob-
lem for the wave equation with Neumann boundary condition

(3-MHu=0 in Q,
o, u=0 on X,
u(0, x) = f(x),

w0, x) =9g(x) in Q.

@

There are many papers dealing with the asymptotic behavior of solutions to
the exterior problem for the wave equation, see [8] and the references therein-
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to. However we were not able to find in the literature the result we are inter-
ested in, namely the estimate of the pointwise decay of solutions in our partic-
ular case n = 2, under a Neumann boundary condition. Our proof is a combina-
tion by a cut-off argument of the estimate of the local energy decay following
from the analysis of Kleinman and Vainberg [5], Morawetz [7], Vainberg [11]
and decay estimates for the free space solution, in particular Klainerman’s in-
equality, see [4]. In order to get a decay rate of local energy, some assumption
on the shape of the obstacle should be taken, in order to exclude the existence
of closed ray solutions. In fact, for the Dirichlet problem, Ralston [10] has
shown that if there is a closed ray solution, there is no rate of decay. For the
Dirichlet problem the obstacle should be non-trapping, see [8]; for the Neu-
mann problem Morawetz [7] obtains the decay rate for convex bodies. This is
the reason why in this paper we take the boundary convex.

Let us introduce some notation. For a multi-index a = (a;, a,) we set 9% =
911952, |a| = a; + as, where 9; = 9/9x;, 3y = 9/3x,. Let W™ 7 (L) be the usual
Sobolev space of order m, m =1,2, ... and order of integrability p =1, and
let ||-]Wm,p denote its norm. If p =2 we set W™ ?(Q) = H™(LQ) with norm
|| |lzz. The norm of L2(R) is denoted by ||-||, the norm of L?(2),1 <p < », by
|-|,. For simplicity we use the abbreviated notation W™ 7, H™, L”. We will
also use the same symbol for spaces of vector valued functions. Let us define
the weighted Sobolev space

A= A(Q) = {fe L% |If

H™ < oo}

where
1/2
L R CERIEER Ol AR

Similarly we introduce the spaces W ?(R?), H™(R?), L?(R?) and H"(R?)
WhOSG norms are denOted by ||'||Wm,P(R2), ||‘|Hm(R2), ||'|L[)(R2) al’ld ||'
spectively. Let us introduce the generalized derivatives

I’_jm(RZ) re-
atr al? aZa w :90132_902(91,
L0=tat+x131+x232, Li=t8i+xi&t fori=1,2,

which we denote by Iy, I'y, ..., I'¢. For a multi-index A = (4, 44, ..., 4g)
with nonnegative integers A; we define

|A| =Ag+ A+ ...+ Ay, T=rprd...ré, r'’=1i.

For a scalar function % = u(t, x): R*— R and a nonnegative integer m we in-
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troduce the norm

1/2
| %Ct) |[] . = max ( f|FAu(t,x)|2dac) ., V=0,
RZ

|Al<m

For a function u = u(t, x) defined over R instead of R?, we may define a simi-
lar norm by taking the integrals over Q:

12
Mt [, 0= ( [irtu, = |2dac) . V=0,
=m 0
We introduce the time-independent version of the above vector fields:
A=(Ay, ..., Ay) = (0}, O, w, ®;0; + X3 05).

For a multi-index B= (B, ..., By) with nonnegative integers B; we de-
fine

|B| =By + ...+ By, AP=aP.. Al A"=1.
We introduce the weighted space

L, =L, (Q) = {ueL?®(1+ |xlog|x||) ueL?},

ledllz, = 11+ [2log|@| |) ullz.

We finally introduce the following spaces, similar to H"™, but based in
Ll%g’

Hy, = Hin(Q) := { feL*: ||f||H1'Z';,< o }

where

1

log

12
= (| 2 lla+-pre 5 fO)lEz,)

Similarly we introduce the spaces L, (R?), Hyy, (R?) whose norms are denoted
by ||'||L2(R2)’ ||‘|ng;<132), respectively.

THEOREM 1.1. — Suppose wu is a solution of the exterior problem (1.1).
Assume the nitial data satisfy fe HNW>!', ge H*NHZ, N W* . Then
there exists a constant C >0 such that

@) |Gult, ) |w+ |Vult, )| < C(1+ 1) Y2 log?(e + 1) X
(£l + 1171

Observe that the decay rate obtained in (2) is slightly slower than the
optimal rate decay t ' of the free space solution. A simplication of the

wor + gl + gz, + lgllw) vE=0.
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function spaces from which the initial data are taken occurs by taking
them of compact support.

COROLLARY 1.1. — Assume that the initial data have compact support and
satisfy fe H®, ge H*. Then there exists a constant C >0 depending on the
support of the data such that

B [3oult, ) |+ |Vult, ) |- SCA+1)"1log? (e +)(| f]

H5+||g||H4) Vi=0.

2. — Local pointwise decay.

Let us consider the initial boundary value problem (1) with new nota-
tion
(B —ADw=0 in Q,
d,w=0 on X,
w(0, x) = w, (),
,w(0, x) =w;(x) in 2.

)

LEmMmA 2.1. — Let (wy, wy) have compact support and satisfy (Vw,, w,) €
H?. Then the solution w of (4) satisfies the estimate

G) | Qwt) |L=p + | VW) |1 =0 < Cr(L+ 1) (Vg + [lwy [[2)

for every R > vy and t =0, where Cr depends on R, the support of the initial
data and the geometry of 012.

PrOOF. — From the result of [5], [7], [11] for the Neumann problem for con-
vex bodies, the local energy decays according to the estimate

(6) f( |8, w(t) |2+ |Vw(t) |?) da < Co.(1 + ) 2|y |[F + || Vawo|)
Q,

for all » > »,, where C, depends on r, the support of the initial data and the
geometry of Q. From (4) and time differentiation, d;w solves

(0% —A4)3,w=0 in Q,

9,0,w=0 on X,

S w(0, x) = w; (x),

3, (,w)(0, x) = Awy(x) in Q.

M
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From application of (6) to problem (7) we have
f( |83w(t) |+ | V3w () |?) dww < C(1 + 1) "2 ([|dwwy [P + [V, |,
e,
which yields
® [ 2+ V8w [2) de < C,(1+ 1) (| dawg |+ [[Vaoy [P,
Q,
for every r>1r,. We time differentiate once more and obtain the problem
(32— A)2w=0 in @,
3,0%2w=0 on X,
37 w(0, 1) = Awy (),
3,(3Fw)(0, x) = Aw, (¥) in Q,

whose solution obeys the estimate
f( [8%:w(t) |2+ |VOZw(t) |?) do < C.(1 + ) 2(||dw, | + [[VAw, [*),
Q,

which yields

9) f( | 48,w(t) |*+ |AVw(?) |?) do < C.(1 + )2 ([|dw; [P + [V Aw, [P),

Q,

for every »>1r,. For any fixed t>0 and given R >r,, we choose o(x)e
Cy* (R?) such that o(x) =1 if || <R and =0if || =R +1. Let us denote
@ = A(0d,w). Then gd,w solves the elliptic problem

A(odw) =@ in Qp_ q,
9,(co,w) =0 on 09,
go,w =10 on 9Bg.;.
We then have the estimate
(10) lod; Wiz, ., ) < ClPlL2o,. -
From the Sobolev imbedding H%(2z.1)cL *(2g,) and (10) we get
11 |8,w|} =0 <C f (|w|*+ |Vo,w|* + |40, w|?) da.

Qp+1

From (6), (8), (9) under the choice =R + 1, and (11) we then obtain
(12) |8, w(t) | %@ < Cr(1 + ) (|[Vavp |2 + [y [[zr2).
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In order to estimate |Vw(?)|,=,), we try to proceed similarly. In this case
we consider the elliptic system

A(oVw) =¥ in Q.4
(oVw)-v=0 on 09,
rot (cVw) =0 on 09,
oVw =0 on dBg,q,

where we have set ¥ = A(oVw). Thus we have
13)  |Vw|L =@y < CloVulaze,. ) < Oz, » <
1/2
c( [ qvwr+ 3 |ecw|?+ |AVw|2)dac) .
[a|=2
Qp+1

Therefore we see the necessity to estimate all double x-derivatives of w over
Qr 1. We choose o' (x) € Cy* (R?) such that ¢’ (x) = 1if |#| <R+ 1 and = 0if
|r| =R + 2. Consider the elliptic system

div(o'Vw) =o' Aw+ Vo' -Vw in Qp,,,

rot (o' Vw) = Vo' X Vw in Qp,,,
(o'Vw)-v=0 on 0Qp 5.
It follows that
19 [Vularo,. ) <llo” Vallgro,,.,) <

1/2
C(lo" Aw + Vo' -Vu|| + [|[Vo' x Val|) SC( f (|Vw|* + |Aw|2)dac) .

QR+2

From (6), (9) under the choice »=R + 1, we obtain

(15) [ (Vw]?+ | AVw|?) die < Cr(1 + )72 Vany B2 + oon [,

QRr+1

From (6), (8) under the choice =R + 2, and (14) we obtain

(16) 2, [ 18¢w|2de < Cr (1 + )2 (Vo B + oy |-

Qp+1

Finally from (13), (15) and (16) we obtain

|V(t) | L= < Cr(1+ ) ([Vavg |52 + oy g2). =
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Let us consider the initial boundary value problem
@i -MHw=G in Q,
d,w=0 on X,
w(0, x) =0,
S, w(0, ) =0 in Q.

1

LEMMA 2.2. — Let G(t, -) have compact support and satisfy G(t, -) € H? for
each t>0. Then the solution w of (17) satisfies the estimate

¢
(18)  |Qwt) |L=oy T |YW®) | L=y < CRf(]- +t—38) GG, )g2ds,
0

for every R >ry and t =0, where Cp depends on R, the support of G and the
geometry of 99Q.
Proor. - It is a simple consequence of Duhamel’s principle. We write w as

t
w(t, x) = [V(t—s, s, x) ds, where, for each fixed s =0, V solves
0

(3% —A)V(t,s,x)=0 in Q,
9, V(t,s,x)=0 on X,
V(0, s, x) =0,
9, V(0,s,x)=G(s,x) in Q.
We have
| w(®) | =(0p + VW) =0y S
t

[l =5, 5,9 L=@p+ [TVt =5,5,) L=, ds .
0

The thesis follows from application of (5). =

At last we consider the nonhomogeneous initial boundary value prob-
lem
Gh—MHw=G in Q,
,w=0 on X,
(19)
?/U(O, x) = Wy,
,w(0, x) =w; in Q.

From Lemma 2.1 and Lemma 2.2, by linearity we have
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COROLLARY 2.1. — Let (wy, w;) have compact support and satisfy
(Vawy, wy) € H?. Let G(t, -) have compact support and satisfy G(t, -) e H? for
each t>0. Then the solution w of (19) satisfies the estimate

(20) |at7/U(t) |L°C(_QR) + |V7/U(t) |L°°(QR) < CR(l + t)71(||vw0||H2 + ||7/l)1 ||H2) +

t
CRf(l +t—9)|G(s, )lg2ds,
0

for every R > ryand t = 0, where Cy depends on R, the support of the data and
the geometry of 092.

The rest of this section is devoted to an estimate of the pointwise decay
of w.

LEmmA 2.3. — Let (wy, wy) have compact support and satisfy (wy, w;) €
H?x H'. Let G(t, -) have compact support and satisfy G(t, ) e H' for each
t > 0. Then the solution w of (19) satisfies the estimate

@D [w®) |0 < Cr(l+ ) (lwollaz + leon [la) +

t
Co (14— )7 [6Gs, e ds,
0

for every R >ryand t = 0, where Cr, depends on R, the support of the data and
the geometry of 0L2.

Proor. — We decompose the solution by using the linearity of (19).

(i) We start by considering the case w; =0, G=0. Let w' denote the solu-
t
tion in this case and let us set v'(¢, ) = Jw'(s, x) ds. Then v’ solves
0

Z—A)v'=0 1in Q,
2,v'=0 on X,
v'(0,x) =0,
9,v'(0,x) =w, in Q.
From (20) we get
(22) |0 (&) | =@ = 180" @) L= < Cr(1+8) " |lwp]lg2.

(ii) Next we consider the case w, =0, G = 0; the solution is denoted by w".

t
Let us set v"(t, x) = [w"(s, x) ds + ¢(x), where the corrector ¢ will be
0
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choosen below. Then v” solves

- v"=w;, —Ap in Q,

o,v"=0,p on X,
v"(0, x) = @,
9,v"(0,2)=0 in Q.

Thus we choose ¢ as a solution of

(23) Ap=w; in Q, J,9=0 on 0Q.

From (20) we get

(24) |w" @) | = p = 30" @) |L=(0p < Cr(L+ 1) [Voll.

The conclusion of the proof in case (ii) is a consequence of the following result,
whose proof is postponed to the end of this proof.

LEMMA 24. — There exists a solution ¢ of (2.33) such that
(25) Vel < Cllew [|er1
where C depends on the support of w.

Admitting this estimate for the moment, we obtain from (24) and (25)
(26) |w" @) | =0 < Cr(L+8) " w [l
(iii) The last case is when w,= 0, w; = 0; denote the solution by w”. By the
Duhamel’s principle we write w”(t, x) = ft V(t—s, s, x)ds, where V is as in
the proof of Lemma 2.2. From (26) it fo(l]lows that

t

@D WO |1on < [IVE=5,5, ) [L=@yds <
0

t
Crf(1+t =97 [GGs, )l ds.
0

The final thesis follows by addition of (22), (26) and (27). =
ProOF OF LEMMA 2.4. — Here the main difficulty is to show
28) Vel < Cllwy ||,

because the Poincaré inequality doesn’t hold over the unbounded domain Q.
When this is done, we use potential theoretic arguments combined with the
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Calderon-Zygmund theorem in order to show that [|0%¢|;: < Cllw, ||z1; there-
fore, adding the previous estimate gives (25). Fix any R >, and let B be a con-
stant such that B|x| =2 as x € Q. Since ¢ is defined up to a constant, we may
assume that ¢ has mean value over Q,r equal to zero. Then, by the Poincaré
inequality over 2, we get

@) [ |e@|?|zlog(Ble|)| 2du< Cp [ |¢@)|*de < Cp [ |Vo) |*de.

Qp Qp Q2p

For |x| =R we proceed as in [1], Lemma 2.1 and show that

(30) [ le@ |?|xlog(Blx])| 2de<Cr [ Vo) |*da.

x| =R |x| =R

We need the zero mean value over 22,5 (instead of 2 ) for (30), because we
need to apply the Poincaré inequality over 22,r. Adding (29), (30) gives

(31) [ 1¢@) | |elog (B|x|) | 2dw < Cg [ | V() |*d.
Q

Q

Recalling that w; has compact support, we multiply (23) by ¢ and integrate
over 2, to obtain

IVglE < [ fw |l |de<
Q

/2

(f|w1(ac)|2|x10g(B|x|)|2dac)l/2<f|(p(ac)|2|xlog(B|x|)|‘2dx)1 <
Q Q

Crlw IVl

where the last inequality follows from (81) and Cr depends also on the support
of w;. This completes the proof of (28). =

In conclusion we also state two results which are an easy consequence
of (6).

LEMMA 2.5. — Let (wy, wy) have compact support and satisfy (wy, w;) e
L%x L% Let G(t, ) have compact support and satisfy G(t,-)eL? for each
t> 0. Then the solution w of (19) satisfies the estimate

32)  [lw®) L2 < Cr(1+8) " (lwollnz + oy [I2) +

t
Cr [(1+=9)71Gls, p2ds.

0
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Morveover, if (Vuwy, wy) e H?, G(t, ) e H® for each t >0, then

33)  [w®) g2 < Cr(l+ 1) o Iz + [y [l2) +

t
Cr [(1+t=)7[GGs, e ds.
0

(32) and (33) hold for every R > ry and t = 0; Cp depends on R, the support of
the data and the geometry of 092.

ProOF. — The proof of (32) is a consequence of (6) and the arguments em-
ployed in the proof of Lemma 2.3. (33) follows from (13), (15), (16), the
Duhamel’s principle and (32).

3. — Proof of Theorem 1.1.

Let us take functions f, g}:szR such that f =f, § =¢ on £, and such
that f e H*(R®) N W>1(R?), g € H*(R?) N Hlﬁg(Rz) NWHL(R?),

17l ey + 11 s ey + 11 Nz ey < CCLF Nl + gl + gl ),

17 w1y + 1 w12y < CALE lhwos + llg llwa)-

For this, observe that it’s enough to take extensions over the bounded set ¢
with the regularity f e H>(R?), g € H*(R?), since the required behavior at in-
finity is already furnished by f, g.

Let u; be the solution of the Cauchy problem

(2 —Mu,;=0  in [0, ©)x R?,

(34) uy(0, x) = f(x),
3u; (0, 2) = g(x) in RZ.

From [9], Theorem 2.1, we have
35  [8ua @) L= + |Vur () [ =2y < CA+ )2 [(VF, D) llwe gz <

C(1+ )2 |(VF, 9) w1

Choosing r > 7, and y(x) € C;" (R?) so that y(x) =1 if |x|<rand =0if || =
r+1, we put

Uy =u— (1 —yx) Uy, G=—u Ay —2Vu-Vy .
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The function u, is the solution of the initial boundary value problem
(8%t—A)u2=G in Q,
d,us =0 on X,

u2(0, x) = yf(x),
O, us(0, ) =xg(x) in 2.

(36)

Observe that supp G(t, ) c{x|r< |x| <r+1} for all ¢=0, and supp yfc
2,1, suppx9C 2 ,,1. From (20) with w = uy, wy = xf, w; = xg, we obtain

BT |8us(®) | L=, F | Va(®) | L=, SC: L+ V) a2 + g llz2) +

t
C, [(1+t=5)"1|G()|sds.
0

We estimate ||G(s)||2. First of all we observe that

Gl <C, 219" |0,
u, is estimated by the L' — L * decay estimate (see Klainerman [3])

(38) ur(s, ) [+ < OL+8) " 2| Fllwer + 17 w0

To complete the estimate of [|G(s) ||z, we apply (85) to 8“u,(s), |a| <2, in or-
der to obtain

(39) > |aa%1(3) |L°°(Q,.+1) sC(1+ 5‘)_1/2H(Vfa Q)HW“-

1<|a|<3
Thus, from (38) and (39) we get

(40) IG() iz < C, (1 + )7 2(| £]

wort + gl ).

We obtain from (37), (40) and (60) in the Appendix that

@) |8ux(®) L=, T |V (®) |L=(2,,» S C L+ VO 2+ xgll) +

t
C [+t =970+ 97 2( fllwsr + llglhyr) ds <
0

C.,Mi(1+t)"log(e+t) Vt=0,

where M; =|/flws: + |lg|lws1. Observe that by a Sobolev imbedding || f|;> <
Cll fllwer, gl < Clglws.r.
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Choosing y(x) € Cy* (R?) so that y(x) = 1 if |x|Zzr+2and =01if |x|<r+
1, we observe that

vxf=0, yYyg=0, yG=0.
Let us define
H=—uy Ay — 2Vuy-Vyp.
The function yu, solves the Cauchy problem

(8% — A)(yu,) =H in [0, »)x R?,
(42) Yuz(0, ©) =0,
9 (Yus)(0, ) =0 in R?.

From (35) and the Duhamel’s principle we get

43) |9 (Yuz)(®) | =&z + |V(Pus)®) | =R <

t t
ClA+t—)""2HGs, )y ds < O [+t =) us(s) o, ., ds.
0 0

On the other hand, applying (33) to the solution u, of (36) yields

@) e laso,. < CL+ D7 e lls + g ller) +

t
C, [(1+t=9)71G(s)|y2ds.
0

We recall Klainerman’s inequality [4] in the plane
45) |ut, x) | SCL+t+ |o|) 21+ |t— || ) 2|u@®) ||l VE=0

which holds for all smooth functions vanishing sufficiently rapidly as |x|— oo,
so that the norm in the right-side is finite for each fixed ¢ = 0. Applying (45) to
u; with the restriction xe Q,, gives

(46) ||G(t)||H2$Cr|E |‘9“u1(t)|L°°<9,,.+1>$Cr(1+t)71‘E Il %21 (8) ||| 2-

[<3 |<3

To estimate the last term we use the following result, whose proof is post-
poned to the end of this section.
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LEMMA 3.1. — There exists a constant My >0 such that

‘|2<3 |||3“u1(t) |||2$M2 Vt=0.

Thus, from (44), (46) and (59) in the Appendix we obtain
t
4D |lre®llsa, o S CMA+D7 4 C,My [(1+E-5)71(1+5) N ds <
0

C.Mi(1+t) 1+ C.My(1+1¢) Mog(1+1) <
C.(My + M,)(1+1t) log (e +t).
Then from (43), (47) and (61) in the Appendix one has
48) |3 (Yug)(®) |1 =2 + | V(u)(®) | L= g2 <

t
Co(My+My) [(1+1t=5)"2(1+5)  log (e +5) ds <
0

C.(M; + My)(1+ 1) Y1og?(1 + t).
Moreover, from (21), (40) and (59) in the Appendix we have

49 |ue®) |L=@,,n < Co(L+ ) pf ez + xgller) +

t
C, [+t =971 [Gs) |l ds <
0

t
C.M,(1+1) '+ CTle(l Y t—s) L (1+s) 2ds <
0

C,M,(1+t)"2log(e+1t)

using the strongest estimate (47) and a Sobolev imbedding doesn’t improve
the final result. Since u = (1 —y) u; + Uy, we have

13ut) | . + |Vt | . <
[(1 =5 Qs () | + | V(L =) ur(8) |« + | Bpua(P) | o + | VU (D) | » <
|Gsrur () [ = g2y + | VUur () | L=y + Clun (8) | L= g2y +
[0 (Yue () | L= &2 + |[V(Pu () | L= &2 +

|01 uz(®) |L=(2,.) + |VU2(®) |L=(2,,, + ClUu2(®) |L=(0,,,)-
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From (35), (38), (41), (48), (49) we finally obtain

(50) | Qu(t) |« + |Vut) | o S CM (1 + 1) + C,.M; (1 +t) log (e +1t) +
C.(My+ My)(1 +t)"12log*(1 +t) <
C.(My + M,y)(1+1t)"Ylog?(e +t) Vt=0.

This estimate gives the required decay rate. The final dependence on the
norms of the data is given after the following proof.

Proor oF LEMMA 3.1. — For the sake of brevity here we write u, f, g in-
stead of u;,f,¢ and || instead of ||| 22. We also set 8,=9,, D=
(9, 91, 95). Let us recall the commutation relations [2]

(B, —A)VI;—T(8%—A4)=200;(8%5—-4) for i=0,...,6

6
F,i['j—rjlﬂi=k§::06ijkfk for 'L,]ZO,,G

2
Fia 57FL= Eciﬁ;ak fOI"i=0,...,6;j=0,1,2
’ k=0

i

with certain numerical coefficients ¢, ¢;f;. Because of the noncommutativity
of the I'; one has product rules of the type

FArE=r4+54 3y 0 TC with |C|<|A|+ |B|,
c

[D, FA]Z E 6ABDFB= Z SABFBD

|B|<]A]-1 |BI<]A| -1

with numerical coefficients y 45¢, 0 5, O45. We first observe that the commu-
tation rule with the wave operator and an energy argument give for every
multi-index A

6D o, I u@) P+ [V u@®)|F =6, r* u(0)|F + VI u(0)|F VE=0,

where in the right side the norms are evaluated at time ¢ = 0. It readily follows
that

52) 1<%<3 8% () ||| < C||| V(@) |||s = C lgllagiH]“AVu(t)H <
Cmax(IVru®) |+ X [dap|IDIEud) <
|A| <4 |B|<|A|-1
C ﬁﬂaii(”atﬂ“(())” + [V u(0)|) < C|Vf, glaxe -

We proceed with the estimate of |||u(?)]|||z. Let us define o(¢, x) =
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t
Ju(s, x) ds + ¢(x), where ¢ is such that A¢ =g in R%. Then v solves
0
(32 —A)v=0 in [0, ©)x R2,

/0(07 ) :¢v
ov(0,)=f  in RZ.

As in (51) we have
53) 8, M4 v + [V o) |P = |6, T4 v(0) | + [V w(0) [ vt =0.
Since 9,v =u, from (53) we obtain
(54) I [ll2 = [lI8:v@) ||| < C[[[ Dv(O) ||| -
Substituting the initial values of v yields

190000) 1= C s 4”11+ S 971 + Al +

2y Al + max (47 ag] + 3 4% @A) ),
1, = 1

Vo) fl; < Cmax 47 Vgl + 2 s Vol + [l AVl +

Zeia; AVl + max (47 Vf ] + 2”@ ).
2 = i
The terms in (55) containing f are easily estimated by C| f||z2z2. The last step

consists in estimating V¢ by g. As in the proof of Lemma 2.4 we can take the
solution ¢ of A4¢ =g such that

(56) [Vl < Cllg

L2, (R%)-

By application to A¢ = g of the operators A%, commutation of the operators
and (56) we show that the terms in (55) containing ¢ are estimated by
Cllgllzz,z2); in particular we use the estimates

Jke; 4V || = [le; Vg | < ClIVg

L2,(RY) S Clgl

\Je; ; AV P|| = |l 2; Vg || < Cllec; VQHLI%g(RZ) S C”Q”Hﬁ)g(R?»

H)L,(R%))

From (54) we then obtain

(67) 1) [ll2 < CCf 2y + g

H]%Ag(Rz))'
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In the end, write again u,, f, § instead of u, f, g. (52) and (57) give

(58) | |2<3 18“u: @) ||| 2 < CUIF a2y + | G llaws ) + 1912 2 <

M; = C(|fllz + llg s + lg]

HE, ). u

END OF THE PROOF OF THEOREM 1.1. — From M; = || f|lys.1 + |lg|lw+: and (58)

we have
My + My < C(| £l + [ fllwer + lgllas + gz, + g llwe.

Substituting in (50) gives the thesis.

4. — Appendix.
We report some elementary estimates used above.

LeEMMA 4.1. — There exists a constant C >0 such that for all t=0

t
(59) Ja+t-sta+stds< 0+ 0 og(1+1),
0
t
(60) [a+t-97+9 2ds <CO+1) P log(1+1),
0

t
61) f(l +t—8) 21+ s) og (e +5) ds < O(1 + £)"21og?(1 + t).
0

ProoF. — Estimates (59) and (60) are proven in [6], see formula (5.49), p. 43;
(61) may be proved following the lines of the proof of (5.49).
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