Bollettino

Unione Matematica Italiana

Paolo Secchi

Pointwise decay for solutions of the 2 D Neumann exterior problem for the wave equation

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 7-B (2004), n.1, p. 189-206.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2004_8_7B_1_189_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2004.

Pointwise Decay for Solutions of the 2D Neumann Exterior Problem for the Wave Equation.

Paolo Secchi

Abstract

Sunto. - In questo articolo si considera il problema esterno nel piano per le equazioni delle onde con una condizione di Neumann al bordo. Lo studio riguarda il comportamento per tempi grandi della soluzione, con particolare attenzione per la dipendenza dalla norma dei dati iniziali nella stima del tasso di decadimento puntuale. Nell'articolo si prova una tale stima, mediante una combinazione della stima di decadimento dell'energia locale e stime per la soluzione in tutto il piano.

Summary. - We consider the exterior problem in the plane for the wave equation with a Neumann boundary condition. We are interested to the asymptotic behavior for large times for the solution, and in particular to the dependence on the norms of the initial data in the estimate for the pointwise decay rate. In the paper we prove such an estimate, by a combination of the estimate of the local energy decay and decay estimates for the free space solution.

1. - Introduction.

Let Ω be an exterior domain in \boldsymbol{R}^{2}; the boundary $\partial \Omega$ is a smooth, convex and compact hypersurface. Given $r>0$, we denote $\Omega_{r}=\Omega \cap B_{r}$, where $B_{r}=$ $\left\{x \in \boldsymbol{R}^{2}| | x \mid<r\right\}$. Below, $r_{0}>0$ is a fixed constant such that $\Omega^{c} \subset B_{r_{0}}$ (Ω^{c} is the complement of Ω). We set $Q=[0, \infty) \times \Omega, \Sigma=[0, \infty) \times \partial \Omega$.

In this paper we study the decay property of solutions to the mixed problem for the wave equation with Neumann boundary condition

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) u=0 & \text { in } Q, \\
\partial_{v} u=0 & \text { on } \Sigma, \tag{1}\\
u(0, x)=f(x), & \\
\partial_{t} u(0, x)=g(x) & \text { in } \Omega .
\end{array}
$$

There are many papers dealing with the asymptotic behavior of solutions to the exterior problem for the wave equation, see [8] and the references therein-
to. However we were not able to find in the literature the result we are interested in, namely the estimate of the pointwise decay of solutions in our particular case $n=2$, under a Neumann boundary condition. Our proof is a combination by a cut-off argument of the estimate of the local energy decay following from the analysis of Kleinman and Vainberg [5], Morawetz [7], Vainberg [11] and decay estimates for the free space solution, in particular Klainerman's inequality, see [4]. In order to get a decay rate of local energy, some assumption on the shape of the obstacle should be taken, in order to exclude the existence of closed ray solutions. In fact, for the Dirichlet problem, Ralston [10] has shown that if there is a closed ray solution, there is no rate of decay. For the Dirichlet problem the obstacle should be non-trapping, see [8]; for the Neumann problem Morawetz [7] obtains the decay rate for convex bodies. This is the reason why in this paper we take the boundary convex.

Let us introduce some notation. For a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ we set $\partial^{\alpha}=$ $\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}},|\alpha|=\alpha_{1}+\alpha_{2}$, where $\partial_{1}=\partial / \partial x_{1}, \partial_{2}=\partial / \partial x_{2}$. Let $W^{m, p}(\Omega)$ be the usual Sobolev space of order $m, m=1,2, \ldots$ and order of integrability $p \geqslant 1$, and let $\|\cdot\|_{W^{m, p}}$ denote its norm. If $p=2$ we set $W^{m, p}(\Omega)=H^{m}(\Omega)$ with norm $\|\cdot\|_{H^{m}}$. The norm of $L^{2}(\Omega)$ is denoted by $\|\cdot\|$, the norm of $L^{p}(\Omega), 1 \leqslant p \leqslant \infty$, by $|\cdot|_{p}$. For simplicity we use the abbreviated notation $W^{m, p}, H^{m}, L^{p}$. We will also use the same symbol for spaces of vector valued functions. Let us define the weighted Sobolev space

$$
\widehat{H}^{m}=\widehat{H}^{m}(\Omega):=\left\{f \in L^{2}:\|f\|_{\widehat{H}^{m}}<\infty\right\}
$$

where

$$
\|f\|_{\widehat{H}^{m}}:=\left(\sum_{|\alpha| \leqslant m}\left\|(1+|\cdot|)^{|\alpha|} \partial^{\alpha} f(\cdot)\right\|_{L^{2}}^{2}\right)^{1 / 2}
$$

Similarly we introduce the spaces $W^{m, p}\left(\boldsymbol{R}^{2}\right), H^{m}\left(\boldsymbol{R}^{2}\right), L^{p}\left(\boldsymbol{R}^{2}\right)$ and $\widehat{H}^{m}\left(\boldsymbol{R}^{2}\right)$ whose norms are denoted by $\|\cdot\|_{W^{m, p}\left(R^{2}\right)},\|\cdot\|_{H^{m}\left(R^{2}\right)},\|\cdot\|_{L^{p}\left(R^{2}\right)}$ and $\|\cdot\|_{\widehat{H}^{m}\left(R^{2}\right)}$ respectively. Let us introduce the generalized derivatives

$$
\begin{aligned}
& \partial_{t}, \partial_{1}, \partial_{2}, \quad \omega=x_{1} \partial_{2}-x_{2} \partial_{1}, \\
& L_{0}=t \partial_{t}+x_{1} \partial_{1}+x_{2} \partial_{2}, \quad L_{i}=t \partial_{i}+x_{i} \partial_{t} \quad \text { for } i=1,2,
\end{aligned}
$$

which we denote by $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{6}$. For a multi-index $A=\left(A_{0}, A_{1}, \ldots, A_{6}\right)$ with nonnegative integers A_{i} we define

$$
|A|=A_{0}+A_{1}+\ldots+A_{6}, \quad \Gamma^{A}=\Gamma_{0}^{A_{0}} \Gamma_{1}^{A_{1}} \ldots \Gamma_{6}^{A_{6}}, \quad \Gamma^{0}=1
$$

For a scalar function $u=u(t, x): \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}$ and a nonnegative integer m we in-
troduce the norm

$$
\|\|u(t)\|\|_{m}=\max _{|A| \leqslant m}\left(\int_{\boldsymbol{R}^{2}}\left|\Gamma^{A} u(t, x)\right|^{2} d x\right)^{1 / 2}, \quad \forall t \geqslant 0
$$

For a function $u=u(t, x)$ defined over Ω instead of \boldsymbol{R}^{2}, we may define a similar norm by taking the integrals over Ω :

$$
|||u(t)|||_{m, \Omega}=\max _{|A| \leqslant m}\left(\int_{\Omega}\left|\Gamma^{A} u(t, x)\right|^{2} d x\right)^{1 / 2}, \quad \forall t \geqslant 0 .
$$

We introduce the time-independent version of the above vector fields:

$$
\Lambda=\left(\Lambda_{1}, \ldots, \Lambda_{4}\right)=\left(\partial_{1}, \partial_{2}, \omega, x_{1} \partial_{1}+x_{2} \partial_{2}\right)
$$

For a multi-index $B=\left(B_{1}, \ldots, B_{4}\right)$ with nonnegative integers B_{i} we define

$$
|B|=B_{1}+\ldots+B_{4}, \quad \Lambda^{B}=\Lambda_{1}^{B_{1}} \ldots \Lambda_{4}^{B_{4}}, \quad \Lambda^{0}=1
$$

We introduce the weighted space

$$
\begin{aligned}
& L_{\log }^{2}=L_{\log }^{2}(\Omega):=\left\{u \in L^{2}:(1+|x \log | x| |) u \in L^{2}\right\} \\
& \|u\|_{L_{\log }^{2}}=\|(1+|x \log | x| |) u\|_{L^{2}}
\end{aligned}
$$

We finally introduce the following spaces, similar to \widehat{H}^{m}, but based in $L_{\log }^{2}$,

$$
H_{\log }^{m}=H_{\log }^{m}(\Omega):=\left\{f \in L^{2}:\|f\|_{H_{\log }^{m}}<\infty\right\}
$$

where

$$
\|f\|_{H_{\log }^{m}}:=\left(\sum_{|\alpha| \leqslant m}\left\|(1+|\cdot|)^{|\alpha|} \partial^{\alpha} f(\cdot)\right\|_{L_{\log }^{2}}^{2}\right)^{1 / 2}
$$

Similarly we introduce the spaces $L_{\log }^{2}\left(\boldsymbol{R}^{2}\right), H_{\log }^{m}\left(\boldsymbol{R}^{2}\right)$ whose norms are denoted by $\|\cdot\|_{L^{2}\left(R^{2}\right)},\|\cdot\|_{H_{\log }^{m}\left(R^{2}\right)}$, respectively.

Theorem 1.1. - Suppose u is a solution of the exterior problem (1.1). Assume the initial data satisfy $f \in \widehat{H}^{5} \cap W^{5,1}, g \in \widehat{H}^{4} \cap H_{\log }^{2} \cap W^{4,1}$. Then there exists a constant $C>0$ such that

$$
\begin{align*}
& \left|\partial_{t} u(t, \cdot)\right|_{\infty}+|\nabla u(t, \cdot)|_{\infty} \leqslant C(1+t)^{-1 / 2} \log ^{2}(e+t) \times \tag{2}\\
& \quad\left(\|f\|_{\widetilde{H}^{5}}+\|f\|_{W^{5,1}}+\|g\|_{\widehat{H}^{4}}+\|g\|_{H_{\log }^{2}}+\|g\|_{W^{4,1}}\right) \forall t \geqslant 0
\end{align*}
$$

Observe that the decay rate obtained in (2) is slightly slower than the optimal rate decay $t^{-1 / 2}$ of the free space solution. A simplication of the
function spaces from which the initial data are taken occurs by taking them of compact support.

Corollary 1.1. - Assume that the initial data have compact support and satisfy $f \in H^{5}, g \in H^{4}$. Then there exists a constant $C>0$ depending on the support of the data such that

$$
\begin{equation*}
\left|\partial_{t} u(t, \cdot)\right|_{\infty}+|\nabla u(t, \cdot)|_{\infty} \leqslant C(1+t)^{-1 / 2} \log ^{2}(e+t)\left(\|f\|_{H^{5}}+\|g\|_{H^{4}}\right) \quad \forall t \geqslant 0 . \tag{3}
\end{equation*}
$$

2. - Local pointwise decay.

Let us consider the initial boundary value problem (1) with new notation

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) w=0 & \text { in } Q, \\
\partial_{\nu} w=0 & \text { on } \Sigma, \tag{4}\\
w(0, x)=w_{0}(x), & \\
\partial_{t} w(0, x)=w_{1}(x) & \text { in } \Omega .
\end{array}
$$

Lemma 2.1. - Let $\left(w_{0}, w_{1}\right)$ have compact support and satisfy $\left(\nabla w_{0}, w_{1}\right) \in$ H^{2}. Then the solution w of (4) satisfies the estimate

$$
\begin{equation*}
\left|\partial_{t} w(t)\right|_{L^{\infty}\left(\Omega_{R}\right)}+|\nabla w(t)|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left(\left\|\nabla w_{0}\right\|_{H^{2}}+\left\|w_{1}\right\|_{H^{2}}\right) \tag{5}
\end{equation*}
$$

for every $R>r_{0}$ and $t \geqslant 0$, where C_{R} depends on R, the support of the initial data and the geometry of $\partial \Omega$.

Proof. - From the result of [5], [7], [11] for the Neumann problem for convex bodies, the local energy decays according to the estimate

$$
\begin{equation*}
\int_{\Omega_{r}}\left(\left|\partial_{t} w(t)\right|^{2}+|\nabla w(t)|^{2}\right) d x \leqslant C_{r}(1+t)^{-2}\left(\left\|w_{1}\right\|^{2}+\left\|\nabla w_{0}\right\|^{2}\right) \tag{6}
\end{equation*}
$$

for all $r>r_{0}$, where C_{r} depends on r, the support of the initial data and the geometry of $\partial \Omega$. From (4) and time differentiation, $\partial_{t} w$ solves

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) \partial_{t} w=0 & \text { in } Q, \\
\partial_{v} \partial_{t} w=0 & \text { on } \Sigma, \tag{7}\\
\partial_{t} w(0, x)=w_{1}(x), & \\
\partial_{t}\left(\partial_{t} w\right)(0, x)=\Delta w_{0}(x) & \text { in } \Omega .
\end{array}
$$

From application of (6) to problem (7) we have

$$
\int_{\Omega_{r}}\left(\left|\partial_{t t}^{2} w(t)\right|^{2}+\left|\nabla \partial_{t} w(t)\right|^{2}\right) d x \leqslant C_{r}(1+t)^{-2}\left(\left\|\Delta w_{0}\right\|^{2}+\left\|\nabla w_{1}\right\|^{2}\right)
$$

which yields

$$
\begin{equation*}
\int_{\Omega_{r}}\left(|\Delta w(t)|^{2}+\left|\nabla \partial_{t} w(t)\right|^{2}\right) d x \leqslant C_{r}(1+t)^{-2}\left(\left\|\Delta w_{0}\right\|^{2}+\left\|\nabla w_{1}\right\|^{2}\right), \tag{8}
\end{equation*}
$$

for every $r>r_{0}$. We time differentiate once more and obtain the problem

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) \partial_{t t}^{2} w=0 & \text { in } Q, \\
\partial_{v} \partial_{t t}^{2} w=0 & \text { on } \Sigma, \\
\partial_{t t}^{2} w(0, x)=\Delta w_{0}(x), & \\
\partial_{t}\left(\partial_{t t}^{2} w\right)(0, x)=\Delta w_{1}(x) & \text { in } \Omega,
\end{array}
$$

whose solution obeys the estimate

$$
\int_{\Omega_{r}}\left(\left|\partial_{t t t}^{3} w(t)\right|^{2}+\left|\nabla \partial_{t t}^{2} w(t)\right|^{2}\right) d x \leqslant C_{r}(1+t)^{-2}\left(\left\|\Delta w_{1}\right\|^{2}+\left\|\nabla \Delta w_{0}\right\|^{2}\right)
$$

which yields
(9) $\quad \int_{\Omega_{r}}\left(\left|\Delta \partial_{t} w(t)\right|^{2}+|\Delta \nabla w(t)|^{2}\right) d x \leqslant C_{r}(1+t)^{-2}\left(\left\|\Delta w_{1}\right\|^{2}+\left\|\nabla \Delta w_{0}\right\|^{2}\right)$,
for every $r>r_{0}$. For any fixed $t>0$ and given $R>r_{0}$, we choose $\sigma(x) \in$ $C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ such that $\sigma(x)=1$ if $|x| \leqslant R$ and $=0$ if $|x| \geqslant R+1$. Let us denote $\Phi=\Delta\left(\sigma \partial_{t} w\right)$. Then $\sigma \partial_{t} w$ solves the elliptic problem

$$
\begin{array}{ll}
\Delta\left(\sigma \partial_{t} w\right)=\Phi & \text { in } \Omega_{R+1} \\
\partial_{v}\left(\sigma \partial_{t} w\right)=0 & \text { on } \partial \Omega \\
\sigma \partial_{t} w=0 & \text { on } \partial B_{R+1}
\end{array}
$$

We then have the estimate

$$
\begin{equation*}
\left\|\sigma \partial_{t} w\right\|_{H^{2}\left(\Omega_{R+1}\right)} \leqslant C\|\Phi\|_{L^{2}\left(\Omega_{R+1}\right)} \tag{10}
\end{equation*}
$$

From the Sobolev imbedding $H^{2}\left(\Omega_{R+1}\right) \subset L^{\infty}\left(\Omega_{R+1}\right)$ and (10) we get

$$
\begin{equation*}
\left|\partial_{t} w\right|_{L^{\infty}\left(\Omega_{R}\right)}^{2} \leqslant C \int_{\Omega_{R+1}}\left(\left|\partial_{t} w\right|^{2}+\left|\nabla \partial_{t} w\right|^{2}+\left|\Delta \partial_{t} w\right|^{2}\right) d x \tag{11}
\end{equation*}
$$

From (6), (8), (9) under the choice $r=R+1$, and (11) we then obtain

$$
\begin{equation*}
\left|\partial_{t} w(t)\right|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left(\left\|\nabla w_{0}\right\|_{H^{2}}+\left\|w_{1}\right\|_{H^{2}}\right) \tag{12}
\end{equation*}
$$

In order to estimate $|\nabla w(t)|_{L^{\infty}\left(\Omega_{R}\right)}$, we try to proceed similarly. In this case we consider the elliptic system

$$
\begin{array}{ll}
\Delta(\sigma \nabla w)=\Psi & \text { in } \Omega_{R+1} \\
(\sigma \nabla w) \cdot v=0 & \text { on } \partial \Omega \\
\operatorname{rot}(\sigma \nabla w)=0 & \text { on } \partial \Omega \\
\sigma \nabla w=0 & \text { on } \partial B_{R+1}
\end{array}
$$

where we have set $\Psi=\Delta(\sigma \nabla w)$. Thus we have

$$
\begin{align*}
& |\nabla w|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C\|\sigma \nabla w\|_{H^{2}\left(\Omega_{R+1}\right)} \leqslant C\|\Psi\|_{L^{2}\left(\Omega_{R+1}\right)} \leqslant \tag{13}\\
& \quad C\left(\int_{\Omega_{R+1}}\left(|\nabla w|^{2}+\sum_{|\alpha|=2}\left|\partial^{\alpha} w\right|^{2}+|\Delta \nabla w|^{2}\right) d x\right)^{1 / 2} .
\end{align*}
$$

Therefore we see the necessity to estimate all double x-derivatives of w over Ω_{R+1}. We choose $\sigma^{\prime}(x) \in C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ such that $\sigma^{\prime}(x)=1$ if $|x| \leqslant R+1$ and $=0$ if $|x| \geqslant R+2$. Consider the elliptic system

$$
\begin{array}{ll}
\operatorname{div}\left(\sigma^{\prime} \nabla w\right)=\sigma^{\prime} \Delta w+\nabla \sigma^{\prime} \cdot \nabla w & \text { in } \Omega_{R+2} \\
\operatorname{rot}\left(\sigma^{\prime} \nabla w\right)=\nabla \sigma^{\prime} \times \nabla w & \text { in } \Omega_{R+2} \\
\left(\sigma^{\prime} \nabla w\right) \cdot v=0 & \text { on } \partial \Omega_{R+2}
\end{array}
$$

It follows that

$$
\begin{align*}
& \|\nabla w\|_{H^{1}\left(\Omega_{R+1}\right)} \leqslant\left\|\sigma^{\prime} \nabla w\right\|_{H^{1}\left(\Omega_{R+2}\right)} \leqslant \tag{14}\\
& C\left(\left\|\sigma^{\prime} \Delta w+\nabla \sigma^{\prime} \cdot \nabla w\right\|+\left\|\nabla \sigma^{\prime} \times \nabla w\right\|\right) \leqslant C\left(\int_{\Omega_{R+2}}\left(|\nabla w|^{2}+|\Delta w|^{2}\right) d x\right)^{1 / 2} .
\end{align*}
$$

From (6), (9) under the choice $r=R+1$, we obtain

$$
\begin{equation*}
\int_{\Omega_{R+1}}\left(|\nabla w|^{2}+|\Delta \nabla w|^{2}\right) d x \leqslant C_{R}(1+t)^{-2}\left(\left\|\nabla w_{0}\right\|_{H^{2}}^{2}+\left\|w_{1}\right\|_{H^{2}}^{2}\right) . \tag{15}
\end{equation*}
$$

From (6), (8) under the choice $r=R+2$, and (14) we obtain

$$
\begin{equation*}
\sum_{|\alpha|=2} \int_{\Omega_{R+1}}\left|\partial^{\alpha} w\right|^{2} d x \leqslant C_{R}(1+t)^{-2}\left(\left\|\nabla w_{0}\right\|_{H^{1}}^{2}+\left\|w_{1}\right\|_{H^{1}}^{2}\right) . \tag{16}
\end{equation*}
$$

Finally from (13), (15) and (16) we obtain

$$
|\nabla w(t)|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left(\left\|\nabla w_{0}\right\|_{H^{2}}+\left\|w_{1}\right\|_{H^{2}}\right) .
$$

Let us consider the initial boundary value problem

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) w=G & \text { in } Q, \\
\partial_{v} w=0 & \text { on } \Sigma, \tag{17}\\
w(0, x)=0, & \\
\partial_{t} w(0, x)=0 & \text { in } \Omega .
\end{array}
$$

Lemma 2.2. - Let $G(t, \cdot)$ have compact support and satisfy $G(t, \cdot) \in H^{2}$ for each $t>0$. Then the solution w of (17) satisfies the estimate

$$
\begin{equation*}
\left|\partial_{t} w(t)\right|_{L^{\infty}\left(\Omega_{R}\right)}+|\nabla w(t)|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R} \int_{0}^{t}(1+t-s)^{-1}\|G(s, \cdot)\|_{H^{2}} d s \tag{18}
\end{equation*}
$$

for every $R>r_{0}$ and $t \geqslant 0$, where C_{R} depends on R, the support of G and the geometry of $\partial \Omega$.

Proof. - It is a simple consequence of Duhamel's principle. We write w as $w(t, x)=\int_{0}^{t} V(t-s, s, x) d s$, where, for each fixed $s \geqslant 0, V$ solves

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) V(t, s, x)=0 & \text { in } Q, \\
\partial_{v} V(t, s, x)=0 & \text { on } \Sigma, \\
V(0, s, x)=0, & \\
\partial_{t} V(0, s, x)=G(s, x) & \text { in } \Omega .
\end{array}
$$

We have

$$
\begin{aligned}
&\left|\partial_{t} w(t)\right|_{L^{\infty}\left(\Omega_{R}\right)}+|\nabla w(t)|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant \\
& \int_{0}^{t}\left|\partial_{t} V(t-s, s, \cdot)\right|_{L^{\infty}\left(\Omega_{R}\right)}+|\nabla V(t-s, s, \cdot)|_{L^{\infty}\left(\Omega_{R}\right)} d s .
\end{aligned}
$$

The thesis follows from application of (5).
At last we consider the nonhomogeneous initial boundary value problem

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) w=G & \text { in } Q, \\
\partial_{v} w=0 & \text { on } \Sigma, \tag{19}\\
w(0, x)=w_{0}, & \\
\partial_{t} w(0, x)=w_{1} & \text { in } \Omega .
\end{array}
$$

From Lemma 2.1 and Lemma 2.2, by linearity we have

Corollary 2.1. - Let $\left(w_{0}, w_{1}\right)$ have compact support and satisfy $\left(\nabla w_{0}, w_{1}\right) \in H^{2}$. Let $G(t, \cdot)$ have compact support and satisfy $G(t, \cdot) \in H^{2}$ for each $t>0$. Then the solution w of (19) satisfies the estimate

$$
\begin{align*}
& \left|\partial_{t} w(t)\right|_{L^{\infty}\left(\Omega_{R}\right)}+|\nabla w(t)|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left(\left\|\nabla w_{0}\right\|_{H^{2}}+\left\|w_{1}\right\|_{H^{2}}\right)+ \tag{20}\\
& C_{R} \int_{0}^{t}(1+t-s)^{-1}\|G(s, \cdot)\|_{H^{2}} d s,
\end{align*}
$$

for every $R>r_{0}$ and $t \geqslant 0$, where C_{R} depends on R, the support of the data and the geometry of $\partial \Omega$.

The rest of this section is devoted to an estimate of the pointwise decay of w.

Lemma 2.3. - Let $\left(w_{0}, w_{1}\right)$ have compact support and satisfy $\left(w_{0}, w_{1}\right) \in$ $H^{2} \times H^{1}$. Let $G(t, \cdot)$ have compact support and satisfy $G(t, \cdot) \in H^{1}$ for each $t>0$. Then the solution w of (19) satisfies the estimate

$$
\begin{align*}
& |w(t)|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left(\left\|w_{0}\right\|_{H^{2}}+\left\|w_{1}\right\|_{H^{1}}\right)+ \tag{21}\\
& \quad C_{R} \int_{0}^{t}(1+t-s)^{-1}\|G(s, \cdot)\|_{H^{1}} d s,
\end{align*}
$$

for every $R>r_{0}$ and $t \geqslant 0$, where C_{R} depends on R, the support of the data and the geometry of $\partial \Omega$.

Proof. - We decompose the solution by using the linearity of (19).
(i) We start by considering the case $w_{1}=0, G=0$. Let w^{\prime} denote the solution in this case and let us set $v^{\prime}(t, x)=\int_{0}^{t} w^{\prime}(s, x) d s$. Then v^{\prime} solves

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) v^{\prime}=0 & \text { in } Q \\
\partial_{v} v^{\prime}=0 & \text { on } \Sigma, \\
v^{\prime}(0, x)=0, & \\
\partial_{t} v^{\prime}(0, x)=w_{0} & \text { in } \Omega
\end{array}
$$

From (20) we get

$$
\begin{equation*}
\left|w^{\prime}(t)\right|_{L^{\infty}\left(\Omega_{R}\right)}=\left|\partial_{t} v^{\prime}(t)\right|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left\|w_{0}\right\|_{H^{2}} \tag{22}
\end{equation*}
$$

(ii) Next we consider the case $w_{0}=0, G=0$; the solution is denoted by $w^{\prime \prime}$. Let us set $v^{\prime \prime}(t, x)=\int_{0}^{t} w^{\prime \prime}(s, x) d s+\varphi(x)$, where the corrector φ will be
choosen below. Then $v^{\prime \prime}$ solves

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) v^{\prime \prime}=w_{1}-\Delta \varphi & \text { in } Q, \\
\partial_{v} v^{\prime \prime}=\partial_{v} \varphi & \text { on } \Sigma, \\
v^{\prime \prime}(0, x)=\varphi, & \text { in } \Omega . \\
\partial_{t} v^{\prime \prime}(0, x)=0 &
\end{array}
$$

Thus we choose φ as a solution of

$$
\begin{equation*}
\Delta \varphi=w_{1} \quad \text { in } \Omega, \quad \partial_{\nu} \varphi=0 \quad \text { on } \partial \Omega . \tag{23}
\end{equation*}
$$

From (20) we get

$$
\begin{equation*}
\left|w^{\prime \prime}(t)\right|_{L^{\infty}\left(\Omega_{R}\right)}=\left|\partial_{t} v^{\prime \prime}(t)\right|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\|\nabla \varphi\|_{H^{2}} . \tag{24}
\end{equation*}
$$

The conclusion of the proof in case (ii) is a consequence of the following result, whose proof is postponed to the end of this proof.

Lemma 2.4. - There exists a solution φ of (2.33) such that

$$
\begin{equation*}
\|\nabla \varphi\|_{H^{2}} \leqslant C\left\|w_{1}\right\|_{H^{1}}, \tag{25}
\end{equation*}
$$

where C depends on the support of w_{1}.
Admitting this estimate for the moment, we obtain from (24) and (25)

$$
\begin{equation*}
\left|w^{\prime \prime}(t)\right|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left\|w_{1}\right\|_{H^{1}} \tag{26}
\end{equation*}
$$

(iii) The last case is when $w_{0}=0, w_{1}=0$; denote the solution by $w^{\prime \prime \prime}$. By the Duhamel's principle we write $w^{\prime \prime \prime}(t, x)=\int_{0}^{t} V(t-s, s, x) d s$, where V is as in the proof of Lemma 2.2. From (26) it follows that

$$
\begin{align*}
& \left|w^{\prime \prime \prime}(t)\right|_{L^{\infty}\left(\Omega_{R}\right)} \leqslant \int_{0}^{t}|V(t-s, s, \cdot)|_{L^{\infty}\left(\Omega_{R}\right)} d s \leqslant \tag{27}\\
& \quad C_{R} \int_{0}^{t}(1+t-s)^{-1}\|G(s, \cdot)\|_{H^{1}} d s
\end{align*}
$$

The final thesis follows by addition of (22), (26) and (27).
Proof of Lemma 2.4. - Here the main difficulty is to show

$$
\begin{equation*}
\|\nabla \varphi\| \leqslant C\left\|w_{1}\right\| \tag{28}
\end{equation*}
$$

because the Poincaré inequality doesn't hold over the unbounded domain Ω. When this is done, we use potential theoretic arguments combined with the

Calderon-Zygmund theorem in order to show that $\left\|\partial^{2} \varphi\right\|_{H^{1}} \leqslant C\left\|w_{1}\right\|_{H^{1}}$; therefore, adding the previous estimate gives (25). Fix any $R>r_{0}$ and let B be a constant such that $B|x| \geqslant 2$ as $x \in \Omega$. Since φ is defined up to a constant, we may assume that φ has mean value over $\Omega_{2 R}$ equal to zero. Then, by the Poincaré inequality over $\Omega_{2 R}$ we get

$$
\begin{equation*}
\int_{\Omega_{R}}|\varphi(x)|^{2}|x \log (B|x|)|^{-2} d x \leqslant C_{R} \int_{\Omega_{R}}|\varphi(x)|^{2} d x \leqslant C_{R} \int_{\Omega_{2 R}}|\nabla \varphi(x)|^{2} d x \tag{29}
\end{equation*}
$$

For $|x| \geqslant R$ we proceed as in [1], Lemma 2.1 and show that

$$
\begin{equation*}
\int_{|x| \geqslant R}|\varphi(x)|^{2}|x \log (B|x|)|^{-2} d x \leqslant C_{R} \int_{|x| \geqslant R}|\nabla \varphi(x)|^{2} d x . \tag{30}
\end{equation*}
$$

We need the zero mean value over $\Omega_{2 R}$ (instead of Ω_{R}) for (30), because we need to apply the Poincaré inequality over $\Omega_{2 R}$. Adding (29), (30) gives

$$
\begin{equation*}
\int_{\Omega}|\varphi(x)|^{2}|x \log (B|x|)|^{-2} d x \leqslant C_{R} \int_{\Omega}|\nabla \varphi(x)|^{2} d x . \tag{31}
\end{equation*}
$$

Recalling that w_{1} has compact support, we multiply (23) by φ and integrate over Ω, to obtain

$$
\begin{aligned}
& \|\nabla \varphi\|^{2} \leqslant \\
& \quad \int_{\Omega}\left|w_{1}\right||\varphi| d x \leqslant \\
& \quad\left(\int_{\Omega}\left|w_{1}(x)\right|^{2}|x \log (B|x|)|^{2} d x\right)^{1 / 2}\left(\int_{\Omega}|\varphi(x)|^{2}|x \log (B|x|)|^{-2} d x\right)^{1 / 2} \leqslant \\
& C_{R}\left\|w_{1}\right\|\|\nabla \varphi\|
\end{aligned}
$$

where the last inequality follows from (31) and C_{R} depends also on the support of w_{1}. This completes the proof of (28).

In conclusion we also state two results which are an easy consequence of (6).

Lemma 2.5. - Let $\left(w_{0}, w_{1}\right)$ have compact support and satisfy $\left(w_{0}, w_{1}\right) \in$ $L^{2} \times L^{2}$. Let $G(t, \cdot)$ have compact support and satisfy $G(t, \cdot) \in L^{2}$ for each $t>0$. Then the solution w of (19) satisfies the estimate

$$
\begin{equation*}
\|w(t)\|_{L^{2}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left(\left\|w_{0}\right\|_{L^{2}}+\left\|w_{1}\right\|_{L^{2}}\right)+ \tag{32}
\end{equation*}
$$

$$
C_{R} \int_{0}^{t}(1+t-s)^{-1}\|G(s, \cdot)\|_{L^{2}} d s
$$

Moreover, if $\left(\nabla w_{0}, w_{1}\right) \in H^{2}, G(t, \cdot) \in H^{2}$ for each $t>0$, then

$$
\begin{align*}
& \|w(t)\|_{H^{3}\left(\Omega_{R}\right)} \leqslant C_{R}(1+t)^{-1}\left(\left\|w_{0}\right\|_{H^{3}}+\left\|w_{1}\right\|_{H^{2}}\right)+ \tag{33}\\
& \quad C_{R} \int_{0}^{t}(1+t-s)^{-1}\|G(s, \cdot)\|_{H^{2}} d s .
\end{align*}
$$

(32) and (33) hold for every $R>r_{0}$ and $t \geqslant 0 ; C_{R}$ depends on R, the support of the data and the geometry of $\partial \Omega$.

Proof. - The proof of (32) is a consequence of (6) and the arguments employed in the proof of Lemma 2.3. (33) follows from (13), (15), (16), the Duhamel's principle and (32).

3. - Proof of Theorem 1.1.

Let us take functions $\tilde{f}, \tilde{g}: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}$ such that $\tilde{f}=f, \tilde{g}=g$ on Ω, and such that $\tilde{f} \in \widehat{H}^{5}\left(\boldsymbol{R}^{2}\right) \cap W^{5,1}\left(\boldsymbol{R}^{2}\right), \tilde{g} \in \widehat{H}^{4}\left(\boldsymbol{R}^{2}\right) \cap H_{\log }^{2}\left(\boldsymbol{R}^{2}\right) \cap W^{4,1}\left(\boldsymbol{R}^{2}\right)$,

$$
\begin{aligned}
& \|\tilde{f}\|_{\widehat{H}^{5}\left(R^{2}\right)}+\|\tilde{g}\|_{\widehat{H}^{4}\left(R^{2}\right)}+\|\tilde{g}\|_{H_{\log }^{2}\left(R^{2}\right)} \leqslant C\left(\|f\|_{\widehat{H}^{5}}+\|g\|_{\widehat{H}^{4}}+\|g\|_{H_{\log }^{2}}\right), \\
& \|\tilde{f}\|_{W^{5,1}\left(R^{2}\right)}+\|\tilde{g}\|_{W^{4,1}\left(R^{2}\right)} \leqslant C\left(\|f\|_{W^{5,1}}+\|g\|_{W^{4,1}}\right) .
\end{aligned}
$$

For this, observe that it's enough to take extensions over the bounded set Ω^{c} with the regularity $\tilde{f} \in H^{5}\left(\boldsymbol{R}^{2}\right), \tilde{g} \in H^{4}\left(\boldsymbol{R}^{2}\right)$, since the required behavior at infinity is already furnished by f, g.

Let u_{1} be the solution of the Cauchy problem

$$
\begin{align*}
& \left(\partial_{t t}^{2}-\Delta\right) u_{1}=0 \quad \text { in }[0, \infty) \times \boldsymbol{R}^{2} \\
& u_{1}(0, x)=\tilde{f}(x), \tag{34}\\
& \partial_{t} u_{1}(0, x)=\tilde{g}(x) \quad \text { in } \boldsymbol{R}^{2} .
\end{align*}
$$

From [9], Theorem 2.1, we have

$$
\begin{align*}
&\left|\partial_{t} u_{1}(t)\right|_{L^{\infty}\left(R^{2}\right)}+\left|\nabla u_{1}(t)\right|_{L^{\infty}\left(R^{2}\right)} \leqslant C(1+t)^{-1 / 2}\|(\nabla \tilde{f}, \tilde{g})\|_{W^{2,1}\left(R^{2}\right)} \leqslant \tag{35}\\
& C(1+t)^{-1 / 2}\|(\nabla f, g)\|_{W^{2,1}}
\end{align*}
$$

Choosing $r>r_{0}$ and $\chi(x) \in C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ so that $\chi(x)=1$ if $|x| \leqslant r$ and $=0$ if $|x| \geqslant$ $r+1$, we put

$$
u_{2}=u-(1-\chi) u_{1}, \quad G=-u_{1} \Delta \chi-2 \nabla u_{1} \cdot \nabla \chi
$$

The function u_{2} is the solution of the initial boundary value problem

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right) u_{2}=G & \text { in } Q, \\
\partial_{\nu} u_{2}=0 & \text { on } \Sigma, \tag{36}\\
u_{2}(0, x)=\chi f(x), & \\
\partial_{t} u_{2}(0, x)=\chi g(x) & \text { in } \Omega .
\end{array}
$$

Observe that $\operatorname{supp} G(t, \cdot) \subseteq\{x|r \leqslant|x| \leqslant r+1\}$ for all $t \geqslant 0$, and $\operatorname{supp} \chi f \subseteq$ Ω_{r+1}, supp $\chi g \subseteq \Omega_{r+1}$. From (20) with $w=u_{2}, w_{0}=\chi f, w_{1}=\chi g$, we obtain

$$
\begin{array}{r}
\left|\partial_{t} u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)}+\left|\nabla u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)} \leqslant C_{r}(1+t)^{-1}\left(\|\nabla(\chi f)\|_{H^{2}}+\|\chi g\|_{H^{2}}\right)+ \tag{37}\\
\quad C_{r} \int_{0}^{t}(1+t-s)^{-1}\|G(s)\|_{H^{2}} d s
\end{array}
$$

We estimate $\|G(s)\|_{H^{2}}$. First of all we observe that

$$
\|G(s)\|_{H^{2}} \leqslant C_{r} \sum_{|\alpha| \leqslant 3}\left|\partial^{\alpha} u_{1}(s)\right|_{L^{\infty}\left(\Omega_{r+1}\right)} .
$$

u_{1} is estimated by the $L^{1}-L^{\infty}$ decay estimate (see Klainerman [3])

$$
\begin{equation*}
\left|u_{1}(s, \cdot)\right|_{L^{\infty}} \leqslant C(1+s)^{-1 / 2}\left(\|\tilde{f}\|_{W^{2,1}}+\|\tilde{g}\|_{W^{1,1}}\right) \tag{38}
\end{equation*}
$$

To complete the estimate of $\|G(s)\|_{H^{2}}$, we apply (35) to $\partial^{\alpha} u_{1}(s),|\alpha| \leqslant 2$, in order to obtain

$$
\begin{equation*}
\sum_{1 \leqslant|\alpha| \leqslant 3}\left|\partial^{\alpha} u_{1}(s)\right|_{L^{\infty}\left(\Omega_{r+1}\right)} \leqslant C(1+s)^{-1 / 2}\|(\nabla f, g)\|_{W^{4,1}} \tag{39}
\end{equation*}
$$

Thus, from (38) and (39) we get

$$
\begin{equation*}
\|G(s)\|_{H^{2}} \leqslant C_{r}(1+s)^{-1 / 2}\left(\|f\|_{W^{5,1}}+\|g\|_{W^{4,1}}\right) . \tag{40}
\end{equation*}
$$

We obtain from (37), (40) and (60) in the Appendix that

$$
\begin{array}{r}
\left|\partial_{t} u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)}+\left|\nabla u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)} \leqslant C_{r}(1+t)^{-1}\left(\|\nabla(\chi f)\|_{H^{2}}+\|\chi g\|_{H^{2}}\right)+ \tag{41}\\
C_{r} \int_{0}^{t}(1+t-s)^{-1}(1+s)^{-1 / 2}\left(\|f\|_{W^{5,1}}+\|g\|_{W^{4,1}}\right) d s \leqslant \\
C_{r} M_{1}(1+t)^{-1 / 2} \log (e+t) \quad \forall t \geqslant 0
\end{array}
$$

where $M_{1}=\|f\|_{W^{5,1}}+\|g\|_{W^{4,1}}$. Observe that by a Sobolev imbedding $\|f\|_{H^{3}} \leqslant$ $C\|f\|_{W^{4,1}},\|g\|_{H^{2}} \leqslant C\|g\|_{W^{3,1}}$.

Choosing $\psi(x) \in C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ so that $\psi(x)=1$ if $|x| \geqslant r+2$ and $=0$ if $|x| \leqslant r+$ 1, we observe that

$$
\psi \chi f=0, \quad \psi \chi g=0, \quad \psi G=0
$$

Let us define

$$
H=-u_{2} \Delta \psi-2 \nabla u_{2} \cdot \nabla \psi
$$

The function ψu_{2} solves the Cauchy problem

$$
\begin{array}{ll}
\left(\partial_{t t}^{2}-\Delta\right)\left(\psi u_{2}\right)=H & \text { in }[0, \infty) \times \boldsymbol{R}^{2} \\
\psi u_{2}(0, x)=0, & \tag{42}\\
\partial_{t}\left(\psi u_{2}\right)(0, x)=0 & \text { in } \boldsymbol{R}^{2} .
\end{array}
$$

From (35) and the Duhamel's principle we get

$$
\begin{gather*}
\left|\partial_{t}\left(\psi u_{2}\right)(t)\right|_{L^{\infty}\left(R^{2}\right)}+\left|\nabla\left(\psi u_{2}\right)(t)\right|_{L^{\infty}\left(R^{2}\right)} \leqslant \tag{43}\\
C \int_{0}^{t}(1+t-s)^{-1 / 2}\|H(s, \cdot)\|_{W^{2,1}\left(R^{2}\right)} d s \leqslant C_{r} \int_{0}^{t}(1+t-s)^{-1 / 2}\left\|u_{2}(s)\right\|_{H^{3}\left(\Omega_{r+2}\right)} d s
\end{gather*}
$$

On the other hand, applying (33) to the solution u_{2} of (36) yields

$$
\begin{align*}
& \left\|u_{2}(t)\right\|_{H^{3}\left(\Omega_{r+2}\right)} \leqslant C_{r}(1+t)^{-1}\left(\|\chi f\|_{H^{3}}+\|\chi g\|_{H^{2}}\right)+ \tag{44}\\
& \quad C_{r} \int_{0}^{t}(1+t-s)^{-1}\|G(s)\|_{H^{2}} d s .
\end{align*}
$$

We recall Klainerman's inequality [4] in the plane

$$
\begin{equation*}
|u(t, x)| \leqslant C(1+t+|x|)^{-1 / 2}(1+|t-|x||)^{-1 / 2}\left|\|u(t) \mid\|_{2} \quad \forall t \geqslant 0\right. \tag{45}
\end{equation*}
$$

which holds for all smooth functions vanishing sufficiently rapidly as $|x| \rightarrow \infty$, so that the norm in the right-side is finite for each fixed $t \geqslant 0$. Applying (45) to u_{1} with the restriction $x \in \Omega_{r+1}$ gives

$$
\begin{equation*}
\|G(t)\|_{H^{2}} \leqslant C_{r} \sum_{|\alpha| \leqslant 3}\left|\partial^{\alpha} u_{1}(t)\right|_{L^{\infty}\left(\Omega_{r+1}\right)} \leqslant C_{r}(1+t)^{-1} \sum_{|\alpha| \leqslant 3}\left\|\mid \partial^{\alpha} u_{1}(t)\right\|_{2} \tag{46}
\end{equation*}
$$

To estimate the last term we use the following result, whose proof is postponed to the end of this section.

Lemma 3.1. - There exists a constant $M_{2}>0$ such that

$$
\sum_{|\alpha| \leqslant 3}| |\left|\partial^{\alpha} u_{1}(t)\right| \|_{2} \leqslant M_{2} \quad \forall t \geqslant 0 .
$$

Thus, from (44), (46) and (59) in the Appendix we obtain

$$
\begin{array}{r}
\left\|u_{2}(t)\right\|_{H^{3}\left(\Omega_{r+2}\right)} \leqslant C_{r} M_{1}(1+t)^{-1}+C_{r} M_{2} \int_{0}^{t}(1+t-s)^{-1}(1+s)^{-1} d s \leqslant \tag{47}\\
C_{r} M_{1}(1+t)^{-1}+C_{r} M_{2}(1+t)^{-1} \log (1+t) \leqslant \\
C_{r}\left(M_{1}+M_{2}\right)(1+t)^{-1} \log (e+t) .
\end{array}
$$

Then from (43), (47) and (61) in the Appendix one has
(48) $\quad\left|\partial_{t}\left(\psi u_{2}\right)(t)\right|_{L^{\infty}\left(R^{2}\right)}+\left|\nabla\left(\psi u_{2}\right)(t)\right|_{L^{\infty}\left(R^{2}\right)} \leqslant$

$$
\begin{array}{r}
C_{r}\left(M_{1}+M_{2}\right) \int_{0}^{t}(1+t-s)^{-1 / 2}(1+s)^{-1} \log (e+s) d s \leqslant \\
C_{r}\left(M_{1}+M_{2}\right)(1+t)^{-1 / 2} \log ^{2}(1+t)
\end{array}
$$

Moreover, from (21), (40) and (59) in the Appendix we have
(49) $\quad\left|u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)} \leqslant C_{r}(1+t)^{-1}\left(\|\chi f\|_{H^{2}}+\|\chi g\|_{H^{1}}\right)+$

$$
\begin{aligned}
& C_{r} \int_{0}^{t}(1+t-s)^{-1}\|G(s)\|_{H^{1}} d s \leqslant \\
& C_{r} M_{1}(1+t)^{-1}+C_{r} M_{1} \int_{0}^{t}(1+t-s)^{-1}(1+s)^{-1 / 2} d s \leqslant \\
& \quad C_{r} M_{1}(1+t)^{-1 / 2} \log (e+t) ;
\end{aligned}
$$

using the strongest estimate (47) and a Sobolev imbedding doesn't improve the final result. Since $u=(1-\chi) u_{1}+u_{2}$, we have

$$
\left|\partial_{t} u(t)\right|_{\infty}+|\nabla u(t)|_{\infty} \leqslant
$$

$$
\begin{aligned}
& \left|(1-\chi) \partial_{t} u_{1}(t)\right|_{\infty}+\left|\nabla\left((1-\chi) u_{1}(t)\right)\right|_{\infty}+\left|\partial_{t} u_{2}(t)\right|_{\infty}+\left|\nabla u_{2}(t)\right|_{\infty} \leqslant \\
& \left|\partial_{t} u_{1}(t)\right|_{L^{\infty}\left(R^{2}\right)}+\left|\nabla u_{1}(t)\right|_{L^{\infty}\left(R^{2}\right)}+C\left|u_{1}(t)\right|_{L^{\infty}\left(R^{2}\right)}+ \\
& \left|\partial_{t}\left(\psi u_{2}(t)\right)\right|_{L^{\infty}\left(R^{2}\right)}+\left|\nabla\left(\psi u_{2}(t)\right)\right|_{L^{\infty}\left(R^{2}\right)}+ \\
& \quad\left|\partial_{t} u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)}+\left|\nabla u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)}+C\left|u_{2}(t)\right|_{L^{\infty}\left(\Omega_{r+2}\right)} .
\end{aligned}
$$

From (35), (38), (41), (48), (49) we finally obtain

$$
\begin{align*}
\left|\partial_{t} u(t)\right|_{\infty}+|\nabla u(t)|_{\infty} \leqslant & C M_{1}(1+t)^{-1 / 2}+C_{r} M_{1}(1+t)^{-1 / 2} \log (e+t)+ \tag{50}\\
& C_{r}\left(M_{1}+M_{2}\right)(1+t)^{-1 / 2} \log ^{2}(1+t) \leqslant \\
& C_{r}\left(M_{1}+M_{2}\right)(1+t)^{-1 / 2} \log ^{2}(e+t) \quad \forall t \geqslant 0
\end{align*}
$$

This estimate gives the required decay rate. The final dependence on the norms of the data is given after the following proof.

Proof of Lemma 3.1. - For the sake of brevity here we write u, f, g instead of $u_{1}, \tilde{f}, \tilde{g}$ and $\|\cdot\|$ instead of $\|\cdot\|_{L^{2}\left(R^{2}\right)}$. We also set $\partial_{0}=\partial_{t}, D=$ $\left(\partial_{0}, \partial_{1}, \partial_{2}\right)$. Let us recall the commutation relations [2]

$$
\begin{aligned}
& \left(\partial_{t t}^{2}-\Delta\right) \Gamma_{i}-\Gamma_{i}\left(\partial_{t t}^{2}-\Delta\right)=2 \delta_{0 i}\left(\partial_{t t}^{2}-\Delta\right) \text { for } i=0, \ldots, 6 \\
& \Gamma_{i} \Gamma_{j}-\Gamma_{j} \Gamma_{i}=\sum_{k=0}^{6} c_{i j k} \Gamma_{k} \quad \text { for } i, j=0, \ldots, 6 \\
& \Gamma_{i} \partial_{j}-\partial_{j} \Gamma_{i}=\sum_{k=0}^{2} c_{i j k k}^{*} \partial_{k} \quad \text { for } i=0, \ldots, 6 ; j=0,1,2
\end{aligned}
$$

with certain numerical coefficients $c_{i j k}, c_{i j k}^{*}$. Because of the noncommutativity of the Γ_{i} one has product rules of the type

$$
\begin{aligned}
& \Gamma^{A} \Gamma^{B}=\Gamma^{A+B}+\sum_{C} \gamma_{A B C} \Gamma^{C} \text { with }|C|<|A|+|B|, \\
& {\left[D, \Gamma^{A}\right]=\sum_{|B| \leqslant|A|-1} \delta_{A B} D \Gamma^{B}=\sum_{|B| \leqslant|A|-1} \tilde{\delta}_{A B} \Gamma^{B} D}
\end{aligned}
$$

with numerical coefficients $\gamma_{A B C}, \delta_{A B}, \tilde{\delta}_{A B}$. We first observe that the commutation rule with the wave operator and an energy argument give for every multi-index A

$$
\begin{equation*}
\left\|\partial_{t} \Gamma^{A} u(t)\right\|^{2}+\left\|\nabla \Gamma^{A} u(t)\right\|^{2}=\left\|\partial_{t} \Gamma^{A} u(0)\right\|^{2}+\left\|\nabla \Gamma^{A} u(0)\right\|^{2} \quad \forall t \geqslant 0 \tag{51}
\end{equation*}
$$

where in the right side the norms are evaluated at time $t=0$. It readily follows that

$$
\begin{align*}
\sum_{1 \leqslant|\alpha| \leqslant 3}\left|\left\|\partial^{\alpha} u(t) \mid\right\|_{2} \leqslant\right. & C \mid\|\nabla u(t)\|\left\|_{4}=C \max _{|A| \leqslant 4}\right\| \Gamma^{A} \nabla u(t) \| \leqslant \tag{52}\\
& C \max _{|A| \leqslant 4}\left(\left\|\nabla \Gamma^{A} u(t)\right\|+\sum_{|B| \leqslant|A|-1}\left|\delta_{A B}\right|\left\|D \Gamma^{B} u(t)\right\|\right) \leqslant \\
& C \max _{|A| \leqslant 4}\left(\left\|\partial_{t} \Gamma^{A} u(0)\right\|+\left\|\nabla \Gamma^{A} u(0)\right\|\right) \leqslant C\|\nabla f, g\|_{\widehat{H}^{4}\left(R^{2}\right)} .
\end{align*}
$$

We proceed with the estimate of $\left\|\|u(t)\|_{2}\right.$. Let us define $v(t, x)=$
$\int_{0}^{t} u(s, x) d s+\phi(x)$, where ϕ is such that $\Delta \phi=g$ in \boldsymbol{R}^{2}. Then v solves

$$
\begin{aligned}
& \left(\partial_{t t}^{2}-\Delta\right) v=0 \quad \text { in }[0, \infty) \times \boldsymbol{R}^{2} \\
& v(0, \cdot)=\phi, \\
& \partial_{t} v(0, \cdot)=f \quad \text { in } \boldsymbol{R}^{2} .
\end{aligned}
$$

As in (51) we have

$$
\begin{equation*}
\left\|\partial_{t} \Gamma^{A} v(t)\right\|^{2}+\left\|\nabla \Gamma^{A} v(t)\right\|^{2}=\left\|\partial_{t} \Gamma^{A} v(0)\right\|^{2}+\left\|\nabla \Gamma^{A} v(0)\right\|^{2} \quad \forall t \geqslant 0 \tag{53}
\end{equation*}
$$

Since $\partial_{t} v=u$, from (53) we obtain

$$
\begin{equation*}
\|\|u(t)\|\|_{2}=\| \| \partial_{t} v(t)\| \|_{2} \leqslant C\|\mid D v(0)\| \|_{2} \tag{54}
\end{equation*}
$$

Substituting the initial values of v yields

$$
\begin{align*}
& \left\|\mid \partial_{t} v(0)\right\| \|_{2} \leqslant C\left(\max _{|B| \leqslant 2}\left\|\Lambda^{B} f\right\|+\sum_{i}\left(\left\|x_{i} \nabla f\right\|+\left\|x_{i} \Delta f\right\|\right)+\right. \\
& \sum_{i, j}\left\|x_{i} x_{j} \Delta f\right\|+\max _{|B| \leqslant 1}\left(\left\|\Lambda^{B} \Delta \phi\right\|+\sum_{i}\left\|\Lambda^{B}\left(x_{i} \Delta \phi\right)\right\|\right), \\
& \|\nabla v(0)\| \|_{2} \leqslant C\left(\max _{|B| \leqslant 2}\left\|\Lambda^{B} \nabla \phi\right\|+\sum_{i}\left(\left\|x_{i} \partial \nabla \phi\right\|+\left\|x_{i} \Delta \nabla \phi\right\|\right)+\right. \tag{55}\\
& \sum_{i, j}\left\|x_{i} x_{j} \Delta \nabla \phi\right\|+\max _{|B| \leqslant 1}\left(\left\|\Lambda^{B} \nabla f\right\|+\sum_{i}\left\|\Lambda^{B}\left(x_{i} \nabla f\right)\right\|\right) .
\end{align*}
$$

The terms in (55) containing f are easily estimated by $C\|f\|_{\widehat{H}^{2}\left(R^{2}\right)}$. The last step consists in estimating $\nabla \phi$ by g. As in the proof of Lemma 2.4 we can take the solution ϕ of $\Delta \phi=g$ such that

$$
\begin{equation*}
\|\nabla \phi\| \leqslant C\|g\|_{L_{\log \left(R^{2}\right)}^{2}} \tag{56}
\end{equation*}
$$

By application to $\Delta \phi=g$ of the operators Λ^{B}, commutation of the operators and (56) we show that the terms in (55) containing ϕ are estimated by $C\|g\|_{H_{\log \left(R^{2}\right)}^{2}}$; in particular we use the estimates

$$
\begin{aligned}
& \left\|x_{i} \Delta \nabla \phi\right\|=\left\|x_{i} \nabla g\right\| \leqslant C\|\nabla g\|_{L_{\log \left(R^{2}\right)}^{2} \leqslant C\|g\|_{H_{\log \left(R^{2}\right)}^{1}}}^{\left\|x_{i} x_{j} \Delta \nabla \phi\right\|=\left\|x_{i} x_{j} \nabla g\right\| \leqslant C\left\|x_{i} \nabla g\right\|_{L_{\log }^{2}\left(R^{2}\right)} \leqslant C\|g\|_{H_{\log \left(R^{2}\right)}^{1}}} .
\end{aligned}
$$

From (54) we then obtain

$$
\begin{equation*}
\|u(t)\| \|_{2} \leqslant C\left(\|f\|_{\widehat{H}^{2}\left(R^{2}\right)}+\|g\|_{\left.H_{\log \left(R^{2}\right)}^{2}\right)}\right) \tag{57}
\end{equation*}
$$

In the end, write again $u_{1}, \tilde{f}, \tilde{g}$ instead of u, f, g. (52) and (57) give

$$
\begin{align*}
& \sum_{|\alpha| \leqslant 3} \mid\left\|\partial^{\alpha} u_{1}(t)\right\|_{2} \leqslant C\left(\|\tilde{f}\|_{\hat{H}^{5}\left(R^{2}\right)}+\|\tilde{g}\|_{\widehat{H}^{4}\left(R^{2}\right)}+\|\tilde{g}\|_{H_{\log }^{2}\left(R^{2}\right)}\right) \leqslant \tag{58}\\
& M_{2}:=C\left(\|f\|_{\widehat{H}^{5}}+\|g\|_{\widehat{H}^{4}}+\|g\|_{H_{\log }^{2}}\right)
\end{align*}
$$

End of the proof of Theorem 1.1. - From $M_{1}=\|f\|_{W^{5,1}}+\|g\|_{W^{4,1}}$ and (58) we have

$$
M_{1}+M_{2} \leqslant C\left(\|f\|_{\vec{H}^{5}}+\|f\|_{W^{5,1}}+\|g\|_{\hat{H}^{4}}+\|g\|_{H_{\log }^{2}}+\|g\|_{W^{4,1}}\right)
$$

Substituting in (50) gives the thesis.

4. - Appendix.

We report some elementary estimates used above.
Lemma 4.1. - There exists a constant $C>0$ such that for all $t \geqslant 0$

$$
\begin{equation*}
\int_{0}^{t}(1+t-s)^{-1}(1+s)^{-1} d s \leqslant C(1+t)^{-1} \log (1+t) \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{t}(1+t-s)^{-1}(1+s)^{-1 / 2} d s \leqslant C(1+t)^{-1 / 2} \log (1+t) \tag{60}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{t}(1+t-s)^{-1 / 2}(1+s)^{-1} \log (e+s) d s \leqslant C(1+t)^{-1 / 2} \log ^{2}(1+t) \tag{61}
\end{equation*}
$$

Proof. - Estimates (59) and (60) are proven in [6], see formula (5.49), p. 43; (61) may be proved following the lines of the proof of (5.49).

REFERENCES

[1] W. Dan - Y. Shibata, On a local energy decay of solutions of a dissipative wave equation, Funkcial. Ekvac., 38 (1995), 545-568.
[2] F. John, Nonlinear wave equations, Formation of singularities, Univ. Lectures Series vol. 2, AMS 1990.
[3] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math., 33 (1980), 43-101.
[4] S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space R^{n+1}, Comm. Pure Appl. Math., 37 (1984), 443-455.
[5] R. Kleinman - B. Vainberg, Full-low frequency asymptotic expansion for secondorder elliptic equations in two dimensions, Math. Methods Appl. Sci., 17 (1994), 989-1004.
[6] Li Ta-Tsien - Chen Yunmei, Global classical solutions for nonlinear evolution equations, Longman, Harlow, 1992.
[7] C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264.
[8] C. S. Morawetz, Notes on time decay and scattering for some hyperbolic problems, Reg. Conf. Series Appl. Math., SIAM 1975.
[9] R. RAcke, Lectures on Nonlinear Evolution Equations, Initial Value Problems, Vieweg Verlag, 1992.
[10] J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-824.
[11] B. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t \rightarrow \infty$ of solutions of non-stationary problems, Russian Math. Surveys, 30 (1975), 1-58.

Dipartimento di Matematica - via Valotti 9, 25133 Brescia, Italy

Pervenuta in Redazione
il 13 maggio 2002

