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Existence of Multiple Principal Eigenvalues
for some Indefinite Linear Eigenvalue Problems.

J. FLECKINGER - J. HERNÁNDEZ - F. DE THÉLIN

Sunto. – Si studia l’esistenza di autovalori principali per operatori differenziali del se-
condo ordine non necessariamente in forma di divergenza. Otteniamo risultati
sulla molteplicità degli autovalori principali, sia nel caso variazionale che per ope-
ratori in forma generale. Si utilizza sistematicamente il teorema di Krein-Rutman
e poi un argomento di punto unito per il raggio spettrale di alcuni problemi ausi-
liari. La caratterizazione variazionale è usata nel caso auto-aggiunto e anche in
quello generale.

Summary. – We study the existence of principal eigenvalues for differential operators
of second order which are not necessarily in divergence form. We obtain results
concerning multiplicity of principal eigenvalues in both the variational and the
general case. Our approach uses systematically the Krein-Rutman theorem and
fixed point arguments for the spectral radius of some associated problems. We also
use a variational characterization for both the self-adjoint and the general case.

Introduction.

The eigenvalues of linear differential operators and their properties play
an important role as well in the development of the corresponding linear the-
ory as for their applications since nonlinear operators can be locally approxi-
mated by their derivatives in some function spaces. In the case of ordinary dif-
ferential equations, Sturm-Liouville theory gives a complete and satisfying
description of the (countable) set of the eigenvalues and of the nodal sets of
the associated eigenfunctions; it shows that each eigenvalue is simple and its
dependence with respect to the coefficients of the operator and on the interval
of definition.

In the case of domains of dimension greater than one, there is no complete-
ly satisfying theory on nodal lines of eigenfunctions. In fact, there are difficult
open problems there. However, some properties of the previous case are still
valid. In particular, if V is a regular bounded domain in RN , with boundary
¯V , the eigenvalue problem:

2Du4lu in V , u40 on ¯V ,



J. FLECKINGER - J. HERNÁNDEZ - F. DE THÉLIN160

possesses an infinite sequence of positive eigenvalues:

0 El 1 El 2 GRl k GR ; l k KQ , as kKQ

with finite multiplicity. Moreover l 1 is simple and its associate eigenfunction
W 1 is positive in V and ¯W 1 /¯nE0 on the boundary. The same properties hold
for the following problem:

2Du1a0 (x)u4lm(x) u in V , u40 on ¯V ,

if a0 and m are positive on V and smooth enough. In the following we denote
by l 1 4l 1 (2D1a0 , m , V) the first eigenvalue of the above problem.

The same results are valid for general second order linear operators in di-
vergence form with regular coefficients with suitable sign. Existence of eigen-
values with positive eigenfunction is important from the viewpoint of nonlinear
problems where positive solutions are interesting; this is the case for many re-
action-diffusion systems in population dynamics, chemical reactions, combus-
tion, ... (see [Sm]). These eigenvalues are called principal eigenvalues.

The classical reference for this theory is the book of Courant and Hilbert
([CH]) where the theory is developed for continuous coefficients and also valid
for bounded coefficients. The variational characterization of the eigenvalues
leads to the continuous and monotone dependence with respect to the coeffi-
cients, and also with respect to the domain V , of the spectrum. The main tool
here is the abstract theory of linear compact self-adjoint operators in Hilbert
spaces.

This theory can be extended to the case of unbounded coefficients and also
when a0 changes sign in V. If a0 D0 in V , (or more generally if l 1 (2D1a0,
m , V) D0 ) with m , a0 �L r (V), rDN/2 and mD0 (resp. mE0) on a subdo-
main of positive measure, then there is exactly one principal eigenvalue l 1

1D0
(resp. l 1

2E0), with positive eigenfunction. This result is established in [MM]
(see also [dF], [BL] and [W]).

This approach does not work any more for general second-order differen-
tial operators L which are not in divergence form. The celebrated Krein-Rut-
man Theorem [KR] becomes instrumental there in order to exhibit a principal
eigenvalue, which is actually simple (see [Am] [H] [Sc] [Sm] [T1]). The pre-
ceeding result was extended in this framework by Hess and Kato [HK] for
m� C(V). Some of these ideas can also be extended to periodic-parabolic prob-
lems, see the book by Hess [H] and the references therein.

The above results concern the case of operators 2D1a0 (or L) having a
positive principal eigenvalue. The case l 1 (2D1a0 , m , V) G0 is considerably
more involved, some results in this direction can be found in [Al] [AS] [FM]. It
is very easy to find examples of problems having two principal eigenvalues
with the same sign (see Remark 1.9). Recently some non trivial examples were
given in [LG1] [LG2] for operators in general form satisfying rather strong
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regularity assumptions. On the other hand, it was proved in [BNV], among
many other interesting results, the existence of a principal eigenvalue in the
case of a general domain V , with no smoothness property (see also [Bi]; [Ch]
[BMS] for the extension to systems), for a0 and m positive and bounded. More-
over, a variational characterization of the principal eigenvalue is given. That
there are at most two principal eigenvalues follows from the concavity of the
spectral radius corresponding to the operator 2D1a0 (x)2lm(x) (see [K],
[H], [LG1] and [LG2]).

We only deal here with the case of one linear equation defined on a bound-
ed domain, but the same approach can be extended to more general situations
including unbounded domains, systems (even if they are not of potential type)
and also to some quasilinear equations involving the so-called p-Laplacian
(see, e.g., [An]). Indeed, the main properties of the eigenvalue r (l) arising in
our fixed point arguments follow from the corresponding variational charac-
terization, something which is still available even for operators which are not
in divergence form in the linear case (even for systems, see [BMS]), but also
for the nonlinear p-Laplacian. Some of the results in this paper can be extend-
ed to this situation and an interesting nonlinear version of the Krein-Rutman
theorem due to Takac [T2] can be used. This will be studied elsewhere. Anoth-
er possible extension is to linear problems in general form with singular coeffi-
cients (see [HMV] and its references). Different linear boundary conditions,
for example third type boundary conditions, for which a nice existence and
uniqueness theory is available (as well as the maximum principle) can be treat-
ed by similar arguments.

In this paper, we extend most of the above quoted results for changing sign
(indefinite) coefficients in a much more unified way. The general strategy con-
sists in writing an equivalent form of the problem in such a way that all coeffi-
cients are now positive and use the Krein-Rutman Theorem. Here it is very
convenient to replace the usual version in cones with non-empty interior by a
more general one given in [DKM], Theorem 12.3 (see also [BMS], [D1], [D2],
[dP], [Sc] [Z]), in terms of quasi-interior points, which allows us to work in the
spaces L p (V) (1 EpEQ) whose cones have empty interior. Then the proof of
existence of principal eigenvalues is reduced to a fixed point problem for the
associated spectral radius r (l), whose properties follow from the classical
variational characterization of the corresponding eigenvalue in the variational
case, but also from the one in [BNV] for general operators.

However, in order to exhibit the power and flexibility of the approach to
deal with more general situations (elliptic systems, quasi-linear operators like
the p-Laplacian, ...), we start in Section 1 with the variational case for a0 f0
and m bounded and indefinite. Here we improve slightly the results in [MM]
and [dF] in the sense that we show that the eigenvalues are the only ones with
a positive eigenfunction, a result which is not included in [MM].
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In Section 2, we allow m unbounded and l 1 (2D1a0 , 1 , V) G0. We thus
consider three different cases. Case (I), l 1 (2D1a0 , 1 , V) D0, is very similar
to the case a0 F0. Case (II), l 1 (2D1a0 , 1 , V) 40, raises some new features,
but in any case we have (at most) one positive principal eigenvalue. The most
intriguing situation, Case (III), corresponds to l 1 (2D1a0 , 1 , V) E0. Here
we need a very interesting result, by Dancer ([D3]) where the smoothness of a
subdomain of V plays an important role. Then, by introducing a parameter t in
the weight m , we are able to provide a careful description of the continuous
transition from two principal eigenvalues to no one by crossing a «critical»
value of t with exactly one principal eigenvalue. This gives a much more gener-
al (less smoothness on both coefficients and domains) and systematic view
than in [LG1], [LG2].

In Section 3, we consider finally the case of an operator in general form L
and we show how to extend the results in [BNV] and [Bi] to the indefinite
case. In the same vein, we obtain an extension of most of the results in [HK]
under weaker assumptions (see [HKS] for some related work). However, since
the result by Dancer stated in Proposition 2.3 is any more available for opera-
tors in general form and for non-smooth domains, we cannot extend Theorem
2.5 to this broader context. But all results which do not rely on it can still be
proved by completely similar arguments.

The main results have been announced in [FHT].

1. – The variational case for bounded indefinite weights.

In this section we consider the linear model case:

2Du4lm(x)u , x�V ;(1.1)

u(x) 40, x�¯V ,(1.2)

where V is a smooth bounded domain in RN , NF2 and

m�L Q (V).(1.3).

We consider the case where the weight m changes sign, which is usually
referred as an «indefinite weight». We define the following subsets:

V14 ]x�VNm(x) D0(,(1.4a)

V24 ]x�VNm(x) E0(,(1.4b)

V 0 4 ]x�VNm(x) 40(.(1.4c)
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Without other statement, we assume that

NV1ND0, NV2ND0,

where NAN is the Lebesgue measure of the set A.

REMARK 1.1. – The smoothness properties of the bounded domain V and its
subdomains will play an important role in all which follows. We assume that all
subdomains considered here are such that the comparison results used below
are applicable to them and that V1 and V2 have positive measure.

We can change (1.1) in

2Du1lm 2 (x) u4lm 1 (x) u , x�V ,(1.18)

where m 14max (m , 0 ); m4m 12m 2. More conveniently, for given l , we
rewrite (1.18) as an eigenvalue problem with parameter s:

2Du1l(m 2 (x)1x V 0NV2) u4s(m 1 (x)1x V 0NV2) u , x�V ;(1.5)

u(x) 40, x�¯V .

We notice that in (1.5) the functions m 6 (x)1x V 0NV2 are both non negative
and bounded; here x C denotes the characteristic function of the set C. We will
use the following classical result

LEMMA 1.1. – Let a�L Q (V), aF0 in V ; for all h�L p (V), 1 EpEQ ,
there exists a unique solution u�W 2, p (V)OW 1, p

0 (V) to the problem:

2Du1a(x) u4h , x�V , u(x) 40, x�¯V .

Moreover, if hF0 then uF0; if hF0, hg0 then uD0. The «solution opera-
tor» S defined by u4S(h) is linear and compact in L p for all 1EpEQ.

PROOF. – The first part follows immediately from the classical L p theory
(see [ADN], [GT]) and the maximum principle for weak solutions ([GT], [Tr]).
The compactness of S is an immediate consequence of the L p estimates
([ADN]) and the Sobolev imbedding theorem. r

We define for any m× satisfying (1.3) the multiplication operator
M : L p (V) KL p (V) in the usual manner: Mu(x) 4 m×(x) u(x). It is easy to see
that M is continuous and bounded in the sense that M(A) is bounded for
bounded A. We deduce from here that T4SM , where S4 (2D1l(m 2 (x)1

x V 0NV2 ) I)21 and m×(x) 4m 1 (x)1x V 0NV2 is the solution operator defined
above, is compact in L p for any fixed 1 EpEQ. It follows from Lemma 1.1 and
from the remark on the positivity of m 1 (x)1x V 0NV2 that the operator T
is strongly positive in the sense of quasi-interior points in L p (V) ([DKM], [Z]),
and not in the classical sense of interior points as in ([Am]). In particular, this
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implies that (mI2T)21 is strongly positive (again in the sense of ([DKM])), for
mDr (T) , and this implies that T is irreducible. Here r (T) denotes as usual the
spectral radius of T. We can apply the Krein-Rutman theorem, more precisely
Theorem 12.3 from ([DKM]) with hypothesis i), and with Banach lattice L p (V)
(see also [dP]). If we set s (l) in place of r (T), we deduce that s (l) D0 is an
eigenvalue of T which is algebraically simple; its associated eigenfunction W 1

is a quasi-interior point in L p (V), that is W 1 D0, a . e . on V. Moreover s (l) is
the only eigenvalue associated with positive eigenfunction; hence s (l) is an
eigenvalue of (1.5) and we have:

(1.6) 2DW 11l(m 2 (x)1x V 0NV2 ) W 14s (l)(m 1(x)1x V 0NV2 ) W 1 , x�V ;

W 1 (x) 40, x�¯V .

REMARK 1.2. – By use of regularity results in L p (V) ([ADN]) and Morrey’s
lemma, we deduce that W 1 is in W 2, p (V) for all 1 EpEQ and then in C1, a (V)
for all 0 EaE1. By the strong maximum principle for weak solutions ([Tr]),

we also have ¯W 1

¯n
E0 on ¯V.

We consider now the properties of s (l) as a function of lF0 and with re-
spect to the domain V. These properties follow in our case from the variational
caracterization of s (l) below but they are still valid in more general cases (op-
erators in general form, systems,...) as we will see later. Since the coefficients
m 6 (x)1x V 0NV2 are both non negative and bounded, we have:

s (l) 4 inf
f�H 1

0 (V); fg0

s
V

N˜fN2 1ls
V

(m 2 (x)1x V 0NV2 ) f 2

s
V

(m 1 (x)1x V 0NV2 ) f 2
.(1.7)

Indeed, it is well-known that, if we call for a moment l 1* the right-hand side in
(1.7), l 1*D0, is an eigenvalue to (1.6) having a positive eigenfunction. Since by
the above argument s (l) is the only eigenvalue with this property, and taking
into account that the eigenvalues are the same in H 1

0 (V) and in L p (V) for
1 EpEQ , we have s (l) 4l 1* and (1.7) holds.

We know in particular that s (l) is increasing and continuous with respect
to l; (indeed it is piecewise analytic ([K])); moreover it depends monotonically
on the domain V.

From now on let us denote by l 1 (2D1q , g , D) the principal eigenvalue of
the operator 2D1q with weight g defined on the domain D with Dirichlet
boundary conditions; here D is smooth and qF0 in D and gD0 a.e. in D.
With this notation, s (l) 4l 1 (2D1l(m 21x V 0NV2 ), m 11x V 0NV2 , V) and
s (0) 4l 1 (2D , m 11x V 0NV2 , V).
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REMARK 1.3. – The classical reference for these properties of the eigenval-
ues is ([CH]). This book deals with smooth coefficients but the properties for
bounded coefficients can be derived from them. The dependence with respect
to the domain for Dirichlet boundary conditions is also in ([CH]); of course this
continuity with respect to the domain is not valid any more for Neumann
boundary conditions. It is still possible to get a variational characterization of
the eigenvalues when the weight changes sign (see e.g. [MM], [dF], [W]).

We deduce from the monotonicity with respect to the domain that

(1.8) l 1 (2D1l(m 21x V 0NV2 ), m 11x V 0NV2 , V) E

l 1 (2D1l(m 21x V 0NV2 ), m 11x V 0NV2 , V1 ) 4

l 1 (2D , m 1 , V1 ),

since (m 21x V 0NV2 )(x) 40, (m 11x V 0NV2 )(x) 4m 1 (x) for x�V1. Notice
that this estimate is uniform in l.

It is clear that lD0 is an eigenvalue of (1.1) if and only if s (l) 4l. If the
function lKs (l) is continuous, increasing and since (1.8) holds, it is possible
to show that there is at least one such a l if s (0) 4l 1 (2D , m 11

x V 2NV 0
, V) D0. The uniqueness is a consequence of the strict concavity of the

function s except for a finite number of points (see [BNV], [K], [LG2]). How-
ever we will follow a much simpler way. We do not use neither the concavity of
s , the much simpler argument which follows suffices.

First, it follows from s (0) D0, (1.8) and the continuity of s that there is at
least a l

A
El 1 (2D , m 1 , V1 ) such that s (lA) 4 l

A. Let us see that it is
unique.

Let lDm be two points on the corresponding interval. If we denote by W l ,
W mD0 the associated (normalized) eigenfunctions then we have

2DW l1l(m 2 (x)1x V 0NV2 ) W l4s (l)(m 1 (x)1x V 0NV2 ) W l , x�V ;

2DW m1m(m 2 (x)1x V 0NV2 ) W m4s (m)(m 1 (x)1x V 0NV2 ) W m , x�V ;

W l4W m40, x�¯V .

From the variational characterization (1.7), it follows

s
V

N˜W mN2 1ls
V

(m 2 (x)1x V 0NV2 ) W m
2 Ds (l)s

V

(m 1 (x)1x V 0NV2 ) W m
2 ,

s
V

N˜W mN2 1ms
V

(m 2 (x)1x V 0NV2 ) W m
2 4s (m)s

V

(m 1 (x)1x V 0NV2 ) W m
2 ,
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and this yields

(l2m)s
V

(m 2 (x)1x V 0NV2 ) W m
2 D (s (l)2s (m) )s

V

(m 1 (x)1x V 0NV2 ) W m
2 .

Hence we obtain

s (l)2s (m)

l2m
E

s
V

(m 2 (x)1x V 0NV2 ) W m
2

s
V

(m 1 (x)1x V 0NV2 ) W m
2

.

For m4 l
A, we get

s (l)2l
A

l2l
A E

s
V

(m 2 (x)1x V 0NV2 ) W l
A2

s
V

(m 1 (x)1x V 0NV2 )W l
A2

E1,

where the last inequality is obtained by multiplying (1.6) for l4 l
A and u4W l

A

by W l
A and integrating by parts. This shows that s (l) El for lD l

A and, in the
same way, that s (l) Dl for lE l

A, and this gives the uniqueness of l
A.

Moreover l
A, which is the unique principal eigenvalue of (1.1), is simple.

This is shown by contradiction; if l
A

4s (lA) is not simple as an eigenvalue of
(1.5), we get a contradiction. A similar argument shows that it is the only
eigenvalue of (1.1) with associated positive eigenfunction.

REMARK 1.4. – An alternative simple proof of the uniqueness of the
principal eigenvalue can be given if some more regularity for the eigenfunc-
tions is available, namely if they are C 1, something which happens if rDN . As-
sume to simplify the matter that

2Du4lu in V , u40 on ¯V ,

2Dv4mv in V , v40 on ¯V ,

with 0 ElEm and uD0 in V , ¯u

¯n
E0 on ¯V , and the same for v. Then, using a

device due to Brezis and Oswald and taking into account that u

v
is bounded,

we have for any kD0, that

0 Gs
V

k2
Dv

v
1

Dku

ku
l (v 2 2k 2 u 2 ) 4 (m2l)s

V

m(x)(v 2 2k 2 u 2 ) 4

(m2l) y 1

m
s

V

N˜vN2 2
k 2

l
s

V

N˜uN2zE0

for kD0 large enough, a contradiction. Then l4m .
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We derive immediately the results for lE0 by changing m 1 with
m 2 since l . m4 (2l)(2m). Therefore we have

THEOREM 1.1. – Assume that m satisfies (1.3) and that NV1ND0, NV2ND0.
Hence Problem (1.1) possesses a unique positive (resp. negative) eigenvalue
l 1

1 (m) (resp. l 1
2 (m) ); this eigenvalue is such that

0 El 1
1 (m) El 1 (2D , m 1 , V1 ), (resp. 0 Dl 1

2 (m) Dl 1 (2D , m 2 , V2 ) ) ;

moreover l 1
1 (resp . l 1

2 ) is algebraically simple and is the unique positive
(resp . negative) eigenvalue associated with a positive eigenfuntion.

REMARK 1.5. – Theorem 1.1 can be extended, with the same proof, to a sec-
ond order differential operator in divergence form which is uniformly
elliptic:

2 !
i , j41

n
¯

¯xi
gaij (x)

¯u

¯xj
h1a0 (x) u ,(1.9)

with smooth and bounded coefficients aij and a0 F0.

REMARK 1.6. – We do not deal here with the case m 2
f0, NV1ND0 and

NV 0ND0, V 0 smooth enough. The reason is that the treatment is completely
analogous to the one below for Case (III), where it plays a relevant role. We do
not include this case here in order to avoid repetitions.

REMARK 1.7. – The same approach can be used for different boundary con-
ditions. In particular, we can obtain results for boundary conditions of the
third type

¯u

¯n
1a(x) u40 on ¯V

where a(x)D0 is smooth. Moreover, by writing the eigenvalue problem as

¯u

¯n
1a 1 (x) u4a 2 (x) u on ¯V ,

we can study the problem when a(x) changes sign and get similar results.

REMARK 1.8. – Theorem 1.1 shows that for the equation

2Du1km(x) u4sm(x) u ,(1.10)

the principal eigenvalues are s 1
14l 1

1 (m)1k (resp. s 1
24l 1

2 (m)1k) which
can be of any sign. We shall meet these situations in the next sections.
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2. – The variational case for unbounded indefinite coefficients.

We will now extend Theorem 1.1 in two directions: we will allow the indefi-
nite weight m to be unbounded and we add a coefficient a0 which is not neces-
sarily positive. Let us consider the eigenvalue problem:

2Du1a0 (x) u4lm(x) u , x�V ,(2.1)

u(x) 40, x�¯V ,

where V is as above and where

a0 , m�L r (V), rD
N

2
.(2.2)

As in Section 1, we can rewrite equation (2.1) as

2Du1a0
1 (x) u1lm 2 (x) u4 (lm 1 (x)1a0

2 (x) ) u , x�V ,

and we are led to study the following eigenvalue problem

(2.3) 2Du1(a0
1 (x)11) u1lm 2 (x) u4r (l)gm1 (x)1

a0
2 (x)11

l
h u , x�V ,

u(x) 40, x�¯V ,

Now we can replace Lemma 1.1 by another well-known result:

LEMMA 2.1. – Let aF0 satisfying (2.2). For all h�L
2N

N12 (V), there exists a
unique solution u�H 1

0 (V) to problem

2Du1a(x) u4h , x�V ; u(x) 40, x�¯V .

Moreover uF0 when hF0, and uD0 when hF0; hg0. The solution opera-

tor P : L
2N

N12 (V) KL u (V), defined by u4P(h) is compact for all 1 EuE
2N

N22
.

PROOF. – Since L
2N

N12 (V) is continuously embedded in H 21 (V), the exis-
tence and uniqueness of the solution is a simple consequence of the variational
theory and of Lax-Milgram Lemma, combined with (2.2), (see [dF], [S]). The
positivity follows from the Maximum Principle by Stampacchia ([S]). To show
the compactness, we write

2DPu1a(x) Pu4u , x�V ; Pu(x) 40 x�¯V ;
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by multiplication by Pu and integration, we obtain

s
V

N˜PuN2 1a(x)NPuN2 Gs
V

u . Pu .

By Hölder inequality applied to the right hand-side, we derive

VPuV

2
H 1

0 (V) GVuV

L
2N

N12 (V)
VPuV

L
2N

N22
(V),

and then

VPuVH 1
0 (V) GCVuV

L
2N

N12 (V)
;

combining this with the compactness of the embedding H 1
0 (V) %KL u (V) we

get the result. The continuity follows in the same way. r

The multiplication operator acts between different L p spaces. We
have:

LEMMA 2.2. – Assume that s , tD1 and that m satisfies (2.2). Then the mul-
tiplication operator M : L s (V) KL t (V) is well defined and continuous for

t4
rs

r1s
; in particular, if sF

2Nr

N(r22)12r
, then tF

2N

N12
.

PROOF. – The first part is an immediate consequence of the value of t: 1

r
1

1

s
4

1

t
and of Hölder inequality. To prove the second part, we write:

1

r
1

1

s
4

1

t
G

N(r22)12r

2Nr
1

1

r
4

N12

2N
.

We choose s satisfying

2Nr

N(r22)12r
GsE

2N

N22
,(2.4)

which is precisely equivalent to (2.2). r

From now on we fix s satisfying this condition (2.4). From above we know
that the operator T4SM , where S is the solution operator defined by S4

(2D1a0
1111lm 2 )21 and where M is the operator of multiplication by the

function M(x) 4m 1 (x)1
1

l
(11a0

2 (x) ) is well defined; moreover it is com-

pact from L s (V) into L s (V). By Lemmas 2.1 and 2.2, and since M(x) D0 in V ,
S is strongly positive (always in the sense of quasi-interior points of L s (V)),
and we can apply the same version of Krein-Rutman Theorem in the Banach
lattice L s (V). By using the same notation, we can show the existence of a posi-
tive eigenvalue r (l) D0 to problem (2.3); this eigenvalue is algebraically sim-
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ple and associated with a positive eigenfunction. Taking into account that the
imbedding H0

1 (V) %KL s (V) is compact, that the coefficients in (2 . 1 ) are posi-
tive, reasoning as above (in (1.7)), we obtain the variational characteriza-
tion:

(2.5) r (l) 4 inf
f�H 1

0 (V); fg0

s
V

N˜fN2 1s
V

(a0
1 (x)11) f 2 1ls

V
m 2 (x) f 2

s
V

m 1 (x) f 2 1
1

l
s

V
(a0

2 (x)11) f 2
4

l inf
f�H 1

0 (V); fg0

s
V

N˜fN2 1s
V

(a0
1 (x)11) f 2 1ls

V
m 2 (x) f 2

ls
V

m 1 (x) f 2 1s
V

(a0
2 (x)11) f 2

.

It can be seen easily that r (l) is increasing in l , depends monotonically on the
domain and is continuous ([MM], [dF]). Thus we can define:

r (0) 4 lim
lK0

r (l) 40.

We study here the case where a0
2 is not necessarily f0. In this situation the

presence of an additional term depending on l in (2.5) makes non obvious (in
fact it can be false) that r (l) has the same properties than when a0

2
f0. In any

case, it follows from (2.5) that r (l) depends continuously on l for lD0, is in-
creasing with respect to l and depends monotonically with respect to the do-
main. But it is not clear if r (l) is concave or satisfies the weaker property used
before.

In any case, (2.5) provides several useful estimates for r (l). The first
one is obtained by using the monotone dependence with respect to both
the coefficients and the domain

r (l) 4l 1g2D1a0
1111lm 2 , m 11

1

l
(a0

211), VhE

l 1g2D1a0
1111lm 2 , m 11

1

l
(a0

211), V1h4

l 1g2D1a0
111, m 11

1

l
(a0

211), V1hEl 1 (2D1a0
111, m 1 , V1 ),

and this gives the uniform estimate:

r (l) El 1 (2D1a0
111, m 1 , V1 ).(2.6)
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REMARK 2.1. – In fact estimate (2.6) could be replaced by

r (l) Gl 1 (2D1a0
1 , m 1 , V1 )

according to the observation in Remark 2.2 below.
Now we need the following auxiliary result:

LEMMA 2.3. – With the notations above we have:

l 1 (2D1a0
1 , a0

2 , V) D1 ` l 1 (2D1a0 , 1 , V) D0,(2.7)

l 1 (2D1a0
1 , a0

2 , V) 41 ` l 1 (2D1a0 , 1 , V) 40,(2.8)

l 1 (2D1a0
1 , a0

2 , V) E1 ` l 1 (2D1a0 , 1 , V) E0.(2.9)

PROOF. – If 2DW1a0
1 W4ra0

2 W with rD1 and WD0 then 2DW1a0 W4

(r21)a0
2 W and r21 4l 1 (2D1a0 , a0

2 , V) which implies l 1 (2D1a0 ,
1 , V) D0 by the variational caracterization (2.5). Conversely if 2Dc1a0 c4

rc with rD0 and cD0, we have 2Dc1a0
1 c4a0

2 c1rc and a well-known
result gives us 1 El 1 (2D1a0

1 , a0
2 , V), which proves (2.7). The proof of (2.8)

and (2.9) is analogous. r

REMARK 2.2. – The preceding Lemma is still valid if we replace a0
6 by a0

61

1, or more generally by a0
61a for any aD0. If aK0, we obtain the result in

Remark 2.1. We will use this often in the following.
Since we have

r 8 (0) 4 lim
lK01

r (l)

l
4l 1 (2D1a0

111, a0
211, V),

we derive from Lemma 2.3 and Remark 2.2 that we have to consider separate-
ly the three following cases:

l 1 (2D1a0 , 1 , V) D0,(I)

l 1 (2D1a0 , 1 , V) 40,(II)

l 1 (2D1a0 , 1 , V) E0.(III)

2.1. CASE I. l 1 (2D1a0 , 1 , V) D0.

Obviously if a0 F0, we are in this case. From (2.7) and Remark 2.2, we de-
duce r 8 (0) D1. From the continuity of r (l), (2.6) and (2.7), r (l) intersects at
least once the diagonal; we will see the uniqueness of this point.
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Assume that r (l) 4lD0. Then:

2DW l1a0 (x) W l4lm(x) W l , W l (x) D0, x�V ,(2.10)

W l (x) 40, x�¯V .

Multiplying (2.10) by W l and integrating over V , we get by (2.7) and the varia-
tional characterization of the eigenvalue:

l 1 (2D1a0 , 1 , V)s
V

W l
2 Gs

V

N˜W lN
2 1s

V

a0 W l
2 4ls

V

mW l
2 .

We deduce from the above equation

s
V

mW l
2 D0.(2.11)

Assume moreover that there exists m such that r (m) 4m , and that 0 EmEl ,
then

2DW m1a0 (x) W m4mm(x) W m , W m (x) D0, x�V ,

W m (x) 40, x�¯V .

From (2.10), 0 4l 1 (2D1a0 2lm , 1 , V) and by the variational characteriza-
tion of the eigenvalue we get

s
V

N˜vN2 1s
V

a0 v 2 2ls
V

mv 2 F0, (v�H0
1 (V);

and the equality occurs if and only if v4cW l , where c is a constant. We have
thus

s
V

N˜W mN2 1s
V

a0 W m
2 2ls

V

mW m
2 1 (l2m)s

V

mW m
2 40;

and it follows from above that the sum of the three first terms is positive, so
s

V
mW m

2 E0 which contradicts (2.11) and proves uniqueness. We have estab-

lished the following result

THEOREM 2.1. – Assume that a0 and m satisfy (2.2), that NV1ND0,
NV2ND0 and that (I) is satisfied. Then the conclusion of Theorem 1.1 is still
valid with 2D1a0 (x) instead of 2D.

REMARK 2.3. – The same observation as in Remark 1.4 is also pertinent
here. Concerning the regularity of eigenfunctions, we have that W 1 �H 1

0 (V) is
a weak solution of DW 1 1 (a0 (x)2l 1 m(x) ) W 1 40, where a0 2l 1 m�L r (V),

with rD
N

2
. By Theorem 2.3 in [BK], W 1 �L s (V) for any s� (1 , Q), and then
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it is easy to show that W 1 is continuous. The same argument gives u� C 1 (V) if
rDN .

2.2. CASE II. l 1 (2D1a0 , 1 , V) 40.

In this case r has exactly slope 1 at origin, which allows all possibili-
ties.

By (2.8), we have:

2DW 0 1a0 (x) W 0 40, W 0 (x) D0, x�V ,(2.12)

W 0 (x) 40, x�¯V .

Assume that r (n)4nD0, cD0 is an eigenpair of (2.10). We derive 04l 1 (2D1

a0 2nm , 1 , V) and using again the variational characterization, we get:

s
V

N˜vN2 1s
V

a0 v 2 2ns
V

mv 2 D0, (v�H0
1 (V), vccc ,

and hence

s
V

N˜W 0N
2 1s

V

a0 W 0
2 2ns

V

mW 0
2 D0;

by (2.12), the sum of the two first terms is 0 and hence

s
V

mW 0
2 E0.(2.13)

which provides a necessary condition for the existence of a positive principal
eigenvalue.

Hence we have to consider the two following subcases:
i) If s

V
mW 0

2 F0, we have proved above that nD0 cannot be an eigenvalue of

(2.10). Either 0 is the unique eigenvalue or there is a negative eigenvalue,
which is unique by the concavity of the spectral radius ([K]).

ii) If (2.13) holds, (2.10) can have one positive eigenvalue which will be
unique. The proof of uniqueness is analogous to that in Case (I) or as in i).

We shall prove now that there exists effectively one positive eigenvalue; to
show this, we rewrite our eigenvalue problem in a different way as:

2Du1a0 (x) u1l(m 2 (x)11) u4r(m 1 (x)11) u , x�V ,

u(x) 40, x�¯V .

Since l 1 (2D1a0 1l(m 211), 1 , V) D0, the Maximum principle holds and
the Krein-Rutman theorem implies the existence of an eigenvalue that we de-
note by r(l) (since it is not the same that r (l)); r(l) D0 is associated to a posi-
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tive eigenfunction W l . It is clear that r(0) 40. We also have

2DW l1a0 (x) W l1l(m 2 (x)11) W l4r(l)(m 1 (x)11) W l , x�V ,(2.14)

W l (x) 40, x�¯V .

By multiplying (2.14) by W 0 D0 and by Green formula, we get

s
V

(2DW 0 1a0 (x) W 0 ) W l1ls
V

(m 2 (x)11) W l W 0 4r(l)s
V

(m 1 (x)11) W l W 0 .

Taking in account the fact that the first integral is 0, we have:

r(l)

l
4

s
V

(m 211) W l W 0

s
V

(m 111) W l W 0

,

and hence

lim
lK0

r(l)

l
4

s
V

(m 211) W 0
2

s
V

(m 111) W 0
2

D1;

this last result follows immediately from (2.13) (by continuity of the eigenfunc-
tion W l with respect to l which we prove next). As in Case (I), we deduce that
there exists some lD0 such that r(l) 4l.

LEMMA 2.4. – Let W l and W 0 be the eigenfunctions normalized by
conditions

VW l VL 2r 8 (V) 4VW 0 VL 2r 8 (V) 41, where
1

r
1

1

r 8
41.

Hence W l converges to W 0 when lK0 in L 2r 8 (V) (and in H 1
0 (V) weakly).

PROOF. – We have

2DW l1a0 (x) W l4b(l) W l , x�V ; W l (x) 40, x�¯V ,

with b(l) 4r(l)(m 111)2l(m 211). Multiplying the equation by W l and by
Green formula, we have

s
V

N˜W lN
2 4s

V

b(l) W l
2 2s

V

a0 (x) W l
2 G

Vb(l)VL r (V) VW l V

2
L 2r 8 (V) 1Va0 VL r (V) VW l V

2
L 2r 8 (V) G

Vb(l)VL r (V) 1Va0 VL r (V) GC .
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Indeed, since lim
lK0

r(l) 40, we have lim
lK0

Vb(l)VL r (V) 40. It follows that

VW l VH 1
0 (V) GC , and then it follows from Sobolev imbedding theorem that there

exists a subsequence W l k
converging to W× weakly in H 1

0 (V) and strongly in

L 2r 8 (V) as l k converges to 0 , since 2r 8E
2N

N22
. It follows immediately that

W l k
2 converges to W×2 strongly in L r 8 (V) and then

s
V

a0 (x) W l k
2 Ks

V

a0 (x) W×2

as l k converges to 0.
Moreover, by the weak-lower-semicontinuity of the norm,

lim inf
l kK0

s
V

N˜W lN
2 Fs

V

N˜W×N2 .

By passing to the limit in the equation, we get

s
V

N˜W×N2 1s
V

a0 (x) W×2 G0.

But it follows from condition (2.8) that

s
V

N˜W×N2 1s
V

a0 (x) W×2 40,

by the variational characterization which also yields W× 4cW 0 , and replacing in
the equation, we obtain c41. r

We have thus proved the following results

THEOREM 2.2. – Assume that a0 and m satisfy (2.2), NV1ND0, NV2ND0
and (II) is satisfied. Then problem (2.1) has a positive (resp. negative) prin-
cipal eigenvalue if and only if

s
V

mW 0
2 E0 (resp. D0).

In this case it is unique.

THEOREM 2.3. – Assume that a0 and m satisfy (2.2), NV1ND0, NV2ND0,
(II) is satisfied and

s
V

mW 0
2 40.

Then 0 is the only possible principal eigenvalue to Problem (2.1).
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REMARK 2.4. – Similar results have been proved in [HMV] for operators in
general form with singular (near ¯V) coefficients. Several results in [LG2] are
also generalized in this article.

2.3. CASE III. l 1 (2D1a0 , 1 , V) E0.

In this case, we have lim
lK0

r (l)

l
E1 and we need further estimates. The

second estimate is derived from (2.5):

0 Er (l) Er2 (l),(2.15)

where

r2 (l) 4l inf
f�H 1

0 (V); fg0

s
V

N˜fN2 1s
V

(a0
1 (x)11) f 2 1ls

V
m 2 (x) f 2

s
V

(a0
2 (x)11) f 2

.(2.16)

A third estimate still follows from (2.5). Indeed we have for lD0

(2.17) r (l) El 1g2D1a0
111,

1

l
(a0

211), V1hEr3 (l) »4

l . l 1 (2D1a0
111, a0

211, V1 ).

By continuity, we define

r (0) 4 lim
lK0

r (l) 4 lim
lK0

r2 (l) 4r2 (0) 40 4r3 (0).(2.18)

The derivatives of these functions at the origin will play an important role in
the following. From (2.5), (2.16) and (2.18) and from the continuity of the
eigenvalues we deduce

r 8 (0) 4r 82 (0) 4 lim
lK01

r2 (l)

l
4l 1 (2D1a0

111, a0
211, V),

which means that the two curves have the same tangent at the origin. We also

have that r2 (l) is convex, since lK
r2 (l)

l
is strictly increasing. The comparison

with r3 (l), gives a first non existence result.

PROPOSITION 2.1. – If l 1 (2D1a0 , 1 , V1 ) G0, then there is no positive
principal eigenvalue to (2.1).

PROOF. – By Lemma 2.3, we have equivalently l 1 (2D1a0
111, a0

211,
V1 ) G1 and the result follows from (2.17) combined with (2.18). r

It remains to consider the case

l 1 (2D1a0
111, a0

211, V1 ) D1.(2.19)
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or equivalently

l 1 (2D1a0 , 1 , V1 ) D0,(2.20)

which will be a necessary condition for the existence of a positive principal
eigenvalue.

A better necessary condition can be obtained from estimate (2.15) given by
r2 (l). It follows from the convexity of r2 (l) that it will intersect the straight
line r4l 1 (2D1a0

1 , m 1 , V1 ) in a unique point which will be denoted by l*.

PROPOSITION 2.2. – If we have

l 1 (2D1a0
1 , m 1 , V1 ) Gl*,

then there is no positive principal eigenvalue to (2.1).

PROOF. – It follows easily from the above arguments, (2.15) and Remark
2.1.

Hence we have obtained the necessary condition

l 1 (2D1a0
1 , m 1 , V1 ) Dl*,(2.21)

for the existence of a positive eigenvalue. r

In principle, there may be now two, one or no solutions. We are unable to
give a precise explicit answer for each given m , except in the special situations
m 1

f0 and m 2
f0 which are considered later, but it is possible to offer a

generic description of the situation.
In fact, in this case, we need also more precise estimates concerning the

slope at infinity. We use the following result

PROPOSITION 2.3. – Let D be a regular bounded domain in RN. Let b , q , g in
L r (D), rDN/2 , be such that bF0, qF0, gD0 on V. We define D0 »4 ]x�
DOq(x) 40(. Assume that

D0 4 int(D0 ), Nint(D0 )ND0 and(H)

int(D0 ) satisfies the cone property except may be for a set of capacity
zero.

Then we have

lim
aK1Q

l 1 (2D1b1aq , g , D) 4l 1 (2D1b , g , D0 ).

SKETCH OF PROOF. – As in [D3] we can prove

lim
aK1Q

l 1 (2D1b1aq , g , D) Gl 1 (2D1b , g , D0 ).
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On the other hand, if there is some dD0 such that, for all a

l 1 (2D1b1aq , g , D) GK»4l 1 (2D1b , g , D0 )2d ,

we choose a sequence (wj ) %H 1
0 (D) of eigenfunctions associated to l 1 (2D1

b1 jq , g , D) with s
D

gwj
2 41. We can show that wj converges weakly in H 1

0 (D),

strongly in L 2
g (D) to some w�H 1

0 (D) which satisfies s
D

qw 2 40; it follows from

a theorem of Hedberg that w�H 1
0 (D0 ) and therefore

l 1 (2D1b , g , D0 ) Gs
D0

N˜wN2 1bw 2 G

lim inf
jK1Q

g s
D

N˜wjN
2 1bwj

2hG lim
jK1Q

l 1 (2D1b1 jq , g , D)s
D

gNwjN
2 G

lim
jK1Q

l 1 (2D1b1 jq , g , D)s
D

gNwN2 GKs
D

gNwN2 4K ,

a contradiction. Therefore

l 1 (2D1b , g , D0 ) 4 lim
aK1Q

l 1 (2D1b1aq , g , D). r

REMARK 2.5. – Proposition 2.3 is a particular case of a result in ([GS]) and
was applied in the study of some nonlinear problems in ([AT1], [AT2]). For the
readers’s convenience, we state here the particular case of the results of ([D3])
that we use; see Proposition 1 and the remarks preceding the Proposition in page
444 of ([D3]). Necessary and sufficient conditions for its validity, which are relat-
ed with fine properties of Sobolev spaces were given by Dancer in the interesting
paper ([D3]). For the case of operators in non-divergence form, see ([LG2]),
where the smoothness assumptions on both the domain and the coefficients are
stronger than in ([D3]). See also the observations made in ([D3]).

REMARK 2.6. – From Proposition 2.3 above with b4a0
111, q4m 2 , g4

a0
211, we derive

r 82 (Q) »4 lim
lK1Q

r2 (l)

l
4l 1 (2D1a0

111, a0
211, V1NV 0 ).(2.22)

Hence if the convex function r2 (l) has a «slope at infinity», l 1 (2D1a0
11

1, a0
211, V1NV 0 ) which is G1, (2.21) cannot be satisfied.

We study first the particular case m 1
f0 and consider the existence (or

not) of negative eigenvalues. It turns out that lE0 cannot be a principal
eigenvalue to (2.1). Indeed, if 2Dc1a0 c42lm 2 (x)c in V , c40 on the
boundary and cD0 in V , then, by a comparison argument 0 4l 1 (2D1a0 1

lm 2 , 1 , V) El 1 (2D1a0 , 1 , V), a contradiction. Hence all possible eigen-
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values are positive. Now the problem can be rewritten as

2Du1 (a0
1 (x)11) u1lm 2 (x) u4rg a0

2 (x)11

l
h u , x�V ,(2.23)

u(x) 40, x�¯V .

The spectral radius is given by the expression

r(l) 4l inf
f�H 1

0 (V); fg0

s
V

N˜fN2 11s
V

(a0
1 (x)11) f 2 1ls

V
m 2 (x) f 2

s
V

(a0
2 (x)11) f 2

(2.24)

which is actually the r2 (l) in (2.16). Thus r(l) is convex and r(l)(0)40. If (H) is
satisfied, it follows from Proposition 2.3, that its «slope at infinity» is given by

lim
lK1Q

r(l)

l
4l 1 (2D1a0

111, a0
211, V 0 ).

It turns out that, if l 1 (2D1a0
111, a0

211, V 0 ) G1, or what is equivalent
by Lemma 2.3,

l 1 (2D1a0 , 1 , V 0 ) G0,(2.25)

r (l) will never intersect the diagonal and the problem has no solution. On the
opposite side, if l 1 (2D1a0

111, a0
211, V 0 ) D1, or equivalently

l 1 (2D1a0 , 1 , V 0 ) D0,(2.26)

then, since r(l) is strictly convex, it will intersect exactly once the diagonal.
We have thus proved the following result:

THEOREM 2.4. – Assume that a0 and m satisfy (2.2), m 1
f0, NV 0ND0, and

(H) and (III) are satisfied. Then there is a unique positive principal eigen-
value to (2.1) if and only if (2.26) holds.

REMARK 2.7. – The case m 2
f0 can be treated exactly in the same way.

Under less stringent conditions on the coefficients, we obtain then an alterna-
tive proof of results stated in [LG1], [LG2]. On the other hand, the above argu-
ments formulated as they are, are only valid for differential operators in diver-
gence form. See however Section 3.

Finally, we will consider the problem for a weight function which changes
sign on V. According to Remark 2.7, we assume that

r 82 (Q) 4l 1 (2D1a0
111, a0

211, V1NV 0 ) D1,(2.27)

and we study the problem, starting from m 1
f0, with lD0. More precisely,
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we consider a family of eigenvalue problems

2Du1a0 (x) u4l(tm 1 (x)2m 2 (x) ) u , x�V ,(2.28)

u(x) 40, x�¯V ,

where tF0 plays the role of a parameter and we rewrite the equation as

(2.29) 2Du1(a0
1 (x)11) u1lm 2 (x) u4rgtm 1 (x)1

a0
2 (x)11

l
h u , x�V .

These problems are well-defined and the corresponding eigenvalue is given
by

r (t , l) 4l inf
f�H 1

0 (V); fg0

s
V

N˜fN2 1s
V

(a0
1 (x)11) f 2 1ls

V
(m 2 (x) f 2

lts
V

(m 1 (x) ) f 2 1s
V

(a0
2 (x)11) f 2

.(2.30)

By (2.27), there exists a unique point l×2 where r (0 , l) 4r2 (l) intersects the di-

agonal. For t40, we are in the case m 1
f0 and

r (0 , l)

l
D1 for any lD l×2. By

continuity, for any e 0 D0,
r (t , l× 2 1e 0 )

l× 2 1e 0

D1 for tD0 small. Indeed, if this is not

true for any small t0 D0, there exists a sequence 0 E tk E t0 such that

1 F lim
tkK0

r (tk , l× 2 1e 0 )

l× 2 1e 0

4
r (0 , l× 2 1e 0 )

l× 2 1e 0

4D1 ,

contradicting the assumption.
Then, for any e 0 D0, and for 0 E tE t0 , t fixed and small enough, the curve

r (t , l) is above the diagonal for some l4l× 2 1e 0 . Since r (t , l) Gl 1 (2D1

a0
111, tm 1 , V1 ) then it intersects (at least once) the diagonal. But by the

concavity of the eigenvalue of the original problem, this can only happen ex-
actly once again. Then there will be exactly two positive principal eigenvalues
for any 0 E tE t0 , t0 small enough. (It turns out that t0 D1 implies the exis-
tence of two positive principle eigenvalues to the initial problem (2.1)).

The curves r (t , l) form a family which is pointwise decreasing in t for l
fixed. Moreover

lim
tK1Q

r (t , l)

l
40,

where the convergence is uniform on the interval lFdD0, for any dD0. (We
pick d4 l×2). Indeed if W�H 1

0 (V), Wg0, with supp (W) %V1 , we have as
tK1Q

r (t , l)

l
G

s
V

N˜WN2 1s
V

(a0
1 (x)11)W 2

lts
V

(m 1 (x) ) W 2 1s
V

(a0
2 (x)11) W 2

K0 .
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All this shows that there are two principal eigenvalues for t small and none for
t large.

Hence we have shown that, for tD0 small, there are two principal eigen-
values which we denote by l 1 (t) El 2 (t). Moreover, it follows easily from (2.30)
and the above reasoning that l 1 (t) (resp. l 2 (t)) is an increasing (resp. decreas-
ing) function of t and that both are continuous. We define A as the set of positi-
ve t such that there exists two principal eigenvalues of (2.29). It is clear that A
is a non empty, open (by continuity) and bounded set; let t »4 sup A. Then if
tk 6 t as kK1Q , l 1 (tk )6l 1 (t) and l 2 (tk )7l 2 (t) and it follows from the
monotonicity that l 1 (t) Gl 2 (t).

We claim that l 1 (t) 4l 2 (t). Indeed, if l 1 (t) El 2 (t), since r (t , n) Dn for any
n� (l 1 (t); l 2 (t) ), we have r (t, n) Fn for any n�I»4 (l 1 (t); l 2 (t) ). But then ei-
ther r (t, n) 4 n for some n �I , which is impossible by the concavity of the spec-
tral radius of the original problem, or r (t, n) Dn for any n�I and using once
again the continuity there is a t *D t having two principal eigenvalues, a
contradiction.

Now, if we put l »4l 1 (t) 4l 2 (t), it follows by the continuity of r (t , l) (see
above) that r (t, l) 4 l. Then, by passing to the limit in

2DW k 1 (a0
1 (x)11) W k 1l k m 2 (x) W k 4

r (tk , l 1 (tk ) )gtk m 1 (x)1
a0

2 (x)11

l k
h W k , x�V ,

W k (x) 40, x�¯V ,

we obtain

2DW1 (a0
1 (x)11) W1lm 2 (x) W4 lgtm 1 (x)1

a0
2 (x)11

l
h W , x�V ,

W(x) 40, x�¯V .

Since Wg0, and WD0 on V , we have proved that l is an eigenvalue for t4 t with
positive eigenfunction W. This implies that l is a principal eigenvalue for t4 t and
it is simple. That it is actually the only one follows from the definition of t and the
same continuity argument. We have thus proved the following result.

THEOREM 2.5. – Suppose that V is a regular bounded domain in RN such
that NV1ND0, NV2ND0 and moreover V1NV 0 satisfies Condition (H) in
Proposition 2.3. Assume also that conditions (2.2), (2.21), l 1 (2D1

a0 , 1 , V) E0, l 1 (2D1a0 , 1 , V1NV 0 ) D0 are satisfied. Then there exists a
t D0 such that the eigenvalue problem (2.28) has two positive principal
eigenvalues for any t� (0 , t), exactly one for t4 t, and none if tD t.
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REMARK 2.8. – The main theorems we have obtained in Case (III) rely heav-
ily on the important result by Dancer [D3] stated in Proposition 2.3, which holds
for 2D or, more generally, for operators in divergence form. A result of the
same type was proved in [LG2] for operators in general form with smooth coeffi-
cients. Hence our proofs do not extend automatically to the non selfadjoint case
and the reader may see the remarks in [D3, p. 439] for this situation.

If t F1 this means that the original problem has a positive principal eigen-
value. It is an important question to compare t with 1. A partial answer is given
by the following proposition.

PROPOSITION 2.4. – Assume that the hypotheses of Theorem 2.5 are satis-
fied and let W 0 D0 be the eigenfunction associated to l 1 (2D1a0 , 1 , V) E0.
Then, for any tD0 such that (2.28) has a positive principal eigenvalue, we have

tE
s

V
m 2 W 0

2

s
V

m 1 W 0
2

.

PROOF. – Let lD0 be a principal eigenvalue of (2.28) for some tD0. Since
W 0 is not an eigenfunction of (2.28), and since l 1 (2D1a0 2ltm 11

lm 2 , 1 , V) 40, we have

s
V

N˜W 0N
2 1a0 W 0

2 2ls
V

(tm 12m 2 ) W 0
2 D0.

Since l 1 (2D1a0 , 1 , V) E0, we derive ls
V

(tm 12m 2 ) W 0
2 E0 and since

m 1
g0, the result follows. r

COROLLARY 2.1. – If s
V

mW 0
2 F0, then there is no positive principal eigen-

value to Problem 2.1.

It is clear that similar results can be proved under analogous conditions
and we leave this task to the interested reader.

3. – The case of a general operator.

3.1. Smooth domains.

We consider here the case of a differential operator in general form on a
bounded domain V in RN. The corresponding eigenvalue problem can be writ-
ten as

Lu4lm(x) u , x�V ,(3.1)

u(x) 40, x�¯V ,
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where

Lu42!
i , j

aij (x)
¯ 2 u

¯xi ¯xj

1!
i

bi (x)
¯u

¯xi

1a0 (x) u(3.2)

is a second order uniformly elliptic differential operator. We assume that both
V and the coefficients in L are such that the L p-regularity theory in [ADN]
(see also ([GT], [Tr])) applies; in particular we have

a0 �L Q (V).(3.3)

Moreover we assume that

m 2�L Q (V),(3.4)

m 1�L r (V), rD
N

2
,(3.5)

are satisfied.
As above (3.1) can be written equivalently as

Lu1l(m 2 (x)1x V2NV 0
) u4l(m 1 (x)1x V2NV 0

) u , x�V ,(3.6)

u(x) 40, x�¯V ,

and the associated eigenvalue problem is now

Lu1l(m 2 (x)1x V2NV 0
) u4r(m 1 (x)1x V2NV 0

) u , x�V ,(3.7)

u(x) 40, x�¯V .

The multiplication operator M defined by Mu(x)4(m 1(x)1x V2NV 0
(x))u(x)

is well defined as a linear operator from C(V) into L r (V) and it is continuous
and bounded. If S is the solution operator corresponding to the linear
problem:

Lu1l(m 2 (x)1x V2NV 0
) u4h , x�V ,

u(x) 40, x�¯V .

Then for any h�L r (V), there exists a unique solution u�W 2, r (V)OW 1, r
0 (V)

and u� C(V) by (3.5). Since S : L r (V) KW 2, r (V) is continuous and since the
embedding J of W 2, r (V) into C(V) is compact, T4JSM: C(V) K C(V) is also
compact. By the Strong Maximum Principle for weak solutions ([GT], [Tr],
[PW]), T is strongly positive in the sense of quasi-interior points of [DKM].
We have proved the

LEMMA 3.1. – Suppose that the above assumptions, as well as (3.3), (3.4)
and (3.5) are satisfied. Then, for any lD0 there exists a unique eigenvalue
r (l) D0 to (3.7) which is algebraically simple and is the only one associated
to a positive eigenfunction.
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If we use the same notation, l 1 (L1q , g , V), (now with operator L instead
of 2D), the monotone dependence with respect to the domain yields as
before:

r (0) 4l 1 (L , m 11x V2NV 0
, V) D0,

r (l) El 1 (L1l(m 21x V2NV 0
), m 11x V2NV 0

, V1 ) 4l 1 (L , m 1 , V1 ).

That r (l) is continuous and increasing as a function of l is proved by using the
variational characterization in [BNV] or as in [HK].

The uniqueness of the fixed point of r follows from the concavity of r (l),
see ([BNV], [LG2]). This allows us to prove the

THEOREM 3.1. – Suppose that the above assumptions, as well as (3.3) to
(3.5) are satisfied. Then there exists a unique positive (resp . negative) eigen-
value l1

1 (L , m , V) (resp . l2
1 (L , m , V) ) to (3.1); moreover

0 El1
1 (L , m , V) El 1 (L , m 1 , V1 )

(resp . 2l 1 (L , m 2 , V2 ) El2
1 (L , m , V) ) E0).

Moreover, l1
1 (L , m , V) (resp . l2

1 (L , m , V) ) is algebraically simple and it is
the only positive (resp . negative) eigenvalue having a positive eigenfunction.

REMARK 3.1. – Theorem 3.1 extends most of the results in [HK] in the sense
that it allows less regular coefficients (not in C(V)) and the weight m satisfies
(3.4), (3.5) instead of m� C(V).

An alternative proof can be given if (3.5) is replaced by

m 1�L r (V), rDN .(3.8)

We sketch it in order to show the flexibility of the method. We work now in the
function space C1

0 (V) and the positive cone has the nonempty interior:

K4mu� C 1
0 (V)NuD0 in V ,

¯u

¯n
E0 on ¯Vn .

Reasoning as above, it is easy to show that T4JSM , where M : C 1
0 (V) K

L r (V), S : L r (V) KW 2, r (V)OW 1, r
0 (V), J : W 2, r (V)OW 1, r

0 (V) K C0
1 (V) is a

compact linear operator in C1
0 (V). Moreover, Tu�K if uF0 by the Strong

Maximum principle for weak solutions. We use the classical version of Krein-
Rutman theorem for cones with nonempty interior and, then, a similar fixed
point argument.

3.2. Nonsmooth domains

Here V is a bounded domain with no smoothness property, as in ([BNV])
or ([Bi]). The differential operator L is defined by (3.2) with aij � C(V), bi , a0 �
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L Q (V), and a0 F0. Moreover we assume:

m�L Q (V).(3.9)

The corresponding eigenvalue problem can be written as

Lu4lm(x)u , x�V ,(3.10)

u(x) 40, x�¯V ,

The boundary condition (1.2) should be understood, all along this subsection,
in the sense of u4

u0
0 in [BNV] where u0 is the solution of the problem Lu0 41

in V , u0 40 on ¯V , again in the sense of the paper [BNV].
As above, (3.10) can be written equivalently as

Lu1l(m 2 (x)1x V2NV 0
) u4l(m 1 (x)1x V2NV 0

) u , x�V ,(3.11)

and the associated eigenvalue problem is now

Lu1l(m 2 (x)1x V2NV 0
) u4r(m 1 (x)1x V2NV 0

) u , x�V .(3.12)

The role of Lemmas 1.1 and 2.2 is now played by

LEMMA 3.2. – For any h�L t (V), with tFN , there exists a unique solution
u�L Q (V) of

Lu4h in (V); u40 on ¯V .

Moreover, if hF0, then uF0. The solution operator S defined by u4S(h) is
a linear compact operator in L t (V) for any tFN.

PROOF. – Existence and uniqueness were proved in ([BNV]) and positivity
follows from the Refined Maximum Principle in ([BNV]). The compactness of
S is proved in the same way as in ([Bi]) for t4N. r

The multiplication operator M is defined as usual but now it is convenient
to pick pFN.

The linear operator T4SM where S4 (L1l(m 2 (x)1x V2NV 0
) I)21 is

compact in L p (V) for any pFN fixed and sends the positive cone K in L p (V)
into itself. Moreover by the Krylov-Safonov-Harnack inequality, (see Corol-
lary 9.25 in [GT]), T is still strongly positive in the sense of quasi-interior
points in the Banach lattice L N (V) and the generalized version of Krein-Rut-
man theorem in [DKM] is applicable. As before we define

r (l) »4l 1 (L1lm 21lx V2NV 0
, m 11x V2NV 0

, V).

Here also r is monotone and continuous, r (0) D0, and r satisfies

r (l) El 1 (L , m 1 , V1 ).

Hence r has a fixed point and we have thus proved the following result
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THEOREM 3.2. – Under the above assumptions, the eigenvalue problem
(3.10) has a positive eigenvalue l 1 D0 which is the only eigenvalue having a
positive eigenfunction.

REMARK 3.2. – An alternative proof of this result can be given by reasoning
as in [Bi], where another variant of the Krein-Rutman theorem is used.

In order to extend Theorem 3.2 to the case of indefinite weights m and a zero
order coefficient a0 which changes sign, it is instrumental to have the same prop-
erties of r(l) concerning its dependence as a function of l and the domain V.
Since the principal eigenvalue obtained here should coincide with the one in
[BNV] and by taking into account (3.9) and the variational characterization (1.14)
in [BNV], we see that r(l) is continuous and monotone as a function of l and de-
pends monotonically on V. The continuous dependence on the domain is proved
in [LG2] when V and the coefficients are very smooth; some results in [BNV],
namely Theorem 2.4 and Proposition 9.3 go in this direction.

Added in proof: After the acceptation of this paper for publication, we have
received a preprint by H. Amann, «Maximum Principles and Principal Eigen-
values», where most of the general results mentioned in the introduction have
been extended.

Aknowledgement. The authors thank U. Kauffman for valuable com-
ments.
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Principal Eigenvalues for some Indefinite Linear Eigenvalue problems,
preprint, 2002.

[FM] J. FLECKINGER - A. B. MINGARELLI, On the Eigenvalues of Non-Definite Ellip-
tic Operators, Maths. Studies, 92, North Holland (1983), 219-227.

[GS] F. GESZTESY - D. GURARIE - H. HOLDEN - H. KLAUS - L. SADUN - B. SIMON - P.
VOGEL, Trapping and cascading of eigenvalues in the large coupling limit,
Comm. Math. Phys., 118 (1988), 597-634.

[GT] D. GILBARG - N. S. TRUDINGER, Elliptic Partial Differential Equations of Sec-
ond Order, Springer, Berlin, 1977.

[HKS] T. J. HEALY - H. KIELHOFER - C. A. STUART, Global branches of positive weak
solutions of semilinear elliptic problems over non smooth domains, Proc. Roy-
al Soc. Edinburgh, 124A (1994), 371-388.
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