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Bollettino U. M. I.
(8) 7-B (2004), 109-128

Global Weak Solutions for a Degenerate Parabolic System
Modelling a One-Dimensional Compressible Miscible Flow

in Porous Media.

Y. AMIRAT - A. ZIANI

Sunto. – Proviamo la risolubilità di un sistema parabolico non lineare degenere costi-
tuito da due equazioni che descrivono lo spostamento di un fluido compressibile,
causato da un altro fluido, completamente miscibile al primo, in un mezzo poroso
unidimensionale, trascurando la diffusione molecolare. Usiamo la tecnica delle
soluzioni rinormalizzate per le equazioni paraboliche al fine di ottenere stime a
priori per soluzioni di tipo viscosità. Passiamo al limite nel sistema parabolico,
quando il coefficiente di diffusione molecolare tende a zero, tramite metodi di com-
pattezza per compensazione.

Summary. – We show the solvability of a nonlinear degenerate parabolic system of two
equations describing the displacement of one compressible fluid by another, com-
pletely miscible with the first, in a one-dimensional porous medium, neglecting the
molecular diffusion. We use the technique of renormalised solutions for parabolic
equations in the derivation of a priori estimates for viscosity type solutions. We
pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic
system, owing to compensated compactness arguments.

1. – Statement of the problem and main result.

Let TD0 and let V4 (0 , 1 ). We set V T 4V3 (0 , T). In [2], we investigat-
ed the existence of global weak solutions to the nonlinear initial boundary
value problem of parabolic type:

(1.1) fa(c) ¯t p1¯x u40, u42
k

m(c)
¯x p in V T ,

(1.2) u(0 , t) 4u(1 , t) 40, p(x , 0 ) 4p0 (x), (x , t) �V T ,

(1.2) f¯t c1u¯x c1fb(c) ¯t p2¯x (f(dm 1dp NuN) ¯x c) 40 in V T ,

(1.4) (dm 1dp NuN) ¯x c(y , t) 40 (y40, 1 ), c(x , 0 ) 4c0 (x), (x , t) �V T .

This system describes the displacement of one compressible fluid by another,



Y. AMIRAT - A. ZIANI110

completely miscible with the first, in a one-dimensional porous medium, see
for instance Douglas and Roberts [7], Bear [4], Peaceman [13], Scheideg-
ger [15], and the references therein. Here p is the pressure, c is the concentra-
tion of one of the two components of the fluid mixture, u is the Darcy velocity,
k4k (x) is the permeability of the medium, f4f(x) is the porosity, m4m(c) is
the concentration-dependent viscosity of the fluid mixture, dm and dp are the
molecular diffusion and the dispersion constants, respectively. The viscosity
m4m(c) in (1.1) is assumed to be determined by some mixing rule. For in-
stance, in the Koval model, m is defined on the interval (0 , 1 ) as the «quarter
power mixing rule»,

m(c) 4m(0)(11 (M 1/4 21) c)24
(1.5)

where M4m(0) /m(1) is the mobility ratio, MD1. The functions a and b are de-
fined on the interval (0 , 1 ) by

a(c) 4z2 1Dzc , b(c) 4Dzc(12c) with Dz4z1 2z2 ,

where zl is the constant compressibility factor for the l-th component
(l41, 2 ), z1 Fz2 D0.

In this paper we make the following assumptions:

(i) The functions p0 and c0 satisfy

(1.6) p0 �H 1 (V), c0 �L Q (V), p08 (x) G0, 0 Gc0 (x) G1 a.e. in V.

(ii) The functions m and 1 /m are convex and such that

m� C 2 ( [0 , 1 ] ), 0 Em 2Gm(c) Gm1 (c� (0 , 1 ),(1.7)

where m 2 and m1 are two fixed real numbers. Obviously, the function m de-
fined by (1.5) satisfies (1.7).

For the purpose of simplifying the discussion, we suppose in addition the
porosity and the permeability of the medium constant and equal to 1. We have
proved in [2] the global existence of solutions to the problem (1.1)-(1.1) when
we take into account both diffusion and dispersion terms (dm D0, dp D0).
More precisely, the following result was established in [2].

THEOREM 1.1. – Assume (1.6) and (1.7) hold, and f41, k41, dm D0, and
dp D0. Then problem (1.1)-(1.4) admits a weak solution, i.e. there is a pair
(p , c) satisfying the following conditions:

(i) p�L Q (0 , T ; W 1, 1 (V) )OW 1, u (V T ), for any u , 1 GuE3/2 , and p is
a solution of (1.1)-(1.2) verified in L u (V T );
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(ii) c�L 2 (0 , T ; H 1 (V) ), 0 Gc(x , t) G1 for almost every (x , t) in V T ,
and c is a weak solution of (1.3)-(1.4), that is c satisfies the integral
identity

2 s
V T

c¯t W dx dt1 s
V T

(u¯x c1b(c) ¯t p) W dx dt

1 s
V T

(dm 1dp NuN) ¯x c ¯x W dx dt4s
V

c0 (x) W(x , 0 ) dx ,

for any testing function W in C1 (VT) with support contained in V3[0, T[.

Let us also mention some related papers to problem (1.1)-(1.4). Neglecting
the dispersion effect (dp 40 and dm D0), Feng [8] proved a local existence of
strong solutions to the problem (1.1)-(1.4). Amirat, Hamdache, and Ziani [1]
have obtained an existence result of global weak solutions to compressible
miscible flow in three-space porous medium, in the case of viscosity indepen-
dent of the concentration («unit mobility» case) but the molecular diffusion
and dispersion terms may vanish.

It is well known that in porous media flow the molecular dispersion is more
important physically than the molecular diffusion, see Bear [4], Chou and
Li [6], Pearson and Tardy [14], Wheeler [17], and Young [18]. This motivates
the study of existence of solutions to the problem (1.1)-(1.4) when the molecu-
lar diffusion term is neglected. In the sequel, we fix the dispersion constant
dp equal to 1 , take the molecular diffusion dm 4e with 0 Eeb1, and denote
p4p e , u4u e , and c4c e the corresponding weak solution constructed in [2].
Then we examine the asymptotic behavior, as e goes to zero, of the solutions
(p e , c e ). We note, as stated in Theorem 1.1 that,

0 Gc e (x , t) G1 a.e. in V T ,(1.8)

so according to the definition of the function a , we have

z2 Ga(c e (x , t) ) Gz1 a.e. in V T .(1.9)

We will prove the existence of a weak solution, in the sense hereafter, to
the problem (1.1)-(1.4) in the case dm 40. It is a degenerate parabolic system
which writes:

a(c) ¯t p1¯x u40, u42
1

m(c)
¯x p in V T ,(1.10)

u(0 , t) 4u(1 , t) 40, p(x , 0 ) 4p0 (x), (x , t) �V T ,(1.11)

¯t c1u¯x c1b(c) ¯t p2¯x (NuN¯x c) 40 in V T ,(1.12)

NuN¯x c(y , t) 40 (y40, 1 ), c(x , 0 ) 4c0 (x), (x , t) �V T .(1.13)
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DEFINITION 1.1. – A pair (p , c) is said to be a weak solution of problem
(1.10)-(1.13) if:

(i) p�L Q (0 , T ; W 1, 1 (V) )OW 1, u (V T ), for any u , 1 GuE3/2 , and p is
a solution of (1.10)-(1.11) verified in L u (V T );

(ii) c�L Q (V T ), 0 Gc(x , t) G1 for almost every (x , t) in V T with
NuN1/2 ¯x c�L 2 (V T ), and c is a weak solution of (1.12)-(1.13), that is c satisfies
the integral identity

(1.14) 2 s
V T

c¯t W dx dt1 s
V T

(u¯x c1b(c) ¯t p) W dx dt1

s
V T

NuN¯x c¯x W dx dt4s
V

c0 (x) W(x , 0 ) dx ,

for any testing function W in C 1 (VT ) with support contained in V3

[0 , T[.

Our main result is the following one.

THEOREM 1.2. – Assume (1.6) and (1.7) hold, and f41, k41, dp 41, and
dm 4e in (1.1)-(1.4) and let (p e , c e ) denote a corresponding weak solution to
(1.1)-(1.4). Then, there are extracted subsequences from (c e ) and (p e ), not re-
labelled for convenience, such that, as eK0,

p e � p weakly in W 1, u (V T ), c e � c in L Q (V T ) weak-˜,

for any 1 GuE3/2 , and the pair (p , c) is a weak solution to (1.10)-(1.13) in

the sense of Definition 1.1. Furthermore, the function u42
1

m(c)
¯x p belongs

to L u (0 , T ; W 1, u (V) )OL 2u (V T ).

The rest of the paper is devoted to the proof of this result.

2. – Proof of the result.

The proof consists in two parts. In the first one we derive some estimates
for p e , u e , and c e , that are independent of e. We mainly use the techniques of
renormalized solutions for parabolic equations, as in Boccardo and Gallouët [5]
and Murat [11]. In the second part we pass to the limit, as eK0, using com-
pensated compactness techniques.
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2.1. Some estimates.

Let (p e , c e ) be the weak solution to (1.1)-(1.4), constructed in [2]. Then the
flux function u e42¯x p e /m(c e ) is a weak solution to:

¯t (m(c e ) u e )2¯xg 1

a(c e )
¯x u eh40 in V T ,(2.1)

u e (0 , t) 40, u e (1 , t) 40 for t� (0 , T),(2.2)

(m(c e ) u e )(x , 0 ) 42p08 (x) for x�V .(2.3)

In the sequel, we will use often C to represent a generic positive constant de-
pending only on fixed data.

We first have the following result.

LEMMA 2.1. – The function u e is nonnegative and the sequence (u e ) is
bounded in L Q (0 , T ; L 1 (V) ).

We sketch formally the proof. We can make precise the arguments em-
ployed by considering a sequence (c e

m ) of regularized functions that converges,
as mKQ , to c e in L Q (0 , T ; L 2 (V) ) as done in [2].

Let us prove that (u e ) is bounded in L Q (0 , T ; L 1 (V) ). Let hD0 and let
signh (s) and sign (s) denote the following real-valued functions of the real vari-
able s:

signh (s) 4
s

(s 2 1h)1/2
, sign (s) 4

.
/
´

1

21

if sF0,

if sE0 .

Obviously,

sign (s) 4 lim
hK01

signh (s) for c0 .

We multiply (2.1) by signh (u e ) and integrate over V. This gives

s
V

¯t (m(c e ) u e ) signh (u e ) dx1hs
V

1

a(c e )

N¯x u eN2

(Nu eN2 1h)3/2
dx40.

Since the second term is nonnegative, we have

s
V

¯t (m(c e ) u e ) signh (u e ) dxG0.

Letting hK0, yields

s
V

¯t (m(c e ) u e ) sign (u e ) dxG0.
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Since m(c e ) D0 a.e. in V T , sign (u e ) 4sign (m(c e ) u e ) so that the latter inequal-
ity gives

d

dt
s

V

(m(c e )Nu eN) dxG0

from which follows, using (1.7),

m 2s
V

Nu e (x , t)NdxGs
V

Np08 (x)Ndx for a.e. t� (0 , T).

Therefore (u e ) is bounded in L Q (0 , T ; L 1 (V) ).
As usual, we denote

signh
2 (s) 4

.
/
´

0

2signh (s)

if sF0,

if sE0.

Then, multiplication of (2.1) by signh
2 (u e ) and integration over V t 4V3

(0 , t), 0 E tET , yields

s
V t

¯t (m(c e ) u e ) signh
2 (u e ) dx ds1hs

V t

1

a(c e )

N¯x (u e )2N2

( (u e )2 1h)3/2
dx ds40 .

Since the second term is nonnegative, we have

s
V t

¯t (m(c e ) u e ) signh
2 (u e ) dx dsG0.

Letting hK0, yields

s
V t

¯t (m(c e ) u e ) sign2 (u e ) dx dsG0.

Since sign2 (u e ) 4sign2 (m(c e ) u e ), the latter inequality gives

d

dt
s

V t

m(c e )(u e )2 dx dsG0.

Then, owing to (1.6) since u0 (x) 42
1

m(c0 (x) )
p08 (x) for a.e. t� (0 , T), we

get

s
V

m(c e (x , t) )(u e )2 (x , t) dxGs
V

m(c e (x , 0 ) ) u0
2 (x) dx40 a.e. in (0 , T) .

It follows (u e )240 a.e. in V T , i.e. u eF0 a.e. in V T . The proof is com-
plete. r
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Hereafter, we drop the absolute value of u e. Let us now establish the fol-
lowing estimates. We will use often C to represent a generic constant esti-
mated in terms of known quantities and differing from one inequality to
another.

LEMMA 2.2. – The following properties hold:

(i) the sequences (ke¯x c e ) and ( (u e )1/2 ¯x c e ) are bounded in
L 2 (V T );

(ii) the sequence (u e ) is bounded in L u (0 , T ; W 1, u (V) )OL 2u (V T );

(iii) the sequence (p e ) is bounded in W 1, u (V T );

(iv) the sequences (u e ) and (¯x p e ) are bounded in L s (0 , T ; L s (V) ),
where sF1 is arbitrary and s4s(2u21) /(s21).

In (ii)-(iv), 1 GuE3/2 is arbitrary.

(i) We multiply equation (1.3) by c e and integrate over V. This gives

1

2

d

dt
s

V

Nc eN2 dx1s
V

(e1u e )N¯x c eN2 dx1s
V

c e u e ¯x c e dx1s
V

c e b(c e ) ¯t p e dx40.

According to (1.1) and 0 Gc e (x , t) G1, it follows

s
V

c e b(c e ) ¯t p e dx42s
V

g(c e ) ¯x u e dx4s
V

g 8 (c e ) u e ¯x c e dx ,

with g(c e ) 4c e b(c e ) /a(c e ), and then Ng 8 (c e )NGC. Then

1

2

d

dt
s

V

Nc eN2 dx1s
V

(e1u e )N¯x c eN2 dxG (C11)s
V

u e N¯x c eNdx

Gds
V

u e N¯x c eN2 dx1C(d)s
V

u e dx ,

for any dD0, with C(d) 4 (C11) /4d. Integrating with respect to t and
choosing d small enough, we conclude by Lemma 2.1 that the sequence
( (e1u e )1/2 ¯x c e ) is bounded in L 2 (V T ).

(ii) We use (i) and Lemma 2.1 to improve the estimates for the flux function
u e. The main tool is the technique of renormalized solutions for parabolic
equations, following Boccardo and Gallouët [5] and Murat [11].

Let mF0 be an integer. We define the odd function Sm on R by

Sm (z) 4

.
/
´

0

z22m

2m

if 0 GzG2m ,

if 2m GzG2m11 ,

if zF2m11 ,



Y. AMIRAT - A. ZIANI116

and we define Bm
e as the set

B e
m 4 ](x , t) �V T ; 2m GNm(c e (x , t) ) u e (x , t)NG2m11 (.

We multiply (2.1) by Sm (m(c e ) u e ) and integrate over V. It follows

s
V

¯t (m(c e ) u e ) Sm (m(c e ) u e ) dx1s
V

m(c e )

a(c e )
Sm8 (m(c e ) u e )N¯x u eN2 dx4

2s
V

m 8 (c e )

a(c e )
Sm8 (m(c e ) u e ) u e ¯x u e ¯x c e dx in (0 , T).

Let us introduce the function SAm : RKR , defined as SAm (z) 4 s
0

z

Sm (j) dj. Inte-
grating the latter relation over (0 , T) we obtain

s
V

SAm (m(c e ) u e )(x , T) dx1s
Bm

e

m(c e )

a(c e )
Sm8 (m(c e ) u e )N¯x u eN2 dx dt4

s
V

SAm (m(c e ) u e )(x , 0 ) dx2s
Bm

e

m 8 (c e )

a(c e )
Sm8 (m(c e ) u e ) u e ¯x u e ¯x c e dx dt .

Since SAm (m(c e ) u e )(x , t) F0 and (m(c e ) u e )(x , 0 ) 42p08 (x) in V , and
NSAm (z)NG2m NzN , we have

Ns
V

SAm (m(c e ) u e )(x , 0 ) dxN G2ms
V

Np08 (x)Ndx .

Using the properties of Sm , m(c e ) and a(c e ), we obtain

s
V

SAm (m(c e ) u e )(x , T) dx1s
Bm

e

m(c e )

a(c e )
Sm8 (m(c e ) u e )N¯x u eN2 dx dtG

2ms
V

Np08 (x)Ndx1Cs
Bm

e

Nu eNN¯x u eNN¯x c eNdx dtG

2ms
V

Np08 (x)Ndx1ds
Bm

e

N¯x u eN2 dx dt1C(d) s
Bm

e

Nu eN2 N¯x c eN2 dx dtG

2ms
V

Np08 (x)Ndx1ds
Bm

e

N¯x u eN2 dx dt12m C(d) s
Bm

e

Nu eNN¯x c eN2 dx dt
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for any real number dD0, with C(d) 4C/4d. This implies

s
Bm

e

N¯x u eN2 dx dtG2mg s
V

Np08 (x)Ndx1Cs
Bm

e

Nu eNN¯x c eN2 dx dth ,

and then, using (1.6) and the inequality s
V T

Nu e NN¯x c eN2 dx dtGC , it fol-
lows

1

2m s
Bm

e

N¯x u eN2 dx dtGC .(2.4)

Now, let u be a real number, 1 EuE2. Using the Hölder inequality, we
get

s
Bm

e

N¯x u eNu dx dtGg s
Bm

e

N¯x u eN2 dx dthu/2

NBm
e N12u/2 ,

where NBm
e N denotes the measure of Bm

e . We note that on Bm
e we have Nu eNF

C2m where the constant C depends only on variations of the function m.
Therefore,

NBm
e NG

C

2m s
Bm

e

Nu e Ndx dt .

By the Hölder inequality we also have

s
Bm

e

Nu eNdx dtGg s
Bm

e

Nu eNs dx dth1/s

NBm
e N1/s 8 ,

for any s , s 8F1 with 1 /s11/s 841. Thus

NBm
e NG

C

2ms g s
Bm

e

Nu eNs dx dth .

Therefore, in view of (2.4),

s
Bm

e

N¯x u eNu dx dtG
C

2m(s(12u/2 )2u/2 ) g s
Bm

e

Nu eNs dx dth12u/2

.

Then, choosing

sD
u

22u
(2.5)
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to get the serie convergent, we have

!
mF0

s
Bm

e

N¯x u e Nu dx dtGC !
mF0

1

2m(s(12u/2 )2u/2 ) g s
Bm

e

Nu eNs dx dtv12u/2

.(2.6)

Using the discrete Hölder inequality

!
m

am bm G g!
m

am
r 8h1/r 8g!

m
bm

r h1/r
, r , r 8F1,

1

r
1

1

r 8
41,

the right-hand side of (2.6) is majorized as follows:

!
mF0

1

2m(s(12u/2 )2u/2 ) g s
Bm

e

Nu eNs dx dth12u/2

G

g!
mF0

1

2mr(s(12u/2 )2u/2 ) h1/rg!
mF0

g s
Bm

e

Nu eNs dx dthr 8 (12u/2 )h1/r 8

.

We choose r 84
2

22u
. We infer from (2.6)

!
mF0

s
Bm

e

N¯x u eNu dx dtGCg !
mF0

s
Bm

e

Nu eNs dx dth12u/2

.

Now we define BAe as the set

BAe4 ](x , t) �V T ; 0 GNm(c e (x , t) ) u e (x , t)NG1(

so that V T 4 BAeNg 0
mF0

Bm
e h. We have to estimate s

B
A

e

N¯x u eNu dx dt. To this pur-

pose, we introduce the functions R , RA : RKR defined as:

R(z) 4

.
/
´

1

z

21

if zF1,

if 21 GzG1,

if zG21,

RA(z) 4s
0

z

R(j) dj .

Multiplying (2.1) by R(m(c e ) u e ) and integrating over V T , we get

s
V

RA(m(c e ) u e )(x , T) dx1 s
V T

m 8 (c e )

a(c e )
R 8 (m(c e ) u e )N¯x u eN2 dx dt4

s
V

RA(m(c e ) u e )(x , 0 ) dx2 s
V T

m 8 (c e )

a(c e )
R 8 (m(c e ) u e ) u e ¯x u e ¯x c e dx dt .
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We have

Ns
V

RA(m(c e ) u e )(x , 0 ) dxN Gs
V

Np08 (x)Ndx ,

then, using the properties of RA, m(c e ) and a(c e ), it follows

s
V

RA(m(c e ) u e )(x , T) dx1s
B
A

m 8 (c e )

a(c e )
R 8 (m(c e ) u e )N¯x u eN2 dx dtG

s
V

Np08 (x)Ndx1ds
B
A

e

N¯x u eN2 dx dt1C(d)s
BAe

Nu eNN¯x c eN2 dx dt

for any real number dD0, with C(d) 4C/4d. This implies

s
BAe

N¯x u eN2 dx dtGC .

We have established the following estimate

s
V T

N¯x u eNu dx dtGCg11g s
V T

Nu eNs dx dth12u/2h ,(2.7)

for any sD
u

22u
. We now use the Gagliardo-Nirenberg multiplicative embed-

ding inequality for the flux function u e (Q , t), which satisfies u e (0 , t) 4

u e (1 , t) 40 for almost every t in (0 , T). We have

g s
V

Nu eNs dxh1/s

GC g s
V

N¯x u eNu dxhl/ug s
V

Nu eNr dxh(12l) /r

with rF1, 0 GlG1, and such that

l4g 1

r
2

1

s
hg12

1

u
1

1

r
h21

.

We take r41. Then, since Vu e
VL Q (0 , T ; L 1 (V) ) GC ,

Vu e (t)VL s (V) GCV¯x u e (t)VL u (V)
l for a.e. t� (0 , T),(2.8)

where

l4g12
1

s
hg22

1

u
h21

,

for arbitrary sF1 such that 0 GlG1. Raising (2.8) to the power s and then in-
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tegrating over (0 , T), for

sG2u ,(2.9)

we can apply the Hölder inequality to the right-hand side. This yields

s
0

T

s
V

Nu eNs dx dtGCu s
0

T

s
V

N¯x u eNu dx dtv(s21)/(2u21)

.

Then, from (2.7) follows

s
V T

N¯x u eNu dx dtGCg11g s
V T

N¯x u eNu dx dthuh with u 4
(s21)(22u)

2(2u21)
,

for any s satisfying (2.5) and (2.9) which requires u

22u
E2u , i.e. 1 GuE

3

2
. We

note that 0 E u E1. Hence

V¯x u e
VL u (V T ) GC , Vu e

VL 2u (V T ) GC for any 1 GuE3/2 .(2.10)

Point (ii) is established.
(iii) The estimate of (p e) follows from (1.1) and (2.10).
(iv) In view of (2.10), V¯x u e (t)VL u (V)

l belongs to L u/l (0 , T) where l4
u(s21)

s(2u21)
and sF1 is arbitrary. Then, using (2.8), (u e ) and (¯x p e ) are bounded

in the space L s (0 , T ; L s (V) ), with

s4
s(2u21)

s21
and 1 GuE3/2 .

The proof of the lemma is finished. r

Now we can prove the following estimates.

LEMMA 2.3. – The sequences (c e u e ) and (¯x (c e u e ) ) are bounded in
L 2u (V T ) and L u (V T ) respectively, while the sequence (u e ¯x c e ) is bounded in
L 4u/(2u11) (V T ), for any 1 GuE3/2.

The estimates of (c e u e ) and (c e ¯x u e ) follow from Lemma 2.2 and (1.8).
Writing

u e ¯x c e4 (u e )1/2 (u e )1/2 ¯x c e

and using Lemma 2.2, and the Hölder’s inequality, we find that (u e ¯x c e ) is
bounded in L 4u/(2u11) (V T ). We note that

3

2
D

4u

2u11
Du for any 1 GuE3/2 ,
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and then (u e ¯x c e ) and (¯x (c e u e ) ) are bounded in L u (V T ). Lemma 2.3 is
proved. r

2.2. Passing to the limit as eK0.

In view of Lemma 2.2 and (1.8), there exist functions p , u , and c in the
spaces L Q (0 , T ; W 1, 1 (V) )OW 1, u (V T ), L u (0 , T ; W 1, u (V) ), and L Q (V T ) re-
spectively, such that, for appropriate subsequences, we have

p e � p in W 1, u (V T ) weakly ,

u e � u in L u (0 , T ; W 1, u
0 (V) ) weakly ,

c e � c in L Q (V T ) weak-˜.

In the sequel, for convenience, the convergent extracted subsequences are not
relabelled, they are denoted likewise the original sequences.

Let us first prove the following result.

LEMMA 2.4. – The sequences (¯x p e ) and (u e ) are sequentially compact in
L 2u (V T ), for any u , 1 GuE3/2.

In view of Lemma 2.2, the sequences (¯x p e ) and (u e ) are bounded in
L 2u (V T ). Then it is enough to show that theses sequences are sequentially
compact in L u (V T ), for any u , 1 GuE3/2. As a consequence of Lemmas 2.2
and 2.3, writing equation (1.1) in the form

a(c e ) ¯t p e2
1

m(c e )
¯x

2 p e2
m 8 (c e )

m(c e )
u e ¯x c e40,

it follows that (¯x
2 p e ) is bounded in L u (V T ) and then (¯x p e ) is bounded in

L u (0 , T ; W 1, u (V) ). Owing to (2.1), (¯t (¯x p e ) ) is bounded in L u (0 , T ;
W 21, u (V) ). Applying a classical compactness argument of Aubin [3], see also
Lions ([10], Théorème 5.1, pp. 58), we obtain, for an appropriate subse-
quence,

¯x p eK¯x p strongly in L u (V T ),(2.11)

and therefore (¯x p e ) is sequentially compact in L u (V T ), for any u , 1 GuE

3/2.
The sequence (m(c e ) ) is bounded in L Q (V T ). According to (1.7), there are m

and m 21 in L Q (V T ) such that, for extracted subsequences,

m(c e ) � m and
1

m(c e )
�

1

m 21

in L Q (V T ) weak-˜.
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Now, we multiply (1.3) by m 8 (c e ). This writes in the form

(2.12) ¯t m(c e )1¯x (u e m(c e )2 (e1u e ) ¯x m(c e ) ) 4

2b(c e )m 8 (c e ) ¯t p e1m(c e ) ¯x u e1m 9 (c e )(e1u e )N¯x c eN2 .

In view of Lemmas 2.2 and 2.3, the right-hand side is bounded in L 1 (V T ). Let
us consider the two sequences (u e ) and (m(c e ) ). The sequence (u e ) is bounded
in L u (0 , T ; W 1, u (V) )OL 2u (V T ), the sequence (m(c e ) ) is bounded in
L Q (V T ), and we have, extracting subsequences if necessary,

u e � u in L u (0 , T ; L u (V) ) weak,

m(c e ) � m in L q (0 , T ; L u 8 (V) ) weak, (qFu 8 ,

where u 8 is the conjugate of u , u 84u/(u21). Furthermore, (¯t (m(c e ) ) ) is
bounded in the space L 1 (0 , T ; (W 1, u 8 (V) )8 ). Then, using a compensated com-
pactness argument, see Kazhikhov ([9], Lemma 6, pp. 36), Murat [12], Tartar
[16], we obtain, for an extracted subsequence,

m(c e ) u e � mu in D8 (0 , T , D8 (V) ).

This implies u42¯x p/m. Owing to (2.11), u42¯x p/m 21 and then mu4m 21 u.
Then, following Tartar [16], the convexity of the function m gives m Fm(c). By
considering the function 1 /m we get 1 /m 21 F1/m(c). Then m Fm(c) Fm 21 and
therefore

mu4m(c) u4m 21 u , u42¯x p/m(c).(2.13)

We observe also, similarly to (2.12), that 1 /m(c e ) satisfies

¯t (1 /m(c e ) )1¯x (u e /m(c e )2(e1u e ) ¯x (1 /m(c e ) ) )4m 8 (c e ) b(c e ) ¯t p e /(m(c e )2 )1

¯x u e /m(c e )1 (m 9 (c e ) m(c e )22m 8 (c e )2 )(e1u e )N¯x c eN2 /m(c e )3 .

The sequence (1 /m(c e ) ) has the same properties than (m(c e ) ); the same analy-
sis applies. We obtain, for an appropriate subsequence,

u e /m(c e ) � u/m 21 4u/m(c) in D8 (0 , T , D8 (V) ).

Writing (u e )2 4 (u e /m(c e ) )(2¯x p e ) and using (2.11) and (2.13), we deduce, ex-
tracting a subsequence if necessary,

(u e )2 � 2u¯x p/m(c) 4u 2 in L u (V T ) weak.(2.14)

Here, we have used the fact that (u e ) is bounded in L 2u (V T ). Consequently,
the sequence (u e ) is sequentially compact in L 2u (V T ). The lemma is now
proved. r
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Let us now prove that the pair (p , c) is a weak solution to (1.10)-(1.13). We
first note that system (1.1)-(1.4) is equivalent to the one where (1.3) is replaced
by the conservative equation:

¯t (c e2ap e )1¯x ( (c e2b) u e2 (e1u e ) ¯x c e ) 40,(2.15)

with a4z1 z2 /Dz and b4z1 /Dz. To pass to the limit, as eK0, in the pressure
equation

a(c e ) ¯t p e1¯x u e40,(2.16)

we have to determine the weak limit of the product of the two weakly conver-
gent sequences (c e ) and (¯t p e ). This is the purpose of the following
lemma.

LEMMA 2.5. – There are extracted subsequences from (c e ) and (p e ), not re-
labelled for convenience, such that, for any 1 GuE3/2 , as eK0,

c e ¯t p e � c¯t p in L u (V T ) weak .

From (1.8) we deduce that there exists c2 �L Q (V T ) such that, for an ap-
propriate subsequence,

(c e )2 � c2 in L Q (V T ) weak-˜.

Considering the two sequences (c e ) and (c e u e ) and using a compensated com-
pactness argument, we obtain, for an appropriate subsequence,

(c e )2 u e � c 2 u weakly in L 2u (V T ).

According to the strong convergence of (u e ), we get c2 u4c 2 u. As a conse-
quence, for an extracted subsequence,

(c e2c)2 u eK0 strongly in L 1 (V T ).

This follows from the identity

(c e2c)2 u e4 (c e )2 u e1c 2 u e22cc e u e ,

and the previous convergent results. Now, let f be a convex C 2 function on
[0 , 1 ]. Writing

f (c e ) u e4 f (c) u e1 (c e2c) u e f 8 (c)1
1

2
(c e2c)2 u e f 9 (d e ),

where d e� (0 , 1 ), we deduce, for an appropriate subsequence,

f (c e ) u eK f (c) u strongly in L 1 (V T ).(2.17)

Let us now multiply the pressure equation (2.16) by signh (u e ), with hD0
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fixed. This gives

u e a(c e )

( (u e )2 1h)1/2
¯t p e1¯x ( (u e )2 1h)1/2 40.(2.18)

We note that 0 Gsignh (u e ) E1. Due to the strong convergence of (u e ) and
(c e u e ) in L 2u (V T ), we have, extracting subsequences eventually,

u e a(c e )

( (u e )2 1h)1/2
K

ua(c)

(u 2 1h)1/2
strongly in L t (V T ) for any 1 GtEQ .

Therefore, sending eK0 in (2.18), yields

ua(c)

(u 2 1h)1/2
¯t p1¯x (u 2 1h)1/2 40,

which writes also

u

(u 2 1h)1/2
(a(c) ¯t p1¯x u) 40.(2.19)

We observe that

c e

a(c e)
¯x u e4

1

Dz
g12

z2

a(c e )
h ¯x u e ,

then, using equation (2.16),

c e

a(c e)
¯x u e4

1

Dz
¯x u e1

z2

Dz
¯t p e .(2.20)

We also have

c e

a(c e )
¯x u e4¯xg c e

a(c e )
u eh2z2

u e

a(c e )2
¯x c e .(2.21)

Thanks to Lemma 2.3 and (1.9), the sequence g u e

a(c e )2
¯x c eh is bounded in

L u (V T ). We write

u e

a(c e )2
¯x c e4 (u e )1/2 je with je4

(u e )1/2

a(c e )2
¯x c e .

First, using the part (i) of Lemma 2.3 and (1.9) the sequence (je ) is bounded in
L 2 (V T ). Then, for a subsequence, je � j weakly in L 2 (V T ). Next, Lemma 2.4
insures that ( (u e )1/2 ) is sequentially compact in L 4u (V T ). Consequently, for an
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extracted subsequence,

u e

a(c e )2
¯x c e � u 1/2 j in L u (V T ) weak.

Using the sequentially compactness of (c e u e ) in L 2u (V T ), the weak conver-
gence of (c e ) in L Q (V T ) weak-˜*, and (1.9) we have for an appropriate
subsequence,

c e

a(c e )
u e �

c

a(c)
u weakly in L 2u (V T ).

Using (2.20) and (2.21), we have

¯xg c e

a(c e )
u eh4

1

Dz
¯x u e1

z2

Dz
¯t p e1z2

u e

a(c e )2
¯x c e .

We deduce by passing to the limit, as eK0, in the latter relation that

¯xg c

a(c)
uh2z2 u 1/2 j4

1

Dz
¯x u1

z2

Dz
¯t p

which writes also

Dza(c)gz2
u

a(c)2
¯x c2z2 u 1/2 jh4a(c) ¯t p1¯x u .

Then, from (2.19) and the latter inequality follows

a(c) ¯t p1¯x u40.

The lemma is proved. r

It remains to show that the function c is a solution to the concentration
equation (1.12). After multiplication of (2.15) by a test function W in C 1 (VT )
with compact support contained in V3[0 , T[ and integration by parts, we
obtain

(2.22) s
V T

](c e2ap e ) ¯t W1 (u e (c e2b)2 (e1u e ) ¯x c e ) ¯x W( dx dt4

2s
V

(c0 (x)2ap0 (x) ) W(x , 0 ) dx .

To pass to the limit, as eK0, in (2.22), thanks to Lemmas 2.2 and 2.4, we have
to characterize the weak limit of the sequence (u e ¯x c e ). This is the purpose of
the following lemma.
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LEMMA 2.6. – There are extracted sequences from (c e ) and (u e ), not rela-
belled for convenience, such that, as eK0,

u e ¯x c e � u¯x c in L u (V T ) weak .

Let us denote

R e4¯xg u e

a(c e )
h2

1

a(c e )
¯x u e .

Choosing f (c) 41/a(c) in (2.17), we obtain (for an appropriate subse-
quence)

u e

a(c e )
K

u

a(c)
strongly in L 2u (V T ).

From equation (2.16) and Lemma 2.5 follows

1

a(c e )
¯x u e �

1

a(c)
¯x u in L u (V T ) weak.

Then

R e � R4¯xg u

a(c)
h2

1

a(c)
¯x u weakly in L u (0 , T ; W 21, u (V) ).

In view of Lemma 2.2, the sequence ((u e )1/2 ¯x c e ) is bounded in L 2 (V T ). Then,
there is j �L 2 (V T ) such that, extracting a subsequence if necessary,

(u e )1/2 ¯x c e � j weakly in L 2 (V T ).

The strong convergence of (u e ) together with the above convergence
implies

u e ¯x c e � u 1/2 j in L u (V T ) weak.

Choosing f (c) 41/(a(c) )4 in (2.17), we have

u e

a(c e )4
K

u

a(c)4
strongly in L 1 (V T )

from which follows

(u e )1/2

a(c e )2
K

u 1/2

a(c)2
strongly in L 2 (V T ).
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By identification of the limit R ,

u 1/2

(a(c) )2
j 4

u

(a(c) )2
¯x c ,

which gives

u 1/2 j 4u¯x c .

Consequently, for an appropriate subsequence,

u e ¯x c e � u¯x c in L u (V T ) weak.

This ends the proof of the lemma. r

To conclude, we send e to 0 in (2.22). We obtain

s
V T

](c2ap) ¯t W1( (c2b) u2u¯x c) ¯x W( dx dt42s
V

(c0 (x)2ap0 (x) ) W(x , 0 ) dx ,

for any testing function W in C 1 (VT ) with compact support contained in V3

[0 , T[. Combining with equation (1.1) we obtain (1.14). This completes the
proof of Theorem 1.2. r
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