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A Spatially Inhomogeneous Diffusion Problem
with Strong Absorption.

RICCARDO RICCI - DOMINGO A. TARZIA

Sunto. – Si studia il comportamento asintotico delle soluzioni di un problema di diffu-
sione non lineare con assorbimento forte. Si dimostra la convergenza alla soluzio-
ne stazionaria nella norma L Q usando una opportuna famiglia di sopra e sottoso-
luzioni. In appendice si dimostra la buona posizione del problema.

Summary. – We study the asymptotic behaviour (tK1Q) of the solutions of a
nonlinear diffusion problem with strong absorption. We prove convergence to the
stationary solution in the L Q by means of an appropriate family of sub and super-
solutions. In appendix we prove the well posedness of the problem.

1. – Introduction.

Some years ago we discussed the problem of the asymptotic behaviour of
the non-negative solution of the Dirichlet problem for the one-dimensional
nonlinear reaction-diffusion equation

ut 2 (u m )xx 1u n 40, xD0, tD0, u(0 , t) 41, tD0 ,(1)

with 1 Gm and 0 GnEm . Assuming u(x , 0 ) F0 with compact support, we
proved that the solution converges uniformly exponentially fast to the station-
ary solution if the power m and n satisfies the inequality

m1nG2 ,(2)

see [11], [12]. In particular, when m41, any nE1 is allowed, so this gave a
first answer to the problem of the asymptotic behaviour of the so called «dead-
core» problem [13], see also [12], [10] and [4] for related results.

Recently a paper by A. Berezovsky and R. Kersner, [1], addressed the
question of the asymptotic behaviour for a reaction-diffusion problem in pres-
ence of a point source, namely

¯C

¯t
4div (D(C) grad C)2R(C) C1Q(t) Qd(x) .(3)
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Here C(x , t) is the concentration profile of a chemical emitted from a point
source and dispersed under the combined effect of diffusion and absorption
into some chemical reaction. D(C) and R(C) are respectively the diffusion coef-
ficient and the reaction rate, Q(t) is the emission rate, and d(x) is the Dirac
measure.

Assuming spherical symmetry of the solution (which is the case for a
spherically symmetrical initial value) the authors were able to reduce (formal-
ly) the problem to a one-dimensional problem, namely to find the non-negative
solutions of

L(u) 4x (m21) /m ut 2 (u m )xx 1x (m2n) /m u n 40, xD0, tD0,(4)

u m (x , t) KW(t) G1 as xK01 , tD0,(5)

u(x , 0 ) 40, xD0,(6)

where u is the adimesionalized concentration times x 1/m , x denotes now the ra-
dial coordinate, and the boundary value u m (0 , t) is proportional to the emis-
sion rate Q(t).

The most interesting case from the mathematical point of view is when nE

m . This includes the case of linear diffusion (m41) with strong absorption
(0 GnE1), where the special case n40 means that the reaction term is given
by the Heaviside function of the concentration (zero-order reaction.) In [1] the
authors established the convergence in the L 2 norm of the solution of the
parabolic problem to the stationary solution only in the case m41 (however
no explicit estimate of the rate of convergence was given).

It is immediate to realize that problem (4), (5) and (6) is a generalization of
the Dirichlet problem for equation (1), to the case of an equation with non ho-
mogeneous coefficients and with a non constant boundary condition.

Here we give a convergence result in the L Q norm using families of super
and sub-solutions in the spirit of what was made in [11]. In particular we still
have to restrict to values of m and n satisfying (29). Although the super and
sub-solution technique is quite similar to what was done in [11], the construc-
tion of the families of super and sub-solution differs substantially. In fact in
[11] they were constructed using the translational invariance of equation (1),
which fails in the present case. Moreover in [11] only the case of constant
boundary value was considered. Here we show how to deal with non-constant
boundary conditions.

The stationary solution us has compact support in the space variable. Let
us denote by L4 sup ]xNus (x) D0(. Under reasonable assumptions on the in-
itial data, the solutions u(x , t) of the parabolic problem have compact support
too. We denote it by s(t) 4 sup ]xNu(x , t) D0(. We also prove that s(t) con-
verges to L as tKQ . Finally, since it seems that no reference is available for
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the proof of the existence and uniqueness of the solution, as well as for a com-
parison theorem, we shortly sketch in appendix how these results can be ob-
tained modifying similar results for simpler but similar equations.

2. – The stationary problem.

In this section we summarize some results about the stationary problem
under the assumption

0 GnEm .(7)

This problem can be formulated as a free-boundary problem, [2]: find a func-
tion us (x) and a number LD0 such that the following equations hold

Ls (us ) 42(us
m )91x (m2n) /m us

n 40 , 0 ExEL ,(8)

us (0) 41 ,(9)

us (L) 40 ,(10)

u 8s (L) 40 ,(11)

where 8 denotes the x derivative. Condition (11) is the free-boundary condi-
tion, and it determines the value of the free-boundary L . Of course, in this set-
ting, equation (8) makes sense only if us is (strictly) positive in (0 , L).

We first observe that this problem can be reduced to a variational problem
and that existence and uniqueness of the solution can be easily established
using standard techniques in this area.

To do this, first put v4us
m and rewrite equation (8) as

2v 91x p v q 40 ,(12)

with p , q� (0 , 1 ) (in our problem we have p412n/m and q4n/m412p ,
but this relation is inessential in what follows).

We now look for non-negative solutions of (12) for x� (0, M) with boundary
conditions v(0) 41 and v(M) 40, where M is a (large) number. This problem
has a natural variational formulation: find the minimum of the functional

J(w) 4
1

2
s
0

M

(w 8 )2 dx1
1

q11
s
0

M

x p w q11 dx ,(13)

in the convex set

K4 ]w�H 1 (0 , M)NwF0, w(0) 41, w(M) 40( .(14)

Existence and uniqueness of the solution, as well as its regularity, follows
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immediately from the standard theory of variational problem (see the solution
of the dead-core problem in [5]).

It remains to prove that we have solved our free-boundary problem. This
reduces to show that if M is large enough there exists a positive L (not de-
pending on M) such that the solution satisfies v(x) D0 in (0 , L) and v(x) 40 in
(L , M). So let MD11k2m(m1n)/(m2n), then we have

LEMMA 2.1. – The function v has compact support.

To prove this it is sufficient to compare v with the solution v1 of the spatial-
ly homogeneous problem

2(v1 )xx 1v1
q 40 , xD0,(15)

v1 (1) 41 ,(16)

which is given by

v1 (x) 4 k12
x21

l
l

1

2m

m2n

(17)

where

l4
k2m(m1n)

m2n
(18)

In fact we have v(1) E1 because of the maximum principle. Since, for xD1,
x (m2n) /m D1, the comparison principle gives v(x) Gv1 (x) for xD1 and conse-
quently v(x) 40 for xD11 l . We can summarize the preceding discussion in
the following

PROPOSITION 2.2. – The free-boundary problem (8)-(11) has a unique sol-
ution with free-boundary LE11k2m(m1n)/(m2n).

REMARK 2.3. – Alternative estimates of the free boundary are in [2], in
particular the authors showed that

{ 2(11q)

(11q)2
}1/(32q)

ELE{ (11q)(32q)2

2(11q)2
}1/(32q)

(19)

For the construction of the super and sub-solutions of the parabolic prob-
lem we need the following estimate for the derivative u 8 of the solutions of the
stationary equation

(u m )xx 4x (m2n) /m u n , u(0) 4aD0 .(20)
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LEMMA 2.4. – Let ua be the solution of (20) and let

b4La
m(m2n)

3m2n(21)

denote its free boundary (i.e. ua (x) D0 in (0 , b) and ua (x) 40 for xDb), then
there exists a positive constant C such that, for any x� (0 , b) we have

ua8

ua
n

D2C ua

22m2n

2(22)

PROOF. – First observe that (21) can be obtained from the following scaling
argument: let w(y) 4a 21 ua (x) with y4x/d . Then w solves

(w m )yy 4
d

m2n

m

a m2n
y (m2n) /m w n , w(0) 41 .(23)

Choosing d4a
m(m2n)

3m2n , the function w(y) coincides with the solution of (8)-(11),
so w(y) D0 for y� (0 , L) and w(x) 40 for yGL . Coming back to the x coordi-
nate we have the expression (21) for the right boundary of the support of ua .

Estimate (22) is a special case of the regularity estimate for the parabolic
case, which can be obtained by the Bernstein method, see [6]. For the station-
ary solution the proof is elementary and we present it here for the sake of
completeness.

Let v(x) 4u m (x), so that

v 94x p v q ,(24)

with p412
n

m
and q4

n

m
. Since v(x) f0 for xDB we have

v 9Gb p v q(25)

Moreover, a straightforward application of the Hopf and the maximum
principles says that v has non-positive first derivative (strictly negative
when v(x) D0,) and then

v 9 v 8Fb p v q v 8(26)

or

1

2
(v 82 )8F

b p

q11
(v q11 )8 .(27)

Integrating (27) between x and L and taking into account that v 8E0
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we have

v 8 (x) D2o 2b p

q11
v

q11

2 (x) ,(28)

from which (22) follows.

3. – Super and sub-solutions.

In this section we construct a family of super-solutions using a suitable
«deformation» of the stationary solution us (x). Being deeply based on esti-
mate (22), it turns out that our approach allows to construct sub and super-sol-
utions for values of m and n which satisfy, together with inequality (7), the
inequalities

0 Gn , 1 Gm , m1nG2 .(29)

In case of linear diffusion, m41, any strong-absorption power n is allowed.
Let l(t) be a given positive function and define

u(x , t) 4us (l(t) x) .(30)

Then, for any t , u(x , t) is the solution of

2
d 2

dx 2
(um (x , t))1l 2 (t)(lx)12n/m un (x , t) 40 , xD0 , u(0 , t) 41 .(31)

Let us show that it is possible to choose the function l in such a way that
u(x , t) is a super-solution of equation (4). First observe that, for any l(t) E1,
u(x , t) is a super-solution of the stationary problem, i.e. we have

Ls u 4 (12l 32n/m (t) ) x 12n/m un (x , t) D0(32)

so that

u(x , t) Fus (x) , xD0(33)

(notice that the strict inequality does not hold for any x but only for those x for
which u(x , t) D0).

Let now l(t0 ) 4l 0 E1, we compute

L u(x , t) 4x
22

1

m us8 (l(t) x) l
.
(t)2 (us

m (l(t) x) )xx 1x
12

n

m us
n (l(t) x) )(34)

where 8 denotes the derivative with respect to the argument. Then

L u(x , t) 4 kx
m1n21

m
us8

us
n

l
.
(t)2 (l 32n/m (t)21)l x

12
n

m us
n (l(t) x) ) .(35)
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Suppose now that l
.
(t) D0. We can now use estimate (22) together with our as-

sumption m1nE2 to eliminate the factor us8 /us
n in (35) and we get

(36) L u(x , t)Fk2x
m1n21

m Const . l
.
(t)2(l 32n/m (t)21)l x

12
n

m us
n (l(t)x) )F

[2Kl
.
(t)2 (l 32n/m (t)21) ] x

12
n

m us
n (l(t) x) ) ,

for some suitable positive constant K (notice that here we use the fact that 0 G

uE1 and that x
m1n21

m is bounded because us vanishes identically for x large
enough).

Finally we chose l(t) to be the solution of the o.d.e.

l
.
4

1

K
(12l 32n/m ) , l(0) 4l 0 .(37)

Choosing l 0 E1, l(t) has positive derivative so that (36) is true and
becomes

L u(x , t) F0 ,(38)

i.e. u is a super-solution.
Solving (37) with a l 0 D1 we obtain a sub-solution u(x , t) 4us (l(t)x).
We can state the results of this section in the following

PROPOSITION 3.1. – Let l(t) be a solution of (37) with l 0 E1 (l 0 D1) then
the function u(x , t) 4us (l(t) x) (u(x , t) 4us (l(t) x) ) is a super-solution (sub-
solution) uniformly converging to the stationary solution us (x). The conver-
gence is exponentially fast.

As a consequence we can give a first result on the asymptotic behaviour of
the solution of the parabolic problem, in the case of special boundary and in-
itial conditions.

THEOREM 3.2. – Let u(x , t) be a solution of (4) with

u(0 , t) 41 , tD0 , u(x , 0 ) 4u0 (x) , xD0 ,(39)

and suppose there exist two constants l a D1 and 0 El b E1 such that

us (l a x) Gu0 (x) Gus (l b x) , xD0 .(40)

Then, for tKQ , the function u(x , t) converges uniformly to us (x) and the
rate of converge is exponential.

This theorem does not give a general answer to our original problem be-
cause of the requirements on both the initial and boundary conditions. In the
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next section we give some estimates which allow to use similar sub and super-
solution to prove the convergence for general boundary and initial condi-
tions.

4. – Estimates.

In this section we show that, for any fixed time t, we can find a sub-solution
of the form introduced in the previous section, whose value at time t is below
u(x , t). The starting point of the following estimates is the construction of a
new sub-solution

PROPOSITION 4.1. – Let c(t) be a positive function, c�C 1 ( [0 , T] ). Then
there exist a sufficiently large constant AD0 such that the function

v(x , t) 4 [c(t)2Ax]1

2

m2n(41)

satisfies

L vG0(42)

(i.e. v is a sub-solution).

We have

L v4v nyx
12

1

m
2

m2n
v

22m2n
2c

.
2

2m(m1n)

(m2n)2
A 2 1x

12
n

m z .(43)

Because xEc(t) /A , and (7), (29), the first and third terms in the sum are uni-
formly bounded by a constant times max NcN and max Nc

.
N . So we can choose

A large enough to have L vG0.
Let u(x , t) be the solution of (4), (5) and (6), then the sub-solution

v can be used to give an estimate of ux (0 , t). We fix a time t and choose
c(t) such that

0 4 (f(0) )
m2n

2 4c(0) Ec(t) E (f(t) )
m2n

2 , tE t , c(t) 4f(t) .(44)

Then

u(x , t) Fv(x , t) , 0 E tE t , xD0 ,(45)

and u(0 , t) 4v(0 , t), from which it follows

ux (0 , t) Dvx (0 , t) 42A
2m

m2n
(f(t) )

m1n

m2n .(46)
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Notice that A depends only on the choice of c which in turn depends
only on the boundary value f .

COROLLARY 4.2. – Let u(x , t) be the solution of (4), (5) and (6), and denote
by uf(t) (x) the stationary solution of (20) with boundary value a4f(t). Then
for any tD0 there exits l t such that

u(x , t) Fuf(t) (l t x) xD0 .(47)

PROOF. – For any fixed t, estimates (45) and (46) imply that there exists a
sufficiently large A such that

u(x , t) F k(f(t) )
m2n

2 2Axl
1

2

m2n

4v(x , t) , xF0 .(48)

Since the sub-solution v(x , t) is convex with respect to x , v(x , t) is bounded

from below by the linear function w(x) 4f(t)2
2A

m2n
(f(t) )

22m1n

2 x and so is
the solution u(x , t).

Let now uf(t) (x) be the stationary solution with boundary value uf(t) (0 ) 4

f(t) and let l t be large enough to have uf(t) (l t x) 40 for xG
m2n

2A
(f(t) )

m2n

2 . Ac-
cording to (21), it suffices to take

l t FL
2A

m2n
gf(t)

m2n

3m2n h
2(m2n)

2

.(49)

Since uf(t) is convex, it is bounded, now from above, by the linear function w(x),
and consequently (47) is satisfied.

5. – Asymptotic behaviour.

The estimates of the previous sections allow to prove the following
theorem.

THEOREM 5.1. – Suppose that m and n satisfy (7), (29) and let u(x , t) be the
solution of (4), (5) and (6), with f(t) K1 as tKQ .

Then u(x , t) converges uniformly to us (x) and s(t) tends to L as
tKQ .
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REMARK 5.2. – It not possible to give any estimate on the rate of conver-
gence of u to us without any particular assumption on the convergence rate of
f to 1. However it turns out from our proof that, if the convergence of f is less
than exponential, then u converges to us «as fast as» f tends to 1.

PROOF. – It follows immediately from the comparison principle that, if
f(t) G1 for any t , then u(x , t) Gus (x) for any x and any tD0. So, in this case,
it remains to bound from below the solution u(x , t) with a family of functions
converging to the stationary solution; we restrict ourselves to this case in the
rest of the proof. The general case f(t) K1 can be treated in the same way, by
means of similar estimate from above using super-solutions.

We choose a sequence of times tk such that t0 D0 and both tk and the differ-
ence tk11 2 tk diverges to 1Q as kK1Q . Moreover we choose tk in such a
way that f(tk ) Gf(t) for any t� (tk , tk11 ).

According to Corollary (4.2), we can find l 0k such that u(x , tk ) F

uf(tk ) (l 0k x). Now define l k (t) to be the solution of (37) with initial value
l k (tk ) 4l 0k and use the function uk (x , t) 4uf(tk ) (l k (t) x) as a sub-solution up
to time t4 tk11 , when we define a new sub-solution uk11 with the same
construction.

Because of the construction we have uk (0 , tk ) K1 as kK1Q . Moreover,
according to (49), in order to satisfy uk (x , tk ) Gu(x , tk ) for each k , it is enough

to have l 0k F
2AL

(m2n)gf(t0 )
m2n

3m2n h
(m2n) /2

, which is a fixed value (larger than 1).

Now, because of the condition tk11 2 tk K1Q , this implies that the sequence
l k (tk11 ) converges to 1 .

This, in turn, implies that uk (x , tk11 ) converges uniformly to us (x) in
(0 , L) and so does the solution u(x , t).

Finally, let sk (t) 4 sup ]xD0Nuk (x , t) D0(, then lim
kKQ

sk (tk11 ) 4L , which

implies the convergence of the free boundary s(t) to L as tKQ .

6. – Appendix.

The peculiarity of our problem is the presence of a variable and vanishing
«capacity» x 121/m . Because of the vanishing of this factor on the boundary, we
cannot divide the equation by it and consider the equation as a nonlinear diffu-
sion equation with variable coefficient in the spirit of [7]. In fact it seems that
no existing reference covers the existence and uniqueness of the solution of
(4), (5) and (6).

However the «perturbation» to known results is rather meager, and the
resuts can be obtained easily starting from the proofs of the cases with constant
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«capacity». So we limit ourselves to give a rapid sketch of the proof of the
existence and uniqueness of the solution of problem (4), (5) and (6).

We can easily define a weak solution of our problem. To avoid difficulties
related to the unbounded domain, we limit ourselves to solve (4) in the domain
(0 , M)3 (0 , T) with the extra boundary condition u(M , t) 40. It will be a-
posteriori clear that, if M is large enough, we have solved our free boundary
problem like in the stationary case.

DEFINITION 6.1. – A continuous nonnegative function u(x , t) is a weak
solution if for any test function W(x , t) �C 2 ( (0 , M)3 (0 , T) ) such that
W(0 , t) 4W(M , t) 40, we have

(50) s
0

M

x 121/m u(x , t) W(x , t) dx4s
0

M

x 121/m u(0 , t) W(0 , t) dx1

s
0

t

s
0

M

]x 121/mu(x, t) W t (x, t)1u m (x, t) W xx (x, t)2x 12n/mu n (x, t) W(x, t)( dt dx2

s
0

t

]u m (M , t) W x (M , t)2u m (0 , t) W x (0 , t)( dt

for any t� (0 , T).

Weak sub and super-solutions are defined analogously substituting the
equality sign by G and F repectively, and using only non-negative test
functions.

The difficulties arising from the nonlinear diffusion and the lack of Lips-
chitz continuity of the reaction term can be overcome in the standard way by
adding some eD0 to boundary and initial conditions and passing to the
limit.

In addition we substitute the «capacity» x 121/m by x 121/m 1e and solve the
resulting boundary value problem. Let us denote by ue the solution of the reg-
ularized problem

(x 121/m 1e) uet 2 (ue
m )xx 1x 12n/m (ue

n 2e n ) 40 ,(51)

ue (0 , t) 4f(t)1e , ue (M , t) 4e ,(52)

ue (x , 0 ) 4u0 (x)1e .(53)

Existence and uniqueness of the solution is granted by the the standard the-
ory, [8]; moreover the solutions ue satisfy eGue (x , t) G max ]VfV11, Vu0 V1

1(, where V V indicates the C 0 norm.
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Here comes the essential difference with the case of nonvanishing coeffi-
cients, because the sequence ue is not monotone with respect to e as in the spa-
tially homogeneus case, see [3], or in the case in which both diffusion and reac-
tion rate depend on (x , t) but the coefficient of ut is constant, see [7].

However the sequence ]ue( is compact, so we can pass to the limit (modulo
subsequences) in (50).

To prove the compactness we start by proving that ve4uet is uniformly
bounded.

Now it is immediate to check that ve solves the uniformly parabolic
equation

(x 121/m 1e) vt 1 (mue
m21 v)xx 42x 12n/m ue

n21 v(54)

to which the maximum principle applies. So v(x , t) is bounded by its maximum
on the parabolic boundary. On the lateral boundary x40 and x4M v is
bounded by Vf

.
V . To bound v(0 , t) we have to require some compatibility condi-

tion on the data f(t) and u0 (x) at the corner (0 , 0 ) and, in particular
that

(u0
m )xx 2u0

n x
12

n

m

x
12

1

m

(55)

is bounded as xK0 (which is trivially true for u0 f0) to ensure that v(x , 0 ) is
uniformly bounded for any e . Then uet is uniformly bounded in (0 , M)3

(0 , T). We want now to bound the function (u m
e )x . We start by bounding the

derivative uex at the boundary x40. This can be done using the sub-solution
(41) which is also a subsolution of equation (51) with an appropriate choice of
the constant A (depending only on VfV and Vf

.
V).

Then, integrating equation (51) and using the uniform bounds for ue and
uet , we get an uniform bound for (u m

e )x in (0 , M)3 (0 , T). As a consequence
the sequence ue is uniformly bounded and equi-Lipschitz continuous, and then
ue is uniformly bounded and equicontinuous. Then, modulo subsequences, we
can pass to the limit in the weak version of (51) and prove that the limit solves
(50).

To prove the uniqueness and the comparison theorem we can reproduce
the Holmgren’s method like in the proof of uniqueness in [7]. The difference is
that we are now working in a bounded interval, which simplifies the proof, and
that the equation for ue contains an extra term due to the regularization of the
«capacity» x 121/m . However, this term is uniformly bounded by a constant
time e , so it vanishes as eK0.
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