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On the Simple Connectivity at Infinity of Groups (*)

DANIELE ETTORE OTERA

Sunto. – In questo articolo si definisce e si studia la nozione di semplice connessione
all’infinito dei gruppi di presentazione finita, dando poi, in un caso particolare,
una prova geometrica della sua invarianza per quasi-isometrie.

Summary. – We study the simple connectivity at infinity of groups of finite presenta-
tion, and we give a geometric proof of its invariance under quasi-isometry in a spe-
cial case.
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1. – Introduction.

In this paper we define the simple connectivity at infinity of groups, and we
prove that (under some conditions) it is a geometric property of finitely pre-
sented groups.

DEFINITION 1. – A connected, locally compact topological space X is sim-
ply connected at infinity (and one writes p 1

Q X40) if for each compact sub-
set k’X there exists a larger compact subset k’K’X such that any closed
null-homotopic loop in X2K is null homotopic in X2k (otherwise we shall
write p 1

Q Xc0).

The Euclidean space R2 is not simply connected at infinity (by dimensional
arguments), while in dimension three the most familiar example of a con-
tractible manifold which is not simply connected at infinity is the Whitehead 3-
manifold Wh 3 (see [17]).

A related problem is to decide whether the universal covering of a manifold
is Rn (i.e. to find conditions on p 1 M implying that p 1

Q MA40). J. Stallings ([14])
proved that, if nF5, contractible manifolds which are simply connected at in-
finity (s.c.i.) are homeomorphic to Rn . Lee and Raymond (see [8]) showed that
the universal covering of a closed, aspherical manifold M of dimension D4

(*) Partially Supported by G.N.S.A.G.A.
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whose fundamental group contains a finitely generated (non trivial) abelian
subgroup is Rn (aspherical means that MA is contractible).

In 1983 Davis proved that for every nD3 there exists a closed aspherical
n-manifold M4K(p 1 , 1 ) such that p 1

Q MA c0 (see [1]). The 3-dimensional case
became the so-called «covering conjecture».

CONJECTURE. – The universal covering of a closed, irreducible 3-manifold
having infinite fundamental group is R3 .

This conjecture was proved for a manifold having a geometric structure in
the sense of Thurston, or under several different additional assumptions on
p 1 M (see [16], [3] and [7]).

McMillan and Thickstun pointed out in [10] that there exist examples of
contractible 3-manifolds which do not cover closed, aspherical 3-manifolds,
since there are uncountably many contractible open 3-manifolds, but there are
only countably many contractible closed 3-manifolds and therefore only count-
ably many contractible open 3-manifolds that cover closed 3-manifolds. In [11]
one finds concrete examples of such manifolds: the genus one Whitehead
manifolds (a generalization of the original Wh 3 , namely a sequence of solid
tori Vn such that for any n : Vn ’ int (Vn11 ), the inclusion i : Vn KVn11 null-ho-
motopic, and Xn »4Vn11 2 int (Vn ) irreducible). These manifolds admit no
nontrivial free properly discontinuous group actions, hence they cannot cover
nontrivialy even a non-compact 3-manifold.

The covering conjecture was finally proved in 2000 by Poénaru (see [12]
and [13]).

In this paper we address the simple connectivity at infinity of groups; we
are also interested in knowing whether it is a geometric property of groups.

We now turn to groups and recall some notions. The basic idea is that a
group has, together with its algebraic structure, a geometric structure, name-
ly a distance. Let G4ESNRD be a group (we will always suppose G of finite
presentation such that S4S 21 and e�S where e is the identity of G), for
every g�G let lS ( g) (the length of g with respect to S) be the minimal number
of elements of S required to write g . Put dS ( g , h) 4 lS ( g 21 h) (the distance be-
tween g and h with respect to S). It is easy to check that dS is a distance on G
(called the word metric).

The Cayley graph of G , noted by C(G), is a graph of which the vertices are
the elements of G where g is joined to h if dS ( g , h) 41. Any segment can be
endowed with a Riemannian metric, providing a distance on C(G) as the mini-
mum of the lengths of the arcs joining two points. In this way one has a path-
connected, geodesic space in which G is embedded (we recall that a metric
space X is said geodesic if for all x , y�X there exists an isometry
g :[0 , d(x , y) 4a] KX such that g(0) 4x and g(a) 4y).
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Even if this construction depends on S , Cayley graphs associated to differ-
ent presentations look alike seen from afar. The following definition realizes
this idea:

DEFINITION 2. – The metric spaces (X , dX ) and (Y , dY ) are quasi-isomet-
ric (in the sense of Gromov-Margulis) if there are constants l , C and maps
f : XKY and g : YKX (called (l , C)-quasi-isometries) so that, for all
x , x1 , x2 �X and y , y1 , y2 �Y , the following holds:

dY ( f (x1 ), f (x2 ) ) GldX (x1 , x2 )1C

dX ( g(y1 ), g(y2 ) ) GldY (y1 , y2 )1C

dX ( fg(x), x) GC

dY ( gf (y), y) GC

EXAMPLE: R and Z are quasi-isometric (the map f (x) »4 [x] for x�R is a
quasi-isometry).

The key observation is that the Cayley graphs corresponding to distinct
presentations of G are quasi-isometric (it is sufficient to generalize the map of
the example above), and thus one can associate to any group G a metric space
well defined up to quasi-isometry. Hence every quasi-isometry invariant of
C(G) determines an invariant of G .

Group theoretical properties that are invariant under quasi-isometry are
called geometric, for example Gromov’s word hyperbolicity, being of finite
presentation or polynomial growth, and the number of ends, are «geometric»
concepts (see [6] for an extensive discussion on this topic).

2. – Definitions and examples.

We now turn to the definition of the simple connectivity at infinity of
groups by recalling some details . Let P4 (x1 , x2 , R , xn NR1 , R2 , R , Rt ) be a
presentation of a group G , where x1 , x2 , R , xn are the generators of G and
R1 , R2 , R , Rt are the relators of P . The standard two-complex K(G), corre-
sponding to P , is the finite complex constructed as follows. Consider B a bou-
quet of n oriented circles (where n is the number of generators of G). For each
relator Ri of P , attach to B a 2-cell by identifying its boundary with the circuit
on B corresponding to Ri . This yields a compact 2-complex, K , having G as
fundamental group. Its universal covering K(P)A is called the Cayley complex
of G (associated to the presentation P).
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DEFINITION 3. – A finitely presented group G is said to be simply connect-
ed at infinity (or s.c.i.) if its Cayley complex K(P)A, associated to some presen-
tation P of G , is simply connected at infinity.

We will show that being s.c.i. only depends on the group. The first observa-
tion is that it only depends on the 2-skeleton of X .

PROPOSITION 1. – Let X be a compact connected polyhedron and X (2) the 2-
skeleton. Then p 1

Q XA40 if and only if p 1
Q XA(2) 40.

PROOF. – Let k be a compact subset of X2 4XA(2) ’XA. Suppose that XA is s.c.i.,
then there exists K*k a compact subset of XA verifying definition 1. The result
follows by taking the 2-skeleton K2 of K . Let g be a loop in X2 2K2 . g is con-
tained in XA2K , so it bounds a disk D satisfying DOk4¯ . Up to homotopy, D
is contained in X2 2k . Hence X2 is s.c.i.

Conversely, suppose X2 s.c.i., and let c be a compact subset of XA. The 2-
skeleton c2 of c is a compact subset of X2 , thus there exists C2 *c2 satisfying
definition 1. The set C4C2 N ]n-cells of c , nF3( is a compact subset of XA con-
taining c . If g is a loop in XA2C , then it is homotopically equivalent to a loop in
X2 2C2 . Since X2 is s.c.i., the proof is achieved. r

LEMMA 1. – If X and Y are two compact, connected 2-dimensional polyhe-
dra with isomorphic p 1’s, then there exists a compact polyhedron M and
compact subpolyhedra X1 and Y1 , such that M collapses onto each of X1 and
Y1 ; furthermore, X1 is the wedge of X and a finite number of S 2’s, and similar-
ly Y1 4YSS 2 SRSS 2 .

REMARK 1. – This result goes back to J.H.C. Whitehead ([17]). His proof in-
volved looking at certain moves changing one group presentation into anoth-
er presentation of the same group: the Tietze transformations Ti .

l T1 : add r , a consequence of the relators, to the relators,

l T2 : the inverse of T1 ,

l T3 : add a new generator y and a new relator yu 21 where u is a word in
the old generators,

l T4 : the inverse of T3 .

Explicitly, the collapsing referred to here involves simplicial structures.
One says that A collapses to B , when there is a triangulation of A with
B covered by sub complexes, and there is a sequence of elementary collapses
leading from A to B . An elementary collapse from A to B involves some
simplex s of A not in B , and a face t of s which is a face of no other
simplex of A (namely a proper face); one then removes the interior of
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s and t to get B . The inverse operation is called an elementary di-
latation.

PROPOSITION 2. – If X and Y are two compact connected polyhedra with
isomorphic p 1’s, then XA is s.c.i. if and only if YA is also s.c.i.

PROOF. – By the previous proposition, we can restrict our to 2-dimensional
polyhedra, and, by the lemma, we need to consider only two cases:

l Y is the wedge product of X with a 2-sphere,

l Y collapses to X .

In the first case YA is the wedge product of XA and an infinite number of S 2’s.
Thus one direction is obvious. On the other hand, suppose YA s.c.i., let k be a
compact subset of XA, then there exists K a compact subset of YA such that any
loop outside K bounds a disk outside k . If we consider KOXA, we obtain a com-
pact subset of XA. Let take a loop not in this subset. It is a loop of YA not in K , so
it bounds a disk. This disk, after removal of some S 2’s, is contained in XA and
thus the claim is proved. The second case can be reduced, by induction, to one
elementary collapse. If Y collapses to X by an elementary collapse at the sim-
plex D , then YA4XA with an infinite numbers of D’s. These simplexes D i are
properly embedded in YA, i.e. they are two by two disjoint and every compact
subset intersects only a finite number of them. Let k be a compact subset of YA

and k1 4kOXA. Suppose that p 1
Q XA40, then there exists a compact subset K1

such that any loop not in K1 is null-homotopic outside k1 . Let K4K1 NA
where A is the set of all D i having non-empty intersection with k . Let g be a
loop outside this compact subset K (since A contains a finite number of ele-
ments). This loop is homotopically equivalent (with a homotopy of YA2K) to a
loop in XA2K1 . Hence it is null-homotopic in XA2k1 and so in YA2k . This
proves the first direction.

On the other hand, let c be a compact subset of XA. It is also a compact sub-
set of YA, and so there exists a compact subset C in YA such that any loop outside
C bounds a disk outside c . Let be C1 4COXA. It is a compact subset of XA and
any loop outside C1 , since p 1

Q YA40, bounds a disk of XA2c (after removal of
some D i’s). r

Hence, it follows that if G4p 1 X for some compact polyhedron such that
p 1

Q XA40, we can conclude that for every compact polyhedron B with p 1 B4

G , BA is also s.c.i. Thus, p 1
Q G40 is a well defined group notion. (The same re-

sult is proved in [15] by showing that Tietze transformations do not affect the
simple connectivity at infinity).

Now we study this class of groups, by giving some examples. We start with
an easy result.
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COROLLARY 1. – If H is a finite index subgroup of G , then p 1
Q H40 `

p 1
Q G40.

PROOF. – Let X be a compact polyhedron such that p 1 X4G with universal
covering XA. G4p 1 X acts on XA and so, by restriction, on H . The space X1 4

XA/H is compact (because the index of H is finite), and the commutative
diagram:

XA

8 7

XA/G4X J X1 4XA/H

shows that X and X1 have the same universal covering XA and so p 1
Q H40 `

p 1
Q XA40 ` p 1

Q G40. r

Examples of groups simply connected at infinity

1: If X is an abelian group, then there exists a finite index subgroup HEG
such that H4Z1Z R1Z and so p 1

Q G4p 1
Q H4p 1

Q (Z1Z1R Z) 4

p 1
Q Rn 40 (iff nD2).

2: If Fn 4Z˜Z˜R˜Z (the free group of rank n), then the space Y4 the
n-connected sum of (S 1 3S 2 ) has p 1 Y4Fn and p 1

Q YA40, because YA4Rn 2

]tame Cantor set(. (A Cantor set of a manifold M is said tame if it can be em-
bedded into a smooth arc of M).

We observe also that all Fn are quasi-isometric (for nD1).
3: If G is the fundamental group of a closed 3-manifold, then p 1

Q G4

0.
4: A group G quasi-isometric to Z contains a subgroup isomorphic to Z

(see [4]), and so p 1
Q G4p 1

Q Z40. The same holds if G is quasi-isometric to
Zn .

5: p 1
Q G40 if G is finite (because its Cayley complex is compact), and all fi-

nite groups are quasi-isometric.

REMARK 2. – The s.c.i. is not a quasi-isometry invariant for topological
spaces, as the following example shows.

EXAMPLE. – Consider X4 (S 1 3R) 0
S 13Z

D 2 and Y4 (S 1 3R) 0
S 13 ]0(

D 2 .

Obviously p 1 X4p 1 Y40 and Y and X are two quasi-isometric spaces (in
fact any disk D 2 can be split into its boundary by a quasi-isometry). They are
not both s.c.i.: p 1

Q X40 and p 1
Q Yc0.

For every compact subset k%X , there exists another compact subset k%
K%X such that every closed loop in X2K is null-homotopic in X2k (it is suf-
ficient to take K4 (S 1 3 [2n , n] ) 0

S 13 [2n , n]
D 2 with n sufficiently large).
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This is not true for Y , because if k4D 2, then the loop g4S 13]n(, (nc0),
that is null-homotopic in Y , is not null-homotopic in Y2K (for no K*k).

Now we prove a weak version of our main statement:

THEOREM 1. – Let G1 and G2 be the fundamental groups of compact Rie-
mannian manifolds, M1 and M2 respectively, and let e4min (i1 , i2 ) /3 where
for each a41, 2 , ia is the injectivity radius of the universal covering MAa of
Ma . If MA1 and MA2 are quasi-isometric with a (1 , e) quasi-isometry, then
p 1

Q G1 40 ` p 1
Q G2 40.

REMARK 3. – Any finite presentation group is isomorphic to the funda-
mental group of a (Riemannian) manifold of dimension F5.

PROOF. – Let us construct the 2-complex K(P) associated to a presentation
P of G as before, embed K(P) into R5 and now take a regular neighborhood N
of K(P). We see that p 1 N4G and N is a manifold with boundary ¯N having G
as fundamental group. Hence the double manifold 2N4N 0̄

N
N (glued along

the common boundary) is the required manifold. r

REMARK 4. – Without loss of generality, we assume MA1 and MA2 have infi-
nite diameter (otherwise MA1 and MA2 will be compact).

REMARK 5. – If G1 4p 1 M1 and G2 4p 1 M2 , then G1 is quasi-isometric to
MA1 and G2 to MA2 (see [6]), so if G1 and G2 are quasi-isometric, then so are MA1

and MA2 .

Before proving the theorem, we need the following lemma:

LEMMA 2. – Let X be a simply connected, complete manifold of infinite di-
ameter. If for every compact subset k%X there exists K*k a compact subset of
X such that every loop in X2K at distance from KFC (with C4constant) is
null-homotopic in X2k , then p 1

Q X40.

PROOF. – Suppose that p 1
Q Xc0. Then there exists a compact subset k such

that for any compact subset K* k, there exists a loop l %X2K non con-
tractible in X2k. But, by hypothesis, there exists K (depending on k) such
that every loop in X2K at a distance FC from K is null-homotopic in
X2k.

Now, K is a compact subset and so it is contained into some ball B(x , r) of
X , hence, since X is complete, the ball K4B(x , r1C) is a compact subset con-
taining k. Therefore there exists a loop l in X2K not null-homotopic in X2k.
But the distance between l and K is FC , so l is null-homotopic in X2k. It fol-
lows that X must be s.c.i. r
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3. – Proof of the theorem.

We will prove that p 1
Q MA2 40 assuming that p 1

Q MA1 40. Let k2 be a com-
pact subset of MA2 , we must find another compact subset, H , satisfying defini-
tion 1.

Let B1 (x , R) be a ball in MA2 containing k2 (such a ball exists since k2 is com-
pact). By the properties of the quasi-isometry, g(B1 ) is contained in the ball
B2 ( g(x), R1e) of MA1 . Let k1 be the closure of the ball B( g(x), R18e): this is
a compact subset of MA1 (complete manifold). By hypothesis there exists T con-
taining k1 such that every loop in MA1 2T is null-homotopic in MA1 2k1 . T is a
compact subset, and so it is contained in some ball B3 (c , S), and f (B3 ) is con-
tained in another ball B4 ( f (c), S1e) of MA2 . The statement follows by taking
H as the closure of B4 .

Let l be a loop in MA2 2H with d(l , H) F5e , we will find a disk in MA2 2k2

bounding l .
The loop l can be covered by a collection of balls Qi (qi , e) such that any two

consecutive balls have non empty intersection. Using g we can «transport»
this necklace with the same property:

g(Qi ) %Pi 4Bi ( g(qi ), 2e) and Qi OQi11 c¯ implies Pi OPi11 c¯ .

Let us choose a point ei in each intersection of two consecutive balls. Any cen-
ter ci of Pi can be joined with ei and ei11 by a geodesic, so to construct a loop gl
unique up to homotopy (because the geodesics are in balls with radii equal to
the injectivity radius, i.e. contractible balls).

We have chosen l with d(l , H) F5e so that Pi is contained in MA1 2T (and
so gl is also). In fact, if there exists p�Pi OT , then the distance d(p , g(qi ) )
will be E2e and d(p , c) ES, and so d( g(qi ), c) ES12e which implies that
d( fg(qi ), f (c) ) ES13e . This is absurd because d(l , H) F5e .

Now, the loop gl is contained in MA1 2T , and so, by hypothesis, it bounds a
disk D 2 in MA1 2k1 . We will «transport» this disk to give us a disk in MA2 bound-
ing l in MA2 2k2 .

The disk D 2 can be covered by a collection of balls D 1
i (d 1

i , 2e) such that
any three «consecutive» balls have non empty intersection.

D 1
i is a covering U of a disk, and it is known that there exists U1 a subcov-

ering of U such that its nerve N(U1 ) 4D 2 and N(U2 ) 4S 1 4¯D 2 , where U2 is
constituted of the elements of U1 that cover ¯D 2 . (We recall that the nerve of
a covering U is a simplicial complex the vertices vi of which correspond to the
elements of the covering, and v1 R vn span a n-simplex if the corresponding
elements of U have non empty intersection).

Let us consider D 2
i 4B( f (d 1

i ), 3e) %MA2 , we have a collection of balls the
nerve of which is a disk and the nerve of f (U2 ) is S 1 (because the nerve only
depends on intersections). Moreover these balls are contained in MA2 2B1 , in
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fact if there exists y�D 2
i OB1 , then d(y , f (d 1

i ) ) E3e and d(y , x) ER and so
d( gf (d 1

i ), g(x) ) E4e1R and hence d(d 1
i , g(x) ) E5e1R which implies that

d 1
i �k1 which is absurd because d 1

i �D 2 %MA1 2k1 .
So we have in MA2 2B1 a collection of balls with the same property as the

collection D 1
i , and having radii G injectivity radius. It follows that these are

«true» topological balls, and so one can fill all the balls to construct a singular
disk.

Let ui be the center of the ball D 2
i and a a point of the intersection of three

«consecutive» balls D 2
i , D 2

i11 and D 2
i12 . We know that there exists a unique

geodesic joining ui , ui11 and ui12 with a . Let us take a point, say ai , in any
double intersection of these balls. Then there exists a unique geodesic joining
ui with ai , and a with ai . In this way we obtain 6 geodesic triangles, each of
them contained in a contractible ball, so they can be filled, and, filling all the
triangles in each ball, we obtain a singular disk. The boundary of this disk is,
up to homotopy, l , since l is contained in this (contractible) disk.

4. – Final comments.

In [2] we have completed the proof of the quasi-isometry invariance of the
s.c.i. of groups in the general case.

Now, an interesting problem would be to define the fundamental group at
infinity for any finite presented group G . Hopf’s theorem says that the num-
ber of ends b(G) of G is equal to 0, 1, 2 or is infinite.

If b(G) 40 then G is finite. If b(G) 42 then G is either Z or Z/2Z* Z/2Z .
Stalling’s theorem says that if b(G) is infinite and if G is torsion free, then it is
a free product. Looking at free factors one has b(Gi ) 41 or b(Gj ) 42. Hence it
is sufficient to give a definition of the fundamental group at infinity for the
case b(G) 41.

We finish as giving some open questions.
Let G be a one ended group, X a finite simplicial complex with fundamental

group G, XA its universal covering and r a proper ray of XA.

QUESTION 1. – Is p 1
Q (G) 4 lim

J
]p 1 (XA2L , rOL), such that L is a compact

subset of XA( independent on r and on the presentation of G? (See [5] for de-
tails about the fundamental group at infinity).

QUESTION 2. – Is p 1
Q G a geometric property of G?
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