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Bollettino U. M. I.
(8) 6-B (2003), 717-737

Entire Elliptic Hankel Convolution Equations (*).

M. BELHADJ - J. J. BETANCOR

Sunto. — In questo lavoro caratterizziamo gli operatori di convoluzione di Hankel ellit-
tici intert su distribuzioni temperate in termini della crescita delle loro trasforma-
te di Hankel.

Summary. — In this paper we characterize the entire elliptic Hankel convolutors on
tempered distributions in terms of the growth of their Hankel transforms.

1. - Introduction and preliminaries.

The Hankel transformation is usually defined by ([18])

(@) = [ @) T,@y) faye e, y>o.
0

Here J, denotes the Bessel function of the first kind and order u. Throughout
this paper we will assume that yu > — %

The Hankel transformation %, has been studied in spaces of distributions
of slow growth by G. Altenburg [1]. Altenburg’s investigation was inspired in
the studies of A. H. Zemanian ([26] and [28]) about the variant I, of the Han-
kel transformation defined through

() = [ @y @) f@) de, y>o0.
0

It is clear that h, and J(, are closely connected.
G. Altenburg [1] introduced the space H constituted by all those complex
valued and smooth functions ¢ on (0, ) such that, for every m, neN,

1 d n
(_d_) @)

)/m,,n(¢)= sup (1+x2)m <o

xe (0, )

(*) Partially supported by DGICYT Grant PB 97-1489 (Spain).
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On H it considers the topology associated with the family {y,, }m.ncn Of
seminorms. Thus H is a Fréchet space and £, is an automorphism of H ([1, Satz
5]). According to [12, p. 85] the space H coincides with the space S, consti-
tuted by all the even functions in the Schwartz space S. From [3, Theorem 2.3]
it is immediately deduced that a function f defined on (0, ) is a pointwise
multiplier of H, write fe O, if, and only if, fis smooth on (0, ) and, for every

keN, there exists meN for which (1 +x2)‘”(li)kf(m) is bounded on
(0, o). x dx

The dual space of H, is, as usual represented by H'. If f is a measurable
function on (0, o) such that (1 +x2) "f(x) is a bounded function on (0, ),
for some nelN, then f generates an element of H’, that we continue calling f, by

2u+1

(f, ¢>=ff(x)¢(9c) de, ¢eH.
0

2 (u+1)

The Hankel transformation £, is defined on H' as the transpose of /,-trans-
formation of H. That is, if Te H' the Hankel transformation %, T is the ele-
ment of H' given through

<h/,t, T7 ¢>:<T’ hy¢>7 ¢€H

Thus %, is an automorphism of H ' when on H' it considers the weak * or the
strong topologies.

Also in [1] G. Altenburg considered, for every a > 0 the space B, constitut-
ed by all those functions ¢ in H such that ¢(x) =0, x = a. B, is endowed with
the topology induced on it by H. The Hankel transform #,(8,) of B, can be
characterized by invoking [27, Theorem 1]. The union space 3= U &, is

a>0
equipped with the inductive topology. The dual spaces of &B,, a >0, and B are
denoted, as usual, by &/, a >0, and &', respectively.
In [24] K. Triméche introduced, for every a > 0, the space @, , constituted
by all those smooth and even functions ¢ on R such that ¢(x) =0, |x| =Za.
Also he considered the union space @, = GQOU)*,G. According to [12, p. 85], the

spaces $B,, a >0, and B, coincides with the spaces M, ,, a >0, and O,
respectively.

F. M. Cholewinski [10], D. T. Haimo [17] and I. I. Hirschman [19] investi-
gated the convolution operation of the Hankel transformation %, on Lebesgue
spaces. We say that a measurable function f'is in L, , when

f|f(ac)|9c2"“dx< o,
0
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If f, g e L,,, the Hankel convolution f#,g of f and g is defined by

2u+1

— y I o]
(f#.9)(x) —Off(y)(ﬂrxg)(y) 2.“r(/1+1)dy’ ae. we(0, »),

where the Hankel translated ,7.g, xe (0, «), is given through

22/4+1

—dz, a.e. 0, o),
2+ 1) ye(0, )

1D .9y = fg(z) D, (x,y, 2
0

and being

D,(x,y,2) = (2'T(u+ 1))zf(xt)"“Jﬂ(wt)(yt)’”J,,(yt)(zt)’”«f,u(zt) £t ldg,
0

x,y,ze (0, o).

Here a.e. is understood respect to the Lebesgue mesure on (0, o).
The Hankel transformation %, and the Hankel convolution #, are related
by ([19, Theorem 2.d])

h/‘u(f#ﬂg):h‘u(f) h/ﬂ(g)5 f)QELl,ﬂ'

Since we think no confusion will appear, in the sequel we will write #, 7,
xe (0, ), and D instead of #,, ,7,, xe(0, ©), and D,, respectively.

As it was mentioned the transformations JC, and %, are closely connected.
After a straightforward manipulation it can be deduced from # a form for the
convolution operation * for the Hankel transformation I¢,.

The investigation of the * convolution on the distribution spaces was be-
gan by J. de Sousa-Pinto [23]. He considered the 0-order transformation J¢,
and compact support distributions on (0, ). More recently in a series of pa-
pers J. J. Betancor and I. Marrero ([4], [5], [6], [7] and [21]) have extended the
studies of J. de Sousa-Pinto. They defined the * convolution of the Hankel
transformation J(, on Zemanian distribution spaces of slow growth ([21]) and
rapid growth ([4]). J. J. Betancor and L. Rodriguez-Mesa ([9]) studied the hy-
poellipticity of Hankel * convolution on Zemanian distribution spaces.

The main aspects of the distributional theory developed by the * convolu-
tion can be transplanted to the # convolution. Our objective in this paper is to
analyze the entire ellipticity of the # convolution operators on the spaces H
and H'.

For every x e (0, «), the Hankel translated 7, defines a continuous linear
mapping from H into itself ([21, Proposition 2.1]). For every Te H' and ¢ e H
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the Hankel convolution T#¢ of T and ¢ is defined by
(T#p)x) =(T, t,¢), xe(0, ©).

By [21, Proposition 3.5], T#¢ is a multiplier of H, for each Te H' and ¢ € H.
In general T#¢ is not in H when Te H' and ¢ € H. Indeed, if we define the
functional T on H by

f 2u+1
<T ¢>_ ¢( )m Xy (PEH,
then Te H' and, for every ¢ e H,
3 y2‘u+l 2,u+1
(T#¢)(9€)—Of(fx¢)(?/)m Y= f‘ﬁ(?/)md@/a we (0, ).

Hence T#¢ ¢ H when [ ¢(y) y2**'1dy = 0. According to [21, Proposition 4.2]
0

we can characterize the subspace constituted by all those 7'e H' such that
T#peH, for every p e H. Let meZ. We say that a complex valued and
smooth function ¢ on (0, ») is in O, ,, 4 if and only if, for every keN,
Wy, (P) = sup (1 + x®)" | AL () | < o,
xe(0,00
where A4, denotes the Bessel operator & ~**~'Dx**'D. O, ,, 4 is a Fréchet
space when it is endowed with the topology associated with the system
{w/,j, u« teen Of seminorms. It is clear that A is contained in O, ,, ». We denote
by O, m, # the closure of H in O, ,, 4. By O, 4 we represent the inductive limit
space UZO“”"“ #- The dual space O, 4 of O, 4 can be characterized as the sub-
me

space of H' of # convolution operators on H ([5, Proposition 2.5]). Moreover,
by defining on O, 4 the topology associated with the family {#,, &, ¢ }m, kN, pen
of seminorms, Where for each m, ke N and ¢ e H,

77m,k,¢(T) :wjz,/t(T#(p)) TEQ[!,#)

and by considering on © the topology induced by the simple topology of the
space L(H) of the linear and continuous mappings from H into itself, the Han-
kel transformation %, is an isomorphism from O, 4 onto O.

The Hankel convolution T#S of Te H' and Se O, 4 is defined by

(T#S, ) =(T, S#¢p), ¢eH.

Thus T#SeH', for each Te H' and Se O, 4.
In [9] J. J. Betancor and L. Rodriguez-Mesa investigated the hypoelliptici-
ty of the *-Hankel convolution equations on Zemanian spaces. Results as in
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[9] can be obtained for the #-Hankel convolutions. A distribution Se O 4 is
said to be hypoelliptic in H' when the following property holds: T'e€ O, 4
provided that Te H' and T#S e O, 4. From [9, Proposition 3.3] it infers that
S € O, 4 is hypoelliptic in H' when, and only when, there exist b, B> 0 such
that

|h,(SXy) | =y ™", y=B.

Motivated by the celebrated paper of L. Ehrenpreis [14] and the investiga-
tions of Z. Zielezny [29], we study in this paper the entire elliptic Hankel con-
volution equations on H'.

By H, we represent the space of even and entire functions. It is equipped,
as usual, with the topology of the uniform convergence of the bounded sets of C.

We will say that fe H, is in §H ' if, and only if, for every [, ne N, there
exist C>0 and ke N for which

|77, 7, ()R] <
O+ [z + |2 )X+ |2, D), 2,21, 22, -0y 2014,

where I, = {weC: |Imw| <}.
Here the complex Hankel translation operator 7., ze C, must be under-

stood as in [11]. If fe H, and f(z) = 2 a,22%*, zeC, then
K=o

©

(T f)2) = Oan

n=

z,wel.

i(n) Tn+u+1)Mu+1) 20 2k
imo\k) Fn—k+u+1)Ik+u+1) ’

Thus, the Hankel translation operator is extended to the complex plane.

A distribution S € O, 4 will say to be entire elliptic in H' when the follow-
ing property holds: Te §H' provided that Te H' and T#Se 6H'.

We will start Section 2 proving that the space O, , of Hankel convolution
operators of H is really not depending on u. Also, in Section 2 we obtain a
characterization for the entire elliptic elements of O, 4 in terms of the growth

of their Hankel transforms. We will prove that S e O, 4 is entire elliptic on H'
if, and only if, there exist @, A >0 such that

b (S)y) | ze ™, y=A.

Throughtout this paper by C we always represent a suitable positive con-
stant that can change from a line to the other one.
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2. — Entire elliptic Hankel convolution equations in H'.

We firstly prove that the space O, 4 of Hankel convolution operators is re-
ally not depending on u.

Let meZ, m <0. We denote by O,, » the space constituted by all those
smooth functions ¢ on (0, o) for which there exists an even and smooth func-
tion 3 such that y(x) = ¢(x), xe (0, ©), and that

Yi(@) = sup (1+2*)" |DFe)| < o,

ve (0, »)

for every keN. O,, 4 is endowed with the topology associated with the family
{y* ey of seminorms. Thus, O, # is a Fréchet space. By O, » we understood
the closure of M@, in O,, 4. It is clear that O,, 4 is a Fréchet space. Moreover,
O, 4 contains continuously ©,, ;1 4. The union space U oO’”’ + 1s denoted

meZ,ms<
by O4 and it is contained in the space © of the pointwise multipliers of H.
Note that, for every meZ, m <0, a function ¢ € O,, 4 if, and only if, ¢ can
be extended to an even function 1 that is in the space S,, studied in [20] and
[22]. Hence an even and smooth function ¢ on R is in O, » when, and only
when, for every keN, lim (1+ )" D*p(x) =0.

PROPOSITION 2.1. — Let me Z, m < 0. The spaces O, ., # and O,, 4 coincide
topologically and algebraically.

PROOF. — Assume that ¢ € O, ,,, #. There exists a sequence {¢, }, .y in @,
such that ¢,—¢, as n—> o, in O, ,, 4.

Let ke N. We choose a function a € @, 5, such that a(x) =1, xe (—k, k).
Then, since {¢, },n is a Cauchy sequence in O, ,, #, {¢,a},en is a Cauchy
sequence in (M, g;. Hence, there exists e M, o, for which ¢,a—vy, as
n— o, in (M, ;. Since the convergence in O, ,, 4 implies the pointwise con-
vergence on (0, ), we conclude that ¢ admits an even and smooth extension
to R.

We can write

(lD) ¢(9¢)=90’2"’2f4u¢(t)t2'””dt, xre (0, o).
v 0

Hence, it obtains

sup (1+a2)™

ve (0, ©)

<C sup (1+2%)"|4,¢)].
xe(0,°)

1
(—D) p(x)
X
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Moreover, since

2u+1
A,¢@) =D2p(x) + L Dg(x), we (0, »),
x
we have that
2.1) sup (1+a®)" |D*¢(x)| <C sup (1+a®)"|4,¢@)]|.
re(0,%) xe(0,%)

On the other hand, a straightforward manipulation allows to get

r+1
2.2) f(ac+1—t)D2¢(t) dt = —D¢(x) + ¢p(x + 1) — p(x), xe (0, o).
Hence, we deduce from (2.1) and (2.2) that

23)  sup (1+22)" |Dg(x)| <
)

xe(0,0

C( sup (142" |D*¢p(x)| + sup (1+x2)" |¢(oc)|).
)

xe(0,%) xe(0,%

Also we have that

2
24)  DA,¢() =D>p(x) + (2#+1)%(ED) p), we(0, «).
xr

The family {w,. ,},.rcy generates the topology of H. Then, we can find ke N

such that
1 2
(—D) ¢(x)
X

sup
2e©,1)

< sup
©e©,1)

1 2
(;D) (¢(@) a(@)) ‘

<C sup |Df(p(x) alx))],
xe(0,2)

where ae @, » and a(x) =1, || <1.
Hence from (2.1), (2.3) and (2.4), since sup (1 + x%)™ | DA, p(x) | < o, it is
deduced that we(0,%)

sup (142" |D3p(x)| < .
we(0,)
By repeating the above procedure we can prove that ¢ €0,, 4.
Moreover, since ¢,—>¢, as n—> %, in O, ,, #, the above arguments allows
us to conclude that (1 + 22)" |D"¢p(x) | =0, as x— o, for every ke N. Thus
we show that ¢ € O, 4.
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Suppose now that ¢ € O, ». Let keN. It is not hard to see that
2k A
(2.5) |4k (x) | SCj§0|DJ¢(x)|, r=1.

Moreover, by choosing a function a e M, », since {w{ « 11, jen generates the
topology of H, we can find e N such that

(2.6) sup (1 +a2)" |Dfgp(x) | < "51(10101) |D¥(p(x) a(x)) |

xe(0,1)

!
<C 2 sup |D’(¢p(x) a()) |

J7=02e(0,2)

!
<C2 sup (L+23)™|Digw)|.

J=0 2e(0,)

By combining (2.5) and (2.6) we obtain that ¢ €O, ,, ». Also, we can see
that if {¢,, },enC Py and ¢ ,— ¢, asn—> ©,in 0,, 4, then ¢ ,— ¢, as n— o,
in O, #. Hence we deduce that ¢ € O, ,,, 4.

Thus we proved that O, ,, 4 = O,, 4. Moreover (2.5) and (2.6) imply that
the topology generated by {y% l..y is stronger than the one induced by
{wy’flyﬂ}kEN. Then the open mapping theorem allows to conclude that the
topologies defined by {y7 }rey and {w, , }ren coincide.

Thus the proof is finished. =

From Proposition 2.1 we infer that O, = O, 4. Hence the space of Hankel
convolution operators O 4, u> — %, coincides with the dual space Ok of O.

Althought, according to Proposition 2.1, the space of Hankel convolution
operators is not depending on u, the representation given in [21, Proposition
4.2] that involves the Bessel operator 4, is very useful.

Our next objective is to obtain a characterization of the entire elliptic ele-
ments of O, involving the Hankel transformation.

Firstly some properties of the elements of §H' are established.

ProposiTION 2.2. — Let fe SH'. Then, for every leN, there exists C>0
and re N, such that, for each 0 <R <I,

2 2k
|A§f(z)|sC(E) KT+ k+1)(1+ |2|)'(1+RY, zel, and keN.
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PrOOF. — Since fis an even and entire function, according to [11], we can
write

el 2k

_ w k
(r. ) = 2 T D A, e

Hence, for every ke N, R>0 and zeC, it has

M Mu+k+1) [ (z,f)(w)
: 2k +1

@.7) (A} )(z) = dw.

2m c, W

Here Cr denotes the circle having as a parametric representation to w(t) =
Re™, Te[0, 2m). Then, for every le N and 0 < R <, there exists C >0 and
reN, for which

2 2k
|A§f(z)|sC(E) K M(u+k+1)(1+ 2| (1+RY, zel, and keN. m

A consequence of Proposition 2.2 is the following one.
COROLLARY 2.3. — Let fe SH'. Then fe Og.

ProoF. — To see that fe Oy it is sufficient to use Proposition 2.2 and to ar-
gue as in the proof of Proposition 2.1. =

By proceeding as in [16, Proposition 5.2] (see also [2, Proposition 3.5]) we
can prove that if L is a continuous linear mapping from H, into itself that com-
mutes with Hankel translations, that is, 7,L = Lt ,, for every z € C, then there
exists an even and entire function @ of exponential type such that, for every
feH,,

Lf(z) = é:o akA’f,f(z), zel,

where ®(w) = > aq,w?*, weC.
k=0
In the sequel, if @ is an even and entire function admiting the representa-

tion ®(w) = 2 @, w?*, we C, we will understand by &(4,) the operator de-
fined by  *7°

d(4,) f= éoakm;f, feDy.

Here the domain D, of &(4,) is constituted by all those even and entire func-

o

tions f such that the series >, a, A% f(z) converges for every z e C. In particu-
k=0 :
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lar, if >0 and

o Ry 2k
o, )= > DD

2 , zeC,
E=0 2k Mu+k+1)

from Proposition 2.2 we deduce that SH ' is contained in Dy . Note that the
function @, ,, >0, is closely connected with the Bessel function J, of the
first kind and order u (see [25]).

PROPOSITION 2.4. — Let fe EH'. Then A, fe 6H'. Moveover &, ,(4,) f is
m SH', for every r>0.

PrOOF. — Assume that z;, 2, ..., 7, € C with n e N. By taking into account
that the operators 4, and 7,, zeC, commute on H,, (2.7) leads to

@8)  TyT,...T, (A, )2) = zeC.

3 )

2F(u+2)J‘(rzl...rzntzf)(@t)) dw
T w

Here C; denotes the circle with parametric representation w=e, te
[0, 27).

Since fe 6H', 4, f is an even and entire function and, by (2.8), for every
n, le N there exist C >0 and re N such that

|77 T, (A4, )2)] <
C((1+ |z | (1 + |z2])...(1+ |2, | (1 + |2])), 21y Boy oevy Zny 2 €1,

Hence 4, fe 6H'.
Let now r> 0. As it was mentioned 8H ' is contained in D(pw. Moreover,
by Proposition 2.2, the series

* (_1)k7.2k
Ak
1;::0 22N M+ k +1) wf@)

is convergent in H,. Hence, according to (2.7), we can write

1)"’/7”2]“ f tzl‘[zz...‘rznl’z(f)(w)dw

2k+1 ’

Tzlrzz“' Tz,l(gbr,‘u(AM) f)(z) = kgo (_

2m o w

for every z, zq, ..., z2,€C, where C,, represents the circle with parametric
representation w = 2re’, te [0, 2;r). Then, since fe 8H', we conclude that
D, (4, fecH'.

We now establish that the Hankel convolution maps O x SH' into
EH'.
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PROPOSITION 2.5. — Let Se Oy and fe SH'. Then S#fe §H'.

PRrOOF. — According to [21, Proposition 4.2], for every m e N there exist k e
N and continuous functions f; on (0, ) such that (1 +x*)" 1 x®*!fi(x) is
bounded on (0, ), j=0,1, ..., k, and

k_ oo
(S, 9)= 2 [f@ 4, ¢@) > de, peo_, ,.
J=09p

Let le N. Since fe §H', by Proposition 2.2, there exist C >0 and re N for
which

| A9 (T.)@) | < C1+a)(1+ |2])),

when x e (0, «),jeN and z € [;. Here C can be depending on j but 7 is not de-
pending on j.
We choose m €N such that fe O_,, » and that 2m + 1 >r. Then

k o
(S#) = 3 (5@ 0.l @) e dw, 2 (0, ).
7=V

Moreover, since for every j =0, 1, ..., k the function tz(AL f)(x) is continuous
on the set {(x, 2): xe (0, »), ze C}, S#f can be continuously extended to C
as an even function.

Let jeN, 0<j<k. We can write

%rz(zﬂ/;f)(ac) =z ‘2”‘léfwz"“zlﬂywrw(Aﬁf)(x) dw, zeC\{0}.

The last integral is extended on the segment from 0 to z.
Then if e N, for a certain re N it has

%rz(d;’;f)(x) < o2 |2 oo (A @) | o]
0

<C+ |z])™(1+2), xe(0, ») and zel;\{0}.
Hence, S#f is a holomorphic function on 7;\{0} and

d 3 d d j 2u+1
“s#pe = 3 [ e @@ dn, zeL\o.

Since S#f is continuous on C, Riemann theorem implies that S#f is holomor-
phic on ;. Arbitrariness of [ allows to conclude that S#f is an entire
function.

Also, for every weC, the function 7,(S#f) is even and entire.
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By choosing a suitable representation (according to [21, Proposition 4.2])
for S and by proceeding as above we can see that, for every [, n eV, there
exist C >0 and seN, for which

|77 T, (S#R) | <
CI1+ |z + |z1])...(L+ |2, ), 2, %1, %oy -ov, 2n el

Thus we conclude that S#fe SH'. =

Next result will be very useful in the sequel. Similar results can be encoun-
tered in [9, Proposition 3.2] and [29, Lemma 1]

PROPOSITION 2.6. — Assume that {&;};,.n is a sequence of positive real
numbers being £g>1and &, —&;>1, for every jeN, and that {a;};cn is @
sequence of complex numbers for which there exists a positive real number y
verifying that |a;| = O(e "7%), as j— . Then the series

Ear,g]

j=0

converges in the weak * topology of H', where 0 denotes, as usual, the Dirac
JSunctional. Moreover, h, ( > Te, ) 1sm SH' if, and only if, for every n >0,
la;| = O0(e 7%), as j— .

ProoF. — Let ¢ e H. For every n, meN, n>m, we can write

S a0 0| < 2 oo <c S e
n j=m j=m

Hence, the series E a;(t g0, ¢) converges in C. Thus we proved that the
Jj=
series 2 ajTe,0 converges in the weak #* topology of H'.

Accordlng to [6, Lemma 2.1] we have that
h(( 2 ame0) =2 T+ ) 3 0. £) 7,08,
j= ’ j=

where the convergence of the last series is understood in the weak * topology
of H'. Moreover, by taking into account [13, (5.3.a)] the last series defines a
holomorphic function in the interior of the strip /,. Indeed, for every n, meN,
being n > m, it has

> a(zE) T, (E) | SC X e v ImEDE I Imz| <y

j=m j=m
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We now define
F(z) = ‘Zo a;(zE;) " T, (RE)), [Imz| <y.
=

Suppose that |a;| = O(e ~"%)), as j— o, for each 5 > 0. Then, by proceed-
ing as above, we can see that F' is an even and entire function that is bounded
in I;, for each [ e N. Since the series defining F' converges in H,, by [19, 2, (1)],
we get

Ty Ty T, (F)(2) =

(2 T +1))" ioaj(z(sj)wwsp(zl EN T E ) 2 E) (20,
)=

for every z, 2y, 2o, ..., 2, € C. By invoking again [13, (5.3.a)] we can see that
FeSH'.
Assume now that F'e 6H'. Let r>0. By Proposition 2.4, &, ,(4,)F e
8H'. Moreover, for every le N there exists m e N such that
g ( -1 )k 7,.Zlc

(1+ |z])™ A F(2)
%] 1;::022’“16!1“(#4—!0—{—1) "

converges uniformly in I;.
According to [4, (3.1)], we can write, for every ¢ e H,

2 Mu + l)f(acy)*/‘,]‘u(xy) D, (4,) F(x) p(x)e® ! d
0

B f(pr’”(A W) Fe) by, (7, (b, p))(@) 2> d
0

= 1Yk 2k
ZO 22’“10(‘ F(u)+ k+1) A F(@) by (t, (h, @) w) 2 da
- 0

o

Fx) A% D, (x, (b, ) (@) 2% d

i (_1)k7.2k

=0 22 M+ k+1)

7,,Zlc

022Kk M+ k+1)
Zk

IIM8 HM8

(h, (F)(), @** 7, (b, P)())

022 kI T+ K +1) j Z 3Ty $)Ep, Y e(0, o).

By invoking Proposition 2.4 and Corollary 2.3, @, ,(4,) F'is a multiplier of
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H. From [1, Satz 5] it follows that, for every ¢ e H and le N,

2.9) ylf(xy)’”Jﬂ(xy) D, (4,) F(x) p(x) 2 1de—0, as y— .
0

We now choose a function ¢eH such that 7,(¢)(x) =0, xe (0, =),

hy(9)@) =0, 2 ¢ (0, 1), and h, (¢)(x) > % ve (o, %) Note that such a func-
tion can be easily found.

If x, ye (0, o) and & —y > 1, by using [15, 8.11, (31)] (see also [19, p. 308,
(2)]) then

Ty 2u+1
(210) Ty(hﬂ¢)(x) _xiy D(%, Y, z) hﬂ((b)(z) 2‘“[‘(‘1,{ + 1) de=

On the other hand, according to again [15, 8.11, (31)], we can write

z2/4+1

2x
2.11 =JD 1)
( ) Tx(h’,ud))(x) OJ‘ (x’ €, Z) hﬂ(d))(z) zul"(//t + 1) dZ

2x
= Cfx TP (4w = 22y T R, (P)(2) dz
0

1

= Cfx TP (4t — 22T R h,()(2) dz

0
1/2x

=Cfuzf‘(l—uz)”’l/zhﬂ(gb)(%m) du
0

1/4x

ZCfuz”(l—uz)”’l/zhu(gb)(Zam) du

1/8w

1/4x

=C f w2 (1 —u?p " 2dy

1/8x

=Cp 27, =

DO | =
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From (2.10) we deduce that

Z”F(ﬂ * l)f(mgl)iﬂ‘]#(mgl) (DT,#(A ‘u) F(x) ¢(9€) w2 dy

2 22k f! F(# +k+1) e, (h 9)(E))

D, &) ayte (b, p)E)), leN.
Hence, (2.9) and (2.11) imply that
b, ,(5)—0, as |— o,

By taking into account @, ,(iz) =2“(vz) “1,(1z), 2 C and r >0, where I,
denotes the modified Bessel function of the first kind and order u, from [26,
(5), 6.2] (see also [25, p. 203, (2) and (3)]) it infers that

P, (ir) = CrE )"~ 2e™,  leN.
Hence, it is conclude that |a;| = O(e "), as |— =, for every r>0.

Thus the proof is finished. =

The last proposition allows us to obtain necessary conditions in order that a
distribution 7' e O} is entire elliptic in H'.

PROPOSITION 2.7. — Let S € O). If S is entire elliptic in H' then, there exist
positive constants a and A such that

(2.12) lh )y | Ze™ ", y>A.

PRrOOF. — Suppose that we can not find a, A > 0 for which (2.12) holds. Then
there exists a sequence {&;};cyC (0, ©) such that §¢>1, §,-&,_;>1, for
every jeN\{0}, and |, (S)(&;)| <e i, for each jeN.

We define the distribution

T =2 Mu+1) io(. EN T E)).
J=

It is not hard to see that the series defining 7' converges in H'. Moreover,
Proposition 2.6 implies that T¢ SH'. On the other hand, by the interchange
formula for the distributional Hankel transformation ([21, Proposition 4.5]),
we have

h (T#S) =, (T) h, (S)

= 3 hi(S)XEN 7,0,
P
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Hence,
T#S =2"T(u+1) ‘Eo Rl (SYENCEHN (&),
=

and by taking into account Proposition 2.6, T#Se 6H'.
Thus we conclude that S is not entire elliptic on H'. =

In the next proposition we prove that the condition (2.12) implies the entire
ellipticity of the element S of O.

PROPOSITION 2.8. — Let S € Oy. If there exist a, A > 0 such that (2.12) holds
for S, then S is entive elliptic on H'.

Proor. — We first take a function ¢ € H such that ¢(x) =1, x <A, and
¢(x) =0, x>A+1. We define the function g by

1—¢(x)

glx)=0, O0<x<A, andgx)= . ’
Dy, (1) by (S)(2)

It is clear that g is a smooth function on (0, ). Moreover, by taking into ac-
count that &, (S) is a multiplier of H ([21, Proposition 4.2]) and [28, (5) and (8),
6.2], we can see that g is a multiplier of H. Indeed, by using the Leibniz rule
we can see that, for every ke N,

) ()
v dx ( Dy, (1) by, (S)(ac))

has a polynomial growth at infinity. Hence the distribution G =k, (g) is in O}
([21, Proposition 4.2]).
Moreover,

(2.13) Dy, (A)S#G) =06 - D,
where @ = h,(¢). Indeed, let p € H. We can write

(P2, (4,)S#G), @)

i (=D (2a)*"

S#A" G,
kﬂZ%MHu+k+D< «Gr @)

8

(-1 (2a)**
022 I Mu+k+1

)<@x5)@xA§GLmA¢»

k
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o

SS GO [k 1 S)@) b)) — e
=0 22 M+ k +1) T B W 2Mu+1)

2u+1

o

o (2(1)2}6 - 1_¢(9€) x2‘u+1
- ) —d
,20 2K T + o + 1)Afx D) O e ™

3 2u+1
= 1-— R —
Of (1= 9 Iy ()e) S
2u+1

= h, (h, )(0) — Of h ($)(@) ¢(x) 2T(u+1) &

=9, @) — (h.(9), ).
Then (2.13) is established. Note that (2.13) implies also that @, (4 )(S#G)

is in O.
Also the series

o (—1)f(2a)**
Ak (S#G
kZo 22K M+ k +1) w(S#G)

converges in the space Oy. Indeed, let ¢ € H. By proceeding as above we can
see that

<h( v (=D 2ay"

AR(S#G) |, @) =
\iT0 225 M + k + 1) ul )) (p>

> (2a)** o 1= ¢()
12:0 2RI Mu+k+1) <x Dy, (i) q0(%)>'

Hence, it is sufficient to show that the series

i (2ax)? 1—¢(x)
=0 22K M+ k+1) @y, , (i)
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converges in the topology of O. Let se N. By invoking [28, (5) and (8), 6.2] it
obtains,

)5< N (aw)™ 1—¢(x)

— 1_
ST D) Dolin) W”)‘

( )3 z": (2ax)* 1 “1 )o@
dx k=0 22! T+ k+1) @y, (i) ¢ ‘

Ns\[(1 d \"7 1 d V[ aw)* 1
<j20(j) ( x dx ) (A=) ( x dx ) (k—O 2R Mu+k+1) @y, (i) )’
s 1 d i (2(190)2k 1
S ;) ( x dx ) (I;) 2R Mu+k+1) @y, (i) )‘

< C(1+x?), xe(0,) and neN,

for some /e N that is not depending on xe (0, ©) and neN.
Let ¢ > 0 and se V. If [ is the nonnegative integer that is associated to s as
above, there exists x> 0 such that, for every nel,

1 d\((~ (2ax)* 1
= dr ~1)a- ,
) ((kzo 2L T+ 1) D ) )( "”(”)))| <

Moreover, we can find n,e N for which

1 d V(< (2a2)* 1
-2 -1)a-
(x dac) ((gﬁ 22N M+ k+1) @, (i) )( W)))‘ =

provided that n = n,.
Hence, we conclude that, for every n = n,,

1 d V(s (ax)* 1
v de -1)a- _
(x dx) ((’% PRI T+ ko +1) Doy, (i) )( W»)‘ -

Thus, it is showed that

1
sSup ————
xzalz) (1 +9€2)l+1

1
su
0<x£):co (1 +x

2)l+1

1
su
0<x£)oo (1 +x

2)l+1

& (2ax)? 1- o)
li =1-¢),
w 1;::0 BN Mu+k+1) @y, (i) P

in the topology of O.
Assume now that T#S =f where Te H' and fe 6H'. According to (2.13)
and by taking into account the series

i (—1*(2a)**

AR (S#G
=0 22Kk M+ k + 1) ul )
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converges in Oy we can write

(2.14) T'=T#(Ds,, (A4 )S#G)) + T#D
=Dy, (A N(TH#S)#G) + T#D
=Dy, (AN HG) + T#D.

By Propositions 2.4 and 2.5, @,, ,(4,)(f#G) is in §H'.
Moreover, T#® e §H'. Indeed, by [4, (3.1)], we have

(T#®D)x)=(T, 7,P)
= (R (T)(t), 2 T(u + 1)wt) ™, (xt) p(1)), we (0, o).

For every x e C, the series

i (=1 (at)*"

(xt) ™" J, (wt) p(t) = =0 22k Fu+ k + 1)

Pt

converges in B. Then it deduces that

i (—1)k902k

— ’ 2k 0
IO =T+ 1) 24 o e (DO, (D), e (0, ),

Hence T#® can be extended as an even and entire function.
By virtue of [6, Lemma 2.2], we get, for every z, z, 25, ..., 2,€C and
nehl,

Ty Ty T, (THD)(2) =
(b (T)(#), (2°T(u + 1)) (21 8) (21 E)(228) T, (20)...
(2, 1), (2, 0)(2t) " T, (2t) P(1)).
Since h, Te $' and ¢ € B, there exist reN and C > 0 for which

|7, Ts. T, (T#P)2) | <

C max sup
Osksro<t<a+1

14 k(( )T (21 )22 )T, (228)
(t dt) 21 u\R1 (2 ulR2l)...

(2, )7 (2, 1)(2E) " T, (28) p(D)) |,

for each z, 2z, 25, ..., 2,€C.
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Therefore, according to [28, (7), 5.1] and [13, (5.3.a)], for each n, [ N, one
has, for every z, 2y, 2o, ..., 2,€ 1},

|72, Toy T (TH#DP)2) | SCUL+ 2] )1+ |2])...(1+ |2, ]))".

Thus we prove that S is entire elliptic in H'. =

We now give a distribution S € O} that is entire elliptic but it is not hypoel-
liptic in H'.

Let a > 0. We define the function ¢(x) =1/@, ,(ix), x> 0. By taking into
account [28, (5) and (8), 6.2] we can see that ¢ € H. Then, according to [1, Satz
5], S =h,(¢) e H. By [21, Proposition 4.2] it follows that S € O . Moreover, for
every keN, y"h,,’ S) ) =y p(y) —0, as y— o . By invoking [9, Proposition
3.3] we conclude that S is not hypoelliptic in H"'.

Moreover, S is entire elliptic in H'. Indeed, according to [28, (5), 6.2], there
exists C' >0 such that

|l (S)y) | = ¢p(y) =Ce ™,

when y is large enough. Hence, from Proposition 2.8 one deduces that S is en-
tire elliptic in H'.
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