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Bollettino U. M. I.
(8) 6-B (2003), 717-737

Entire Elliptic Hankel Convolution Equations (*).

M. BELHADJ - J. J. BETANCOR

Sunto. – In questo lavoro caratterizziamo gli operatori di convoluzione di Hankel ellit-
tici interi su distribuzioni temperate in termini della crescita delle loro trasforma-
te di Hankel.

Summary. – In this paper we characterize the entire elliptic Hankel convolutors on
tempered distributions in terms of the growth of their Hankel transforms.

1. – Introduction and preliminaries.

The Hankel transformation is usually defined by ([18])

hm ( f )(y) 4s
0

Q

(xy)2m Jm (xy) f (x)x 2m11 dx , yD0.

Here Jm denotes the Bessel function of the first kind and order m . Throughout

this paper we will assume that mD2
1

2
.

The Hankel transformation hm has been studied in spaces of distributions
of slow growth by G. Altenburg [1]. Altenburg’s investigation was inspired in
the studies of A. H. Zemanian ([26] and [28]) about the variant Hm of the Han-
kel transformation defined through

Hm ( f )(y) 4s
0

Q

(xy)1/2 Jm (xy) f (x) dx , yD0.

It is clear that hm and Hm are closely connected.
G. Altenburg [1] introduced the space H constituted by all those complex

valued and smooth functions f on (0 , Q) such that, for every m , n�N ,

g m , n (f) 4 sup
x� (0 , Q)

(11x 2 )mNg 1

x

d

dx
hn

f(x) N EQ .

(*) Partially supported by DGICYT Grant PB 97-1489 (Spain).
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On H it considers the topology associated with the family ]g m , n (m , n�N of
seminorms. Thus H is a Fréchet space and hm is an automorphism of H ([1, Satz
5]). According to [12, p. 85] the space H coincides with the space Seven consti-
tuted by all the even functions in the Schwartz space S . From [3, Theorem 2.3]
it is immediately deduced that a function f defined on (0 , Q) is a pointwise
multiplier of H , write f� O, if, and only if, f is smooth on (0 , Q) and, for every

k�N , there exists m�N for which (11x 2 )2ng 1

x

d

dx
hk

f (x) is bounded on
(0 , Q).

The dual space of H , is, as usual represented by H 8 . If f is a measurable
function on (0 , Q) such that (11x 2 )2n f (x) is a bounded function on (0 , Q),
for some n�N, then f generates an element of H 8 , that we continue calling f , by

a f , fb 4s
0

Q

f (x) f(x)
x 2m11

2m G(m11)
dx , f�H .

The Hankel transformation hm8 is defined on H 8 as the transpose of hm-trans-
formation of H . That is, if T�H 8 the Hankel transformation hm8 T is the ele-
ment of H 8 given through

ahm8 T , fb 4 aT , hm fb, f�H .

Thus hm8 is an automorphism of H 8 when on H 8 it considers the weak ˜ or the
strong topologies.

Also in [1] G. Altenburg considered, for every aD0 the space Ba constitut-
ed by all those functions f in H such that f(x) 40, xFa . Ba is endowed with
the topology induced on it by H . The Hankel transform hm (Ba ) of Ba can be
characterized by invoking [27, Theorem 1]. The union space B 4 0

aD0
Ba is

equipped with the inductive topology. The dual spaces of Ba , aD0, and B are
denoted, as usual, by Ba8 , aD0, and B8 , respectively.

In [24] K. Trimèche introduced, for every aD0, the space D*, a constituted
by all those smooth and even functions f on R such that f(x) 40, NxNFa .
Also he considered the union space D*4 0

aD0
D*, a . According to [12, p. 85], the

spaces Ba , aD0, and B, coincides with the spaces D*, a , aD0, and D*,
respectively.

F. M. Cholewinski [10], D. T. Haimo [17] and I. I. Hirschman [19] investi-
gated the convolution operation of the Hankel transformation hm on Lebesgue
spaces. We say that a measurable function f is in L1, m when

s
0

Q

Nf (x)Nx 2m11 dxEQ .
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If f , g�L1, m the Hankel convolution fJm g of f and g is defined by

( fJm g)(x) 4s
0

Q

f (y)(m t x g)(y)
y 2m11

2m G(m11)
dy , a.e. x� (0 , Q),

where the Hankel translated mt x g , x� (0 , Q), is given through

(mt x g)(y) 4s
0

Q

g(z) Dm (x , y , z)
z 2m11

2m G(m11)
dz , a.e. y� (0 , Q),(1.1)

and being

Dm (x , y , z) 4 (2m G(m11) )2s
0

Q

(xt)2m Jm (xt)(yt)2m Jm (yt)(zt)2m Jm (zt) t 2m11 dt ,

x , y , z� (0 , Q).

Here a.e. is understood respect to the Lebesgue mesure on (0 , Q).
The Hankel transformation hm and the Hankel convolution Jm are related

by ([19, Theorem 2.d])

hm (fJm g) 4hm ( f ) hm ( g), f , g�L1, m .

Since we think no confusion will appear, in the sequel we will write J , t x ,
x� (0 , Q), and D instead of Jm , m t x , x� (0 , Q), and Dm , respectively.

As it was mentioned the transformations Hm and hm are closely connected.
After a straightforward manipulation it can be deduced from J a form for the
convolution operation ˜ for the Hankel transformation Hm .

The investigation of the ˜ convolution on the distribution spaces was be-
gan by J. de Sousa-Pinto [23]. He considered the 0-order transformation H0

and compact support distributions on (0 , Q). More recently in a series of pa-
pers J. J. Betancor and I. Marrero ([4], [5], [6], [7] and [21]) have extended the
studies of J. de Sousa-Pinto. They defined the ˜ convolution of the Hankel
transformation Hm on Zemanian distribution spaces of slow growth ([21]) and
rapid growth ([4]). J. J. Betancor and L. Rodríguez-Mesa ([9]) studied the hy-
poellipticity of Hankel ˜ convolution on Zemanian distribution spaces.

The main aspects of the distributional theory developed by the ˜ convolu-
tion can be transplanted to the J convolution. Our objective in this paper is to
analyze the entire ellipticity of the J convolution operators on the spaces H
and H 8 .

For every x� (0 , Q), the Hankel translated t x defines a continuous linear
mapping from H into itself ([21, Proposition 2.1]). For every T�H 8 and f�H
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the Hankel convolution TJf of T and f is defined by

(TJf)(x) 4 aT , t x fb, x� (0 , Q).

By [21, Proposition 3.5], TJf is a multiplier of H , for each T�H 8 and f�H .
In general TJf is not in H when T�H 8 and f�H . Indeed, if we define the
functional T on H by

aT , fb 4s
0

Q

f(x)
x 2m11

2m G(m11)
dx , f�H ,

then T�H 8 and, for every f�H ,

(TJf)(x) 4s
0

Q

(t x f)(y)
y 2m11

2m G(m11)
dy4s

0

Q

f(y)
y 2m11

2m G(m11)
dy , x� (0 , Q).

Hence TJf�H when s
0

Q

f(y) y 2m11 dyc0. According to [21, Proposition 4.2]

we can characterize the subspace constituted by all those T�H 8 such that
TJf�H , for every f�H . Let m�Z . We say that a complex valued and
smooth function f on (0 , Q) is in Om , m , J

if and only if, for every k�N ,

wm , m
k (f) 4 sup

x�(0,Q)
(11x 2 )m ND m

k f(x)NEQ ,

where D m denotes the Bessel operator x 22m21 Dx 2m11 D . Om , m , J

is a Fréchet
space when it is endowed with the topology associated with the system
]wm , m

k (k�N of seminorms. It is clear that H is contained in Om , m , J

. We denote
by Om , m , J

the closure of H in Om , m , J

. By Om , J

we represent the inductive limit
space 0

m�Z
Om , m , J

. The dual space Om , J

8 of Om , J

can be characterized as the sub-

space of H 8 of J-convolution operators on H ([5, Proposition 2.5]). Moreover,
by defining on Om , J

8 the topology associated with the family ]h m , k , f(m , k�N , f�H

of seminorms, where, for each m , k�N and f�H ,

h m , k , f (T) 4w k
m , m (TJf), T� Om , J

8 ,

and by considering on O the topology induced by the simple topology of the
space L(H) of the linear and continuous mappings from H into itself, the Han-
kel transformation hm8 is an isomorphism from Om , J

8 onto O.
The Hankel convolution TJS of T�H 8 and S� Om , J

8 is defined by

aTJS , fb 4 aT , SJfb, f�H .

Thus TJS�H 8 , for each T�H 8 and S� Om , J

8 .
In [9] J. J. Betancor and L. Rodríguez-Mesa investigated the hypoelliptici-

ty of the ˜-Hankel convolution equations on Zemanian spaces. Results as in
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[9] can be obtained for the J-Hankel convolutions. A distribution S� Om , J

8 is
said to be hypoelliptic in H 8 when the following property holds: T� Om , J

provided that T�H 8 and TJS� Om , J

. From [9, Proposition 3.3] it infers that
S� Om , J

8 is hypoelliptic in H 8 when, and only when, there exist b , BD0 such
that

Nhm8 (S)(y)NFy 2b , yFB .

Motivated by the celebrated paper of L. Ehrenpreis [14] and the investiga-
tions of Z. Zielezny [29], we study in this paper the entire elliptic Hankel con-
volution equations on H 8 .

By He we represent the space of even and entire functions. It is equipped,
as usual, with the topology of the uniform convergence of the bounded sets of C .

We will say that f�He is in E H 8 if, and only if, for every l , n�N , there
exist CD0 and k�N for which

Nt z1
t z2

R t zn
( f )(z)NG

C( (11NzN)(11Nz1N)R(11NznN) )k , z , z1 , z2 , R , zn �Il ,

where Il 4 ]w�C : NIm wNG l(.
Here the complex Hankel translation operator t z , z�C , must be under-

stood as in [11]. If f�He and f (z) 4 !
k40

Q

ak z 2k , z�C , then

(t w f )(z) 4 !
n40

Q

an!
k40

n gn

k
h G(n1m11) G(m11)

G(n2k1m11) G(k1m11)
z 2(n2k) w 2k , z , w�C .

Thus, the Hankel translation operator is extended to the complex plane.
A distribution S� Om , J

8 will say to be entire elliptic in H 8 when the follow-
ing property holds: T� E H 8 provided that T�H 8 and TJS� E H 8 .

We will start Section 2 proving that the space O8m , J

of Hankel convolution
operators of H is really not depending on m . Also, in Section 2 we obtain a
characterization for the entire elliptic elements of Om , J

8 in terms of the growth
of their Hankel transforms. We will prove that S� Om , J

8 is entire elliptic on H 8

if, and only if, there exist a , AD0 such that

Nhm8 (S)(y)NFe 2ay , yFA .

Throughtout this paper by C we always represent a suitable positive con-
stant that can change from a line to the other one.
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2. – Entire elliptic Hankel convolution equations in H 8.

We firstly prove that the space O8m , J

of Hankel convolution operators is re-
ally not depending on m .

Let m�Z , mG0. We denote by Om , J

the space constituted by all those
smooth functions f on (0 , Q) for which there exists an even and smooth func-
tion c such that c(x) 4f(x), x� (0 , Q), and that

g m
k (f) 4 sup

x� (0 , Q)
(11x 2 )m ND k f(x)NEQ ,

for every k�N . Om , J

is endowed with the topology associated with the family
]g m

k (k�N of seminorms. Thus, Om , J

is a Fréchet space. By Om , J

we understood
the closure of D* in Om , J

. It is clear that Om , J

is a Fréchet space. Moreover,
Om , J

contains continuously Om11, J . The union space 0
m�Z, mG0

Om , J

is denoted

by O
J

and it is contained in the space O of the pointwise multipliers of H .
Note that, for every m�Z , mG0, a function f� Om , J

if, and only if, f can
be extended to an even function c that is in the space Sm studied in [20] and
[22]. Hence an even and smooth function f on R is in Om , J

when, and only
when, for every k�N , lim

xKQ
(11x 2 )m D k f(x) 40.

PROPOSITION 2.1. – Let m�Z , mG0. The spaces Om , m , J

and Om , J

coincide
topologically and algebraically.

PROOF. – Assume that f� Om , m , J

. There exists a sequence ]f n (n�N in D*
such that f n Kf , as nKQ , in Om , m , J

.
Let k�N . We choose a function a� D*, 2k , such that a(x) 41, x� (2k , k).

Then, since ]f n (n�N is a Cauchy sequence in Om , m , J

, ]f n a(n�N is a Cauchy
sequence in D*, 2k . Hence, there exists c� D*, 2k for which f n aKc , as
nKQ , in D*, 2k . Since the convergence in Om , m , J

implies the pointwise con-
vergence on (0 , Q), we conclude that f admits an even and smooth extension
to R .

We can write

g 1

x
Dh f(x) 4x 22m22s

0

x

D m f(t) t 2m11 dt , x� (0 , Q).

Hence, it obtains

sup
x� (0 , Q)

(11x 2 )mNg 1

x
Dh f(x) N GC sup

x�(0,Q)
(11x 2 )m ND m f(x)N .
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Moreover, since

D m f(x) 4D 2 f(x)1
2m11

x
Df(x), x� (0 , Q),

we have that

sup
x�(0,Q)

(11x 2 )m ND 2 f(x)NGC sup
x�(0,Q)

(11x 2 )m ND m f(x)N .(2.1)

On the other hand, a straightforward manipulation allows to get

(2.2) s
x

x11

(x112 t) D 2 f(t) dt42Df(x)1f(x11)2f(x), x� (0 , Q).

Hence, we deduce from (2.1) and (2.2) that

(2.3) sup
x�(0,Q)

(11x 2 )m NDf(x)NG

Cg sup
x�(0,Q)

(11x 2 )m ND 2 f(x)N1 sup
x�(0,Q)

(11x 2 )m Nf(x)Nh .

Also we have that

DD m f(x) 4D 3 f(x)1 (2m11) xg 1

x
Dh2

f(x), x� (0 , Q).(2.4)

The family ]w k
m , m(m, k�N generates the topology of H . Then, we can find k�N

such that

sup
x�(0, 1)

Ng 1

x
Dh2

f(x) N G sup
x�(0, 1)

Ng 1

x
Dh2

(f(x) a(x) ) N
GC sup

x�(0, 2)
NDm

k (f(x) a(x) )N ,

where a� D*, 2 and a(x) 41, NxNG1.
Hence from (2.1), (2.3) and (2.4), since sup

x�(0,Q)
(11x 2 )m NDD m f(x)NEQ , it is

deduced that

sup
x�(0,Q)

(11x 2 )m ND 3 f(x)NEQ .

By repeating the above procedure we can prove that f�Om , J

.
Moreover, since f n Kf , as nKQ , in Om , m , J

, the above arguments allows
us to conclude that (11x 2 )m ND k f(x)NK0 , as xKQ , for every k�N . Thus
we show that f� Om , J

.
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Suppose now that f� Om , J

. Let k�N . It is not hard to see that

ND m
k f(x)NGC !

j40

2k

ND j f(x)N , xF1.(2.5)

Moreover, by choosing a function a� D*, 2 , since ]w j
l , m(l , j�N generates the

topology of H , we can find l�N such that

sup
x�(0, 1)

(11x 2 )m NDm
k f(x)NG sup

x�(0, 1)
NDm

k (f(x) a(x) )N(2.6)

GC !
j40

l

sup
x�(0, 2)

ND j(f(x) a(x) )N

GC !
j40

l

sup
x�(0,Q)

(11x 2 )m ND jf(x)N .

By combining (2.5) and (2.6) we obtain that f�Om , m , J

. Also, we can see
that if ]f n (n�N % D* and f n Kf , as nKQ , in Om , J

, then f n Kf , as nKQ ,
in Om , m , J

. Hence we deduce that f� Om , m , J

.
Thus we proved that Om , m , J

4 Om , J

. Moreover (2.5) and (2.6) imply that
the topology generated by ]g m

k (k�N is stronger than the one induced by
]wm , m

k (k�N . Then the open mapping theorem allows to conclude that the
topologies defined by ]g k

m (k�N and ]wm , m
k (k�N coincide.

Thus the proof is finished. r

From Proposition 2.1 we infer that O
J

4 Om , J

. Hence the space of Hankel

convolution operators Om , J

8 , mD2
1

2
, coincides with the dual space O

J

8 of O
J

.

Althought, according to Proposition 2.1, the space of Hankel convolution
operators is not depending on m , the representation given in [21, Proposition
4.2] that involves the Bessel operator D m is very useful.

Our next objective is to obtain a characterization of the entire elliptic ele-
ments of O

J

involving the Hankel transformation.
Firstly some properties of the elements of E H 8 are established.

PROPOSITION 2.2. – Let f� E H 8 . Then, for every l�N , there exists CD0
and r�N , such that, for each 0 ERE l ,

ND m
k f (z)NGCg 2

R
h2k

k! G(m1k11)(11NzN)r (11R)r , z�Il and k�N .
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PROOF. – Since f is an even and entire function, according to [11], we can
write

(t z f )(w) 4 !
k40

Q w 2k

22k k! G(m1k11)
(D m

k f )(z), w , z�C .

Hence, for every k�N , RD0 and z�C , it has

(D m
k f )(z) 4

22k k! G(m1k11)

2pi
s

CR

(t z f )(w)

w 2k11
dw .(2.7)

Here CR denotes the circle having as a parametric representation to w(t) 4

Re it , T� [0 , 2p). Then, for every l�N and 0 ERE l , there exists CD0 and
r�N , for which

ND m
k f (z)NGCg 2

R
h2k

k! G(m1k11)(11NzN)r (11R)r , z�Il and k�N . r

A consequence of Proposition 2.2 is the following one.

COROLLARY 2.3. – Let f� E H 8 . Then f� O
J

.

PROOF. – To see that f� O
J

it is sufficient to use Proposition 2.2 and to ar-
gue as in the proof of Proposition 2.1. r

By proceeding as in [16, Proposition 5.2] (see also [2, Proposition 3.5]) we
can prove that if L is a continuous linear mapping from He into itself that com-
mutes with Hankel translations, that is, t z L4Lt z , for every z�C , then there
exists an even and entire function F of exponential type such that, for every
f�He ,

Lf (z) 4 !
k40

Q

ak D m
k f (z), z�C ,

where F(w) 4 !
k40

Q

ak w 2k , w�C .

In the sequel, if F is an even and entire function admiting the representa-

tion F(w) 4 !
k40

Q

ak w 2k , w�C , we will understand by F(D m ) the operator de-
fined by

F(D m ) f4 !
k40

Q

ak D m
k f , f�DF .

Here the domain DF of F(D m ) is constituted by all those even and entire func-

tions f such that the series !
k40

Q

ak D m
k f (z) converges for every z�C . In particu-
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lar, if rD0 and

F r , m (z) 4 !
k40

Q (21)k (rz)2k

22k k! G(m1k11)
, z�C ,

from Proposition 2.2 we deduce that E H 8 is contained in DF r , m
. Note that the

function F r , m , rD0, is closely connected with the Bessel function Jm of the
first kind and order m (see [25]).

PROPOSITION 2.4. – Let f� E H 8 . Then D m f� E H 8 . Moreover F r , m (D m ) f is
in E H 8 , for every rD0.

PROOF. – Assume that z1 , z2 , R , zn �C with n�N . By taking into account
that the operators D m and t z , z�C , commute on He , (2.7) leads to

(2.8) t z1
t z2

R t zn
(D m f )(z) 4

2G(m12)

pi
s

C1

(t z1
Rt zn

t z f )(w)

w 3
dw , z�C .

Here C1 denotes the circle with parametric representation w4e it , t�
[0 , 2p).

Since f� E H 8 , D m f is an even and entire function and, by (2.8), for every
n , l�N there exist CD0 and r�N such that

Nt z1
t z2

R t zn
(D m f )(z)NG

C( (11Nz1N)(11Nz2N)R(11NznN)(11NzN) )r , z1 , z2 , R , zn , z�Il .

Hence D m f� E H 8 .
Let now rD0. As it was mentioned E H 8 is contained in DF r , m

. Moreover,
by Proposition 2.2, the series

!
k40

Q (21)k r 2k

22k k! G(m1k11)
D m

k f (z)

is convergent in He . Hence, according to (2.7), we can write

t z1
t z2

R t zn
(F r , m (D m ) f )(z) 4 !

k40

Q (21)k r 2k

2pi
s

C2r

t z1
t z2

R t zn
t z ( f )(w)

w 2k11
dw ,

for every z , z1 , R , zn �C , where C2r represents the circle with parametric
representation w42re it , t� [0 , 2p). Then, since f� E H 8 , we conclude that
F r , m (D m ) f� E H 8 . r

We now establish that the Hankel convolution maps O
J

8 3 E H 8 into
E H 8 .
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PROPOSITION 2.5. – Let S� O
J

8 and f� E H 8 . Then SJf� E H 8 .

PROOF. – According to [21, Proposition 4.2], for every m�N there exist k�
N and continuous functions fj on (0 , Q) such that (11x 2 )m11 x 2m11 fj (x) is
bounded on (0 , Q), j40, 1 , R , k , and

aS , fb 4 !
j40

k

s
0

Q

fj (x) D m
j f(x) x 2m11 dx , f� O2m , J

.

Let l�N . Since f� E H 8 , by Proposition 2.2, there exist CD0 and r�N for
which

ND m
j (t z f )(x)NGC( (11x)(11NzN) )r ,

when x� (0 , Q), j�N and z�Il . Here C can be depending on j but r is not de-
pending on j .

We choose m�N such that f� O2m , J

and that 2m11 Dr . Then

(SJf )(z) 4 !
j40

k

s
0

Q

fj (x) t z (D m
j f )(x) x 2m11 dx , z� (0 , Q).

Moreover, since for every j40, 1 , R , k the function t z (D m
j f )(x) is continuous

on the set ](x , z) : x� (0 , Q), z�C(, SJf can be continuously extended to C
as an even function.

Let j�N , 0 G jGk . We can write

d

dz
t z (D m

j f )(x) 4z 22m21s
0

z

w 2m11 D m , w t w (D m
j f )(x) dw , z�C0]0(.

The last integral is extended on the segment from 0 to z .
Then if l�N , for a certain r�N it has

N d

dz
t z (D m

j f )(x) NGNzN22m21s
0

z

NwN2m11 Nt w (D m
j11 f )(x)NNdwN

GC(11NzN)r11 (11x)r , x� (0 , Q) and z�Il 0]0(.

Hence, SJf is a holomorphic function on Il 0]0( and

d

dz
(SJf )(z) 4 !

j40

k

s
0

Q

fj (x)
d

dz
t z (D m

j f )(x) x 2m11 dx , z�Il 0]0(.

Since SJf is continuous on C , Riemann theorem implies that SJf is holomor-
phic on Il . Arbitrariness of l allows to conclude that SJf is an entire
function.

Also, for every w�C , the function t w (SJf ) is even and entire.
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By choosing a suitable representation (according to [21, Proposition 4.2])
for S and by proceeding as above we can see that, for every l , n�N , there
exist CD0 and s�N , for which

Nt z1
t z2

R t zn
(SJf )(z)NG

C( (11NzN)(11Nz1N)R(11NznN) )s , z , z1 , z2 , R , zn �Il .

Thus we conclude that SJf� E H 8 . r

Next result will be very useful in the sequel. Similar results can be encoun-
tered in [9, Proposition 3.2] and [29, Lemma 1]

PROPOSITION 2.6. – Assume that ]j j (j�N is a sequence of positive real
numbers being j 0 D1 and j j11 2j j D1, for every j�N , and that ]aj (j�N is a
sequence of complex numbers for which there exists a positive real number g
verifying that NajN4O(e 2gj j ), as jKQ . Then the series

!
j40

Q

aj t j j
d

converges in the weak ˜ topology of H 8 , where d denotes, as usual, the Dirac

functional. Moreover, hm8g!
j40

Q

aj t j j
dh is in E H 8 if, and only if, for every hD0,

NajN4O(e 2hj j ), as jKQ .

PROOF. – Let f�H . For every n , m�N , nDm , we can write

N !
j4m

n

aj at j j
d , fb N G !

j4m

n

Naj NNf(j j )NGC !
j4m

n

e 2gj .

Hence, the series !
j40

Q

aj at j j
d , fb converges in C . Thus we proved that the

series !
j40

Q

aj t j j
d converges in the weak ˜ topology of H 8 .

According to [6, Lemma 2.1] we have that

hm8g!
j40

Q

aj t j j
dh42m G(m11) !

j40

Q

aj (. j j )
2m Jm (. j j ),

where the convergence of the last series is understood in the weak ˜ topology
of H 8 . Moreover, by taking into account [13, (5.3.a)] the last series defines a
holomorphic function in the interior of the strip Ig . Indeed, for every n , m�N ,
being nDm , it has

N !
j4m

n

aj (zj j )2m Jm (zj j ) N GC !
j4m

n

e 2(g2NIm zN)j j , NIm zNEg .
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We now define

F(z) 4 !
j40

Q

aj (zj j )2m Jm (zj j ), NIm zNEg .

Suppose that NajN4O(e 2hj j ), as jKQ , for each hD0. Then, by proceed-
ing as above, we can see that F is an even and entire function that is bounded
in Il , for each l�N . Since the series defining F converges in He , by [19, 2, (1)],
we get

t z1
t z2

R t zn
(F)(z) 4

(2m G(m11) )n !
j40

Q

aj (zj j )2m Jm (zj j )(z1 j j )2m Jm (z1 j j )R(zn j j )2m Jm (zn j j ) ,

for every z , z1 , z2 , R , zn �C . By invoking again [13, (5.3.a)] we can see that
F� E H 8 .

Assume now that F� E H 8 . Let rD0. By Proposition 2.4, F r , m (D m )F�
E H 8 . Moreover, for every l�N there exists m�N such that

(11NzN)2m !
k40

Q (21)k r 2k

22k k! G(m1k11)
D m

k F(z)

converges uniformly in Il .
According to [4, (3.1)], we can write, for every f�H ,

4

4

4

4

4

2m G(m11)s
0

Q

(xy)2m Jm (xy) F r , m (D m ) F(x) f(x)x 2m11 dx

s
0

Q

F r , m (D m ) F(x) hm (t y (hm f) )(x) x 2m11 dx

!
k40

Q (21)k r 2k

22k k! G(m1k11)
s
0

Q

D m
k F(x) hm (t y (hm f) )(x) x 2m11 dx

!
k40

Q (21)k r 2k

22k k! G(m1k11)
s
0

Q

F(x) D m
k hm (t y (hm f) )(x) x 2m11 dx

!
k40

Q r 2k

22k k! G(m1k11)
ahm8 (F)(x), x 2k t y (hm f)(x)b

!
k40

Q r 2k

22k k! G(m1k11)
!
j40

Q

aj j j
2k t y (hm f)(j j ), y� (0 , Q).

By invoking Proposition 2.4 and Corollary 2.3, F r , m (D m ) F is a multiplier of
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H . From [1, Satz 5] it follows that, for every f�H and l�N ,

y ls
0

Q

(xy)2m Jm (xy) F r , m (D m ) F(x) f(x) x 2m11 dxK0, as yKQ .(2.9)

We now choose a function f�H such that hm (f)(x) F0, x� (0 , Q),

hm (f)(x) 40, x� (0 , 1 ), and hm (f)(x) D
1

2
, x�g0, 1

2
h . Note that such a func-

tion can be easily found.
If x , y� (0 , Q) and x2yD1, by using [15, 8.11, (31)] (see also [19, p. 308,

(2)]) then

t y (hm f)(x) 4 s
x2y

x1y

D(x , y , z) hm (f)(z)
z 2m11

2m G(m11)
dz40.(2.10)

On the other hand, according to again [15, 8.11, (31)], we can write

t x (hm f)(x) 4s
0

2x

D(x , x , z) hm (f)(z)
z 2m11

2m G(m11)
dz(2.11)

4Cs
0

2x

x 24m z 2m (4x 2 2z 2 )m21/2 hm (f)(z) dz

4Cs
0

1

x 24m z 2m (4x 2 2z 2 )m21/2 hm (f)(z) dz

4C s
0

1/2x

u 2m (12u 2 )m21/2 hm (f)(2xu) du

FC s
1/8x

1/4x

u 2m (12u 2 )m21/2 hm (f)(2xu) du

FC s
1/8x

1/4x

u 2m (12u 2 )m21/2 du

FCx 22m21 , xF
1

2
.
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From (2.10) we deduce that

2m G(m11)s
0

Q

(xj l )
2m Jm (xj l ) F r , m (D m ) F(x) f(x) x 2m11 dx

4 !
k40

Q r 2k

22k k! G(m1k11)
j l

2k al t j l
(hm f)(j l )

4F r , m (ij l ) al t j l
(hm f)(j l ), l�N .

Hence, (2.9) and (2.11) imply that

al F r , m (ij l ) K0, as lKQ .

By taking into account F r , m (iz) 42m (rz)2m Im (rz), z�C and rD0, where Im

denotes the modified Bessel function of the first kind and order m , from [26,
(5), 6.2] (see also [25, p. 203, (2) and (3)]) it infers that

F r , m (irj l ) FC(rj l )2m21/2 e rj l , l�N .

Hence, it is conclude that NalN4O(e 2rj l ), as lKQ , for every rD0.
Thus the proof is finished. r

The last proposition allows us to obtain necessary conditions in order that a
distribution T� O

J

8 is entire elliptic in H 8 .

PROPOSITION 2.7. – Let S� O
J

8 . If S is entire elliptic in H 8 then, there exist
positive constants a and A such that

Nhm8 (S)(y)NFe 2ay , yDA .(2.12)

PROOF. – Suppose that we can not find a , AD0 for which (2.12) holds. Then
there exists a sequence ]j j (j�N % (0 , Q) such that j 0 D1, j j 2j j21 D1, for
every j�N0]0(, and Nhm8 (S)(j j )NEe 2jj j , for each j�N .

We define the distribution

T42m G(m11) !
j40

Q

(. j j )2m Jm (. j j ).

It is not hard to see that the series defining T converges in H 8 . Moreover,
Proposition 2.6 implies that T� E H 8 . On the other hand, by the interchange
formula for the distributional Hankel transformation ([21, Proposition 4.5]),
we have

hm8 (TJS) 4hm8 (T) hm8 (S)

4 !
j40

Q

hm8 (S)(j j ) t j j
d .
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Hence,

TJS42m G(m11) !
j40

Q

hm8 (S)(j j )(. j j )2m Jm (. j j ),

and by taking into account Proposition 2.6, TJS� E H 8 .
Thus we conclude that S is not entire elliptic on H 8 . r

In the next proposition we prove that the condition (2.12) implies the entire
ellipticity of the element S of O

J

8 .

PROPOSITION 2.8. – Let S� O
J

8 . If there exist a , AD0 such that (2.12) holds
for S , then S is entire elliptic on H 8 .

PROOF. – We first take a function f�H such that f(x) 41, xGA , and
f(x) 40, xDA11. We define the function g by

g(x) 40, 0 ExGA , and g(x) 4
12f(x)

F 2a , m (ix) hm8 (S)(x)
, xDA .

It is clear that g is a smooth function on (0 , Q). Moreover, by taking into ac-
count that hm8 (S) is a multiplier of H ([21, Proposition 4.2]) and [28, (5) and (8),
6.2], we can see that g is a multiplier of H . Indeed, by using the Leibniz rule
we can see that, for every k�N ,

Ng 1

x

d

dx
hkg 12f(x)

F 2a , m (ix) hm8 (S)(x)
hN

has a polynomial growth at infinity. Hence the distribution G4hm8 ( g) is in O
J

8

([21, Proposition 4.2]).
Moreover,

F 2a , m (D m )(SJG) 4d2F ,(2.13)

where F4hm (f). Indeed, let W�H . We can write

aF 2a , m (D m )(SJG), Wb

4 !
k40

Q (21)k (2a)2k

22k k! G(m1k11)
aSJD m

k G , Wb

4 !
k40

Q (21)k (2a)2k

22k k! G(m1k11)
ahm8 (S) hm8 (D m

k G), hm (W)b
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4 !
k40

Q (2a)2k

22k k! G(m1k11)
s
0

Q

x 2k g(x) hm8 (S)(x) hm (W)(x)
x 2m11

2m G(m11)
dx

4 !
k40

Q (2a)2k

22k k! G(m1k11)
s

A

Q

x 2k 12f(x)

F 2a , m (ix)
hm (W)(x)

x 2m11

2m G(m11)
dx

4s
0

Q

(12f(x) ) hm (W)(x)
x 2m11

2m G(m11)
dx

4hm (hm W)(0)2s
0

Q

hm (f)(x) W(x)
x 2m11

2m G(m11)
dx

4 ad , Wb2 ahm (f), Wb.

Then (2.13) is established. Note that (2.13) implies also that F 2a, m(D m)(SJG)
is in O

J

8 .
Also the series

!
k40

Q (21)k (2a)2k

22k k! G(m1k11)
D m

k (SJG)

converges in the space O
J

8 . Indeed, let W�H . By proceeding as above we can
see that

»hm8g!
k40

n (21)k (2a)2k

22k k! G(m1k11)
D m

k (SJG)h, W«4

!
k40

n (2a)2k

22k k! G(m1k11) »x 2k 12f(x)

F 2a , m (ix)
, W(x)« .

Hence, it is sufficient to show that the series

!
k40

Q (2ax)2k

22k k! G(m1k11)

12f(x)

F 2a , m (ix)
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converges in the topology of O. Let s�N . By invoking [28, (5) and (8), 6.2] it
obtains,

4

G

G

G

Ng 1

x

d

dx
hsu!

k40

n (2ax)2k

22kk! G(m1k11)

12f(x)

F 2a,m(ix)
2(12f(x))vN

Ng 1

x

d

dx
hsuu!

k40

n (2ax)2k

22kk! G(m1k11)

1

F 2a,m(ix)
21v (12f(x))vN

!
j40

s gs

j
hNg 1

x

d

dx
hk2j

(12f(x))NNg 1

x

d

dx
hju!

k40

n (2ax)2k

22kk! G(m1k11)

1

F 2a,m(ix)
21vN

C!
j40

s

Ng 1

x

d

dx
h ju!

k40

n (2ax)2k

22kk! G(m1k11)

1

F 2a,m(ix)
21vN

C(11x 2)l, x�(0,Q) and n�N,

for some l�N that is not depending on x� (0 , Q) and n�N .
Let eD0 and s�N . If l is the nonnegative integer that is associated to s as

above, there exists x0 D0 such that, for every n�N ,

sup
xFx0

1

(11x 2)l11 Ng 1

x

d

dx
hsuu!

k40

n (2ax)2k

22kk! G(m1k11)

1

F 2a,m(ix)
21v (12f(x))vNEe.

Moreover, we can find n0 �N for which

sup
0ExEx0

1

(11x 2)l11 Ng 1

x

d

dx
hsuu!

k40

n (2ax)2k

22kk! G(m1k11)

1

F 2a,m(ix)
21v (12f(x))vNEe,

provided that nFn0 .
Hence, we conclude that, for every nFn0 ,

sup
0ExEQ

1

(11x 2)l11 Ng 1

x

d

dx
hsuu!

k40

n (2ax)2k

22kk! G(m1k11)

1

F 2a,m(ix)
21v (12f(x))vNEe.

Thus, it is showed that

lim
nKQ

!
k40

n (2ax)2k

22k k! G(m1k11)

12f(x)

F 2a , m (ix)
412f(x),

in the topology of O.
Assume now that TJS4 f where T�H 8 and f� E H 8 . According to (2.13)

and by taking into account the series

!
k40

Q (21)k (2a)2k

22k k! G(m1k11)
D m

k (SJG)



ENTIRE ELLIPTIC HANKEL CONVOLUTION EQUATIONS 735

converges in O
J

8 we can write

T4TJ(F 2a , m (D m )(SJG) )1TJF(2.14)

4F 2a , m (D m )( (TJS)JG)1TJF

4F 2a , m (D m )( fJG)1TJF .

By Propositions 2.4 and 2.5, F 2a , m (D m )( fJG) is in E H 8 .
Moreover, TJF� E H 8 . Indeed, by [4, (3.1)], we have

(TJF)(x)4 aT , t x Fb

4 ahm8 (T)(t), 2m G(m11)(xt)2m Jm (xt) f(t)b, x� (0 , Q).

For every x�C , the series

(xt)2m Jm (xt)f(t) 4 !
k40

Q (21)k (xt)2k

22k1m k! G(m1k11)
f(t)

converges in B. Then it deduces that

(TJF)(x) 4G(m11) !
k40

Q (21)k x 2k

22k k! G(m1k11)
a(hm8 T)(t), t 2k f(t)b, x� (0 , Q).

Hence TJF can be extended as an even and entire function.
By virtue of [6, Lemma 2.2], we get, for every z , z1 , z2 , R , zn �C and

n�N ,

t z1
t z2

R t zn
(TJF)(z) 4

ahm8 (T)(t), (2m G(m11) )n11 (z1 t)2m Jm (z1 t)(z2 t)2m Jm (z2 t)R

(zn t)2m Jm (zn t)(zt)2m Jm (zt) f(t)b.

Since hm8 T� B8 and f� B, there exist r�N and CD0 for which

Nt z1
t z2

R t zn
(TJF)(z)NG

C max
0 GkGr

sup
0 E tEA11

Ng 1

t

d

dt
hk

( (z1 t)2m Jm (z1 t)(z2 t)2m Jm (z2 t)R

(zn t)2m Jm (zn t)(zt)2m Jm (zt) f(t) ) N,

for each z , z1 , z2 , R , zn �C .
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Therefore, according to [28, (7), 5.1] and [13, (5.3.a)], for each n , l�N , one
has, for every z , z1 , z2 , R , zn �Il ,

Nt z1
t z2

R t zn
(TJF)(z)NGC( (11NzN)(11Nz1N)R(11NznN) )2r .

Thus we prove that S is entire elliptic in H 8 . r

We now give a distribution S� O
J

8 that is entire elliptic but it is not hypoel-
liptic in H 8 .

Let aD0. We define the function f(x) 41/F a , m (ix), xD0. By taking into
account [28, (5) and (8), 6.2] we can see that f�H . Then, according to [1, Satz
5], S4hm (f) �H . By [21, Proposition 4.2] it follows that S� O

J

8 . Moreover, for
every k�N , y k hm8 (S)(y) 4y k f(y) K0, as yKQ . By invoking [9, Proposition
3.3] we conclude that S is not hypoelliptic in H 8 .

Moreover, S is entire elliptic in H 8 . Indeed, according to [28, (5), 6.2], there
exists CD0 such that

Nhm8 (S)(y)N4f(y) FCe 2y ,

when y is large enough. Hence, from Proposition 2.8 one deduces that S is en-
tire elliptic in H 8 .
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