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A Mathematical Introduction to the Wigner Formulation
of Quantum Mechanics.

LUIGI BARLETTI (*)

Sunto. – Il presente articolo è una rassegna di alcuni aspetti matematici fondamentali
della formulazione Wigneriana della meccanica quantistica. A partire dagli assio-
mi della meccanica quantistica e della meccanica statistica quantistica viene mo-
tivata l’introduzione della trasformazione di Wigner e viene infine dedotta l’equa-
zione di Wigner.

Summary. – The paper is devoted to review, from a mathematical point of view, some
fundamental aspects of the Wigner formulation of quantum mechanics. Starting
from the axioms of quantum mechanics and of quantum statistics, we justify the
introduction of the Wigner transform and eventually deduce the Wigner equa-
tion.

1. – Introduction.

The present notes are intended to give a brief introduction to the math-
ematical aspects of the Wigner formulation of quantum mechanics. We shall
restrict our discussion to quantum mechanical systems with d degrees of free-
dom. By this we mean that we do not treat here spin-like degrees of freedom,
identical particles systems, relativistic quantum mechanics, or quantum fields.
To be more precise, we shall focus our attention on quantum systems whose
states are described by the Hilbert space L 2 (Rd , C). However, more general
versions of the Wigner equation have been introduced for spin systems
[2, 8, 10] and for second-quantized systems, [7, 15].

During the last decade, the mathematical community has devoted to Wign-
er equation and related topics an increasing interest. Two aspects of such in-
terest, among many others, are worth to be underlined here: the use of Wign-

(*) The author’s research in the field of Wigner equation is supported by INDAM-
GNFM «Progetto Giovani 2001» entitled Modelli matematici per i dispositivi a
semiconduttore.
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er equations to deduce and prove semiclassical limits [5, 16, 20, 21] and, from a
more applied point of view, the use of Wigner equation for semiconductor de-
vices modeling [11, 14, 22, 28]. It is also worth to remark that the Wigner
equation itself brings interesting mathematical problems. For example, the
well-posedness of the stationary Wigner equation with inflow-like boundary
conditions has not been fully proved so far, even in the one-dimensional case,
[1, 3, 4].

Since in the present paper we wish to focus our attention on founding and
mathematical aspects, the point of view that we are going to adopt is that of an
axiomatic exposition, which is not concerned with the why of things. We re-
commend the book of Mackey [19] to the reader interested to a careful discus-
sion of the axioms of quantum mechanics.

The paper is organized as follows. In Section 2 we recall and briefly com-
ment the fundamental axioms of quantum mechanics, concerning the descrip-
tion of physical states, observables, measurements and dynamics. In Section 3
we recall the concept of «quantization» of a classical system and illustrate the
Weyl quantization rule. This topic is closely related to the Wigner formulation
of quantum mechanics, as it will become apparent later on. Section 4 is devoted
to motivate and introduce the axioms of statistical quantum mechanics, which
are an extension of the axioms presented in Section 2. This is the main step to
the defintion of Wigner transform, which is most naturally defined for mixed
states, rather than pure states. In Section 5 we introduce the Wigner trans-
form W as a unitary mapping of L 2 (R2d , C) into itself. We also define the
«Wigner functions» as the image under W of the functions that belong to the
physically meaningful subset of L 2 (R2d , C) representing mixed states. The
axioms of statistical quantum mechanics are then revisited in such Wigner
representation that shows interesting analogies with classical statistical me-
chanics. Finally, in Section 6 we discuss the «wignerization» of operators. The
explicit expressions of two important categories of operators, namely the con-
stant coefficient differential operators and the multiplication operators, will be
computed. This allows us, starting from the quantum Liouville equation, to de-
duce the so-called Wigner equation, i.e., the dynamical equation for the Wi-
gner functions.

2. – The axioms of quantum mechanics.

Let us consider a mechanical system with d degrees of freedom. The de-
scription that quantum mechanics (QM) gives of such system can be summa-
rized under the form of four axioms.
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AXIOM 2.1 (States of the system). – The possible states of the system are
represented by unitary vectors belonging to the Hilbert space

H »4L 2 (Rd , C) .(2.1)

Such vectors are usually called «wave functions» of the system.

AXIOM 2.2 (Observable quantities). – The physical observable quantities of
the system (or, simply, «observables»), such as position coordinates, momen-
tum coordinates, kinetic energy and so on, are represented by linear, self-ad-
joint operators on H (1).

AXIOM 2.3 (Measurements). – The result of the measurement of an observ-
able associated to the self-adjoint operator A , performed when the system is
in the state c� H, is a random variable XA , c . The law of XA , c is given by the
spectral measure associated to A and c:

Prob [XA , c� B] 4 ac , IB (A) cb(2.2)

for all Borel subsets B of R.

In the above equation, aQ , Qb denotes the standard Hermitian product of H

ac , fb »4s
Rd

c(x) f(x) dx(2.3)

and IB denotes the indicator function of the Borel set B:

IB (x) »4
.
/
´

1, if x� B

0, if x� B
(2.4)

We recall that the spectral theorem [24] defines a self-adjoint operator f (A)
for any Borel-measurable function f : RKR and any self-adjoint operator A.
In particular, if f is bounded, then f (A) is a bounded operator and if fF0, then
f (A) is a positive operator. It turns out that, if c belongs to the domain D(A) of
A , then the random variable XA , c has finite expectation and

Expect [XA , c ] 4 ac , Acb .(2.5)

The last axiom we are going to consider concerns the time evolution of the
system.

(1) We remark that an observable A is not necessarily a bounded operator and, the-
refore, a domain D(A) % H should always be specified.
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AXIOM 2.4 (Evolution). – Let H denote the self-adjoint operator, called
«Hamiltonian», associated to the observable «total energy». If at time t0 the
system is in the state c 0 , then, at any other time t�R the system is in the
state

c(t) 4e
2

i

ˇ
(t2 t0 ) H

c 0 .(2.6)

In eq. (2.6), the one-parameter family e
2

i

ˇ
tH

, t�R , is the unitary group of
transformations generated by H , [24]. The symbol ˇ denotes Planck’s con-
stant divided by 2p. The differential version of eq. (2.6) has the form of an
evolution equation in the space H, namely

iˇ
d

dt
c(t) 4Hc(t), t�R ,(2.7)

which is the abstract form of Schrödinger equation.

Let us make some comments on Axioms 2.1-2.4. The first Axiom tells us
how QM describes physical states (2). Contrarily to classical mechanics, where
the state is a distribution in phase-space, having, therefore, a direct physical
meaning, a quantum mechanical state c does not possess such direct physical
meaning. However c encloses all the physical information, which has to be
«extracted», so to speak, from c. Axioms 2.2 and 2.3 constitute the general
rule to extract physical information from the wave function. In particular, they
tell us that such information has an intrinsically probabilistic nature. The ran-
domness of nature at the quantum scale is something unavoidable, which do
not disappear even if we would use an ideal instrument of infinite precision.
Thus, the knowledge of the distribution of the random variable XA , c is the
best we can expect from the theory and from the experiments.

It is important to notice at this point that the already mentioned spectral
theorem fournishes the following «consistency» rule:

f (XA , c ) 4Xf (A), c(2.8)

which holds for any Borel-measurable function f : RKR and any self-adjoint
operator A.

REMARK 2.1. – So far, nothing has been said about the simultaneous mea-
surement of two or more observables. Indeed, Axiom 2.3 should be completed
by the following statement: a set of «commuting observables» (i.e., a set of k
observables whose associated self-adjoint operators A1 , RAk commmute

(2) We remark that here we should have been speaking of pure states; in Sec. 4 we
shall see that a more general class of states, the mixed states which are needed in quan-
tum statistics, can be introduced.
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pairwise) can be measured simultaneously in any state c and the result of
the measurement is a multiple random variable (XA1 , c , R , XAk , c ) whose law
is given by (3)

Prob [ (XA1 , c , R , XAk , c ) � B1 3R3 Bk ] 4 ac , IB1
(A1 )R IBk

(Ak )cb,(2.9)

where B1 , R , Bk are Borel sets in R. In the case of non-commuting observ-
ables, the possibility of simultaneous measurement may be state-dependent or
even undefined at all (for a careful discussion of this point see
Ref. [23]). r

Finally, Axiom 2.4 tells us that the evolution of the system is deterministic:
once the quantum mechanical state is known at a certain time, all the past and
future states of the system are determined. Since the operators e

2
i

ˇ
tH

are uni-
tary, the norm of c 0 is preserved during the evolution.

3. – Quantization.

The presentation of QM developed so far is rather formal and, indeed, Ax-
ioms 2.1-2.4 describe quite general aspects of the theory, which are common to
other quantum theories. In order to make the axioms really «work», the cru-
cial point is to specify the correspondence

observable quantities K self-adjoint operators .

Such specification is the so-called quantization. To be more precise, let us re-
call that a physical observable is described in classical mechanics (CM) by a
real function g4g(r , p), defined on the phase space R2d 4Rd

r 3Rd
p. For

example, the kinetic energy of a free particle of mass m is given by the func-
tion g(r , p) 4p 2 /2m (and d43, in this case). From the point of view of quan-
tization, such function g is usually termed the classical symbol (or simply the
«symbol») of the observable under consideration.

DEFINITION 3.1. – We call «quantization» a procedure that allows to asso-
ciate to a classical symbol g a self-adjoint operator Ag , that describes in QM
the same physical quantity represented in CM by g.

The quantization procedure starts from a fundamental quantization, i.e.,
the quantization of the symbols g(r , p) 4r , associated to the observable «posi-
tion», and g(r , p) 4p , associated to the observable «momentum».

(3) We recall that the probabilities of the «rectangular» Borel sets, of the form
3j41

k Bj , uniquely defines the probabilities of all the Borel sets in Rk. Thus, the law of
the multiple random variable (XA1 , c , R , XAk , c ) is completely determined by (2.9) (see,
e.g., Ref. [6]).



LUIGI BARLETTI698

Figure 1. – The quantization scheme.

The fundamental quantization rests on physical experience and prescribes
that to the symbols r and p correspond the self-adjoint operators Ar and Ap de-
fined as follows:

(Ar c)(x) »4xc(x), x�Rd(3.1)

for all c� D(Ar ) »4 ]c� H NAr c� H(, and

(Ap c)(x) »42iˇ
¯

¯x
c(x), x�Rd(3.2)

for all c� D(Ap ) »4 ]c� H NAp c� H(. Note that r and p are vectors of sym-
bols and, correspondingly, eqs. (3.1) and (3.2) define vectors of operators. For
j41, 2 , R , d , each component rj of r and pj of p is a scalar observable and,
correspondingly, each component Arj

of Ar and Apj
of Ap is a self-adjoint opera-

tor. Note also that we used the notation

¯

¯x
»4g ¯

¯x1

,
¯

¯x2

, R ,
¯

¯xd
h .

An interesting fact is that the operators Ar and Ap transform into each other,
by similarity, through the Fourier transform

(F c)(p) »4 (2pˇ)2d/2s
Rd

c(x) e2ix Qp/ˇ dx .(3.3)

Since the components of Ar are pairwise commuting operators, according
to Axiom 2.3 and Remark 2.1 the result of a measurement of the position, when
our system is in the state c , is a multiple random variable XAr , c4

(XAr1 , c , R , XArd , c ) whose law is given by (2.9). Each component Arj
of Ar is

such that [Arj
c](x) 4xj c(x) and thus, if Bj is any Borel subset of R , from the
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spectral theorem we have that the bounded operator IBj
(Arj

) is given by

[IBj
(Arj

) c](x) 4 IBj
(xj ) c(x), x�Rd ,(3.4)

for every c� H. Therefore, for any rectangular Borel set B %Rd of the form
B 43j41

d Bj , from (2.9) and (3.4) we obtain

Prob [XAr , c� B] 4 ac , IB1
(Ar1

) IB2
(Ar2

) R IBd
(Ard

) cb 4

s
Rd

»
j41

d

IBj
(xj ) c(x) c(x) dx4s

Rd

IB (x) c(x) c(x) dx4s
B

Nc(x)N2 dx .

Hence, we can conclude that the (multiple) random variable XAr , c is absolutely
continuous and Nc(x)N2 is its density. We therefore have the well known fact
that the squared modulus of the wave function is the density of the random
variable «measurement of position».

Analogously, let us consider the momentum operator Ap , whose compo-

nents Apj
42iˇ ¯

¯xj

, j41, 2 , R , d , commute pairwise. According to Axiom 2.3

and Remark 2.1 the result of a measurement of the momentum, when our sys-
tem is in the state c , is a multiple random variable XAp , c4

(XAp1 , c , R , XApd , c ). In order to apply (2.9) to obtain the law of XAp , c , we ob-
serve that the spectral theorem implies that, for any given Borel set Bj �R ,
the Fourier-transformed operator F IBj

(Apj
) F21 acts as the multiplication by

IBj
(pj ), i.e.,

[F IBj
(Apj

) F21 c](p) 4 IBj
(pj ) c(p), p�Rd ,(3.5)

for every c� H. Thus, according to (2.9) and (3.5), for any rectangular Borel
set B 43j41

d Bj %Rd and for every c� H we can write

Prob [XAp , c� B] 4 ac , IB1
(Ap1

)IB2
(Ap2

) R IBd
(Apd

) cb 4

aF c , F IB1
(Ap1

) F21 F IB2
(Ap2

) F21
R F IBd

(Apd
) F21 F cb 4

s
Rd

»
j41

d

IBj
(pj ) N(F c)(p)N2 dp4s

B

N(F c)(p)N2 dp .

Hence, the (multiple) random variable XAp , c is absolutely continuous and
N(F c)(p)N2 is its density. Therefore, the squared modulus of the Fourier
transform of the wave function is the density of the random variable «mea-
surement of momentum».

Starting from the fundamental quantization, we need a recipe to quantize
all the other observables. If the symbol g is a function of the sole r , or of the
sole p , the consistency relation (2.8) implies that the only possible quantization
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rule is given by the spectral theorem:

Af (r) 4 f (Ar ), Ag(p) 4g(Ap ),(3.6)

for every measurable f4 f (r) and g4g(p). But for a general g4g(r , p) we
immediately step into a difficulty. In fact, the lack of commutativity between
Ar and Ap makes unclear any «naive» attempt to establish a correspondence
gKAg . Consider, for example, the symbol g(r , p) 4r 2 p: how do we quantize
it? It is evident that there are many possible choices, such as Ar

2 Ap , Ar Ap Ar ,
Ap Ar

2 or also (Ar
2 Ap 1Ar Ap Ar 1Ap Ar

2 ) /3 , and so on. It is immediate to see
that, indeed, not all these expressions define the same operator.

We have, therefore, to choose a unambiguous quantization rule. The re-
quirements for such quantization are the following:

(Q1) it must associate to any symbol g (with the opportune regularity) a
unique self-adjoint operator Ag ;

(Q2) it must respect the fundamental quantization, defined by (3.1), (3.2) and
(3.6);

(Q3) it must reduce quantum mechanics to classical mechanics in the «classi-
cal limit» ˇK0.

A commonly accepted rule which satisfies the requirements (Q1)-(Q3) is
the Weyl quantization, [26], defined by

(Ag c)(x) »4 (2pˇ)2d s
Rd

y3Rd
p

gg x1y

2
, ph c(y) e

i

ˇ
(x2y) Qp

dy dp(3.7)

for all x�Rd. We remark that the above expression is only formal since we did
not specify the required properties of the symbol, neither the domain of Ag .
For a rigorous description of Weyl quantization we refer the reader to [13, 26].
The above defined operator Ag is sometimes indicated with the suggestive no-
tation g(Ar , Ap ). As an exercise, the reader may check that, at least formally,
the quantization properties (Q1) and (Q2) are satisfied and compute the Weyl
quantization of the symbol r 2 p , with d41 (4).

REMARK 3.1. – We have seen that, thanks to Weyl quantization, every clas-
sical observable has its counterpart in QM. However, the converse is not true:
there exist quantum observables (i.e., self-adjoint operators) that are not the
quantization of any classical quantity. r

As an important illustration of the above Remark 3.1, let us consider for
every wave function c the orthogonal projection Pc onto the subspace of H

(4) Solution: Ar 2 p4Ar Ap Ar4 (Ax
2 Ap1Ap Ax

2 ) /2.
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spanned by c:

Pc »4 ac , Qb c .(3.8)

It is easy to see that Pc is self-adjoint and that its spectrum is composed by the
two eigenvalues 1 and 0 corresponding to the eigenspaces Pc H and (I2

Pc ) H, respectively. Thus, according to Axioms 2.2 and 2.3, to Pc there corre-
sponds an «observable quantity» that takes the value 1 with certainty if and
only if the system is in state c. We shall, therefore, interpret Pc as the observ-
able quantity «beeing in state c», which has the possible values 1 (=yes) and 0
(= no). The observable Pc has no classical counterpart. We also note that,
since there is a 1-1 correspondence between states an projections, we should
also identify the two objects. Such point of view will be prevalent in quantum
statistics (ses Sec. 4).

We end this section by noting that, for every self-adjoint operator A and
for every c� D(A) the following equality holds

ac , Acb 4Tr (Pc A),(3.9)

where Tr denotes the operator trace (5). From eq. (2.2), therefore, we have
that all the physically relevant informations of the theory (probabilities and
expectations) can be expressed as traces of operators of the form (3.9).

4. – Statistical quantum mechanics.

The wave function of a quantum mechanical systems represents the «best
possible» physical knowledge we can have on the system and, as we have seen
in Sec. 2, such «best possible» knowledge is «uncertain» in its intrinsic nature.
However in many occasions we cannot expect to have such complete, although
probabilistic, information. This is the typical situation, for example, when the
number of degrees of freedom is very high, as in many-particles systems. In
such cases we are forced to describe our system by something which is differ-
ent from the wave function that we have considered so far and we say that we
are doing statistical quantum mechanics, or quantum statistics, [12, 23].

In order to see which kind of object has to substitute the wave function in
statistical QM, let us consider the case of a system S with d degrees of freedom
which is a subsystem of a larger system S8 with d1D degrees of freedom
(where d is usually small and D very large as in the case of a single particle

(5) We recall the definition of trace. If H is a separable Hilbert space with Hermi-
tian product aQ , Qb and ]f k(k41

Q is an orthonormal basis of H, the trace of a positive ope-

rator A is Tr (A) »4 !
k41

Q

af k , Af k b. Such definition does not depend on the choice of the

basis and it is extended to all operators such that Tr (NAN) E1Q (see Ref. [24]).
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dispersed into a gas of many other similar particles). Let C4C(x , h) be the
wave function of the large system S8 , with x�Rd

x and h�RD
h . From Fubini’s

theorem we have that, for almost every h�RD
h , the function xOc h (x) »4

C(x , h) is a wave function for the small subsystem S. Now, consider an observ-
able A which involves only the first d coordinates x of C. Note that A can be
regarded as acting on L 2 (Rd

x 3RD
h , C) as well as on L 2 (Rd

x , C). Such operator
A represents a physical quantity possessed by the subsystem S.

If we formally compute the expected value of A in the state C by using (3.9)
we obtain

aC , ACb 4 s
RD

h

ac h , Ac h b dh4 s
RD

h

Tr (Pc h
A) dh4Tru s

RD
h

Pc h
dh Av ,(4.1)

where in the first and in the second term aQ , Qb indicates the Hermitian prod-
ucts in L 2 (Rd

x 3RD
h , C) and in H 4L 2 (Rd

x , C), respectively. The above equa-
tion shows that the expected value of A can be expressed as the trace of rA ,
where the operator r4 s

R D
h

Pc h
dh is defined by

rc»4 s
RD

h

Pc h
c dh , c� H .(4.2)

Before going on, it is worth to make a brief digression in order to recall
some basic facts about Hilbert-Schmidt and density operators. We firstly re-
call that a bounded operator r on H is a Hilbert-Schmidt (HS) operator if

VrVHS 4 (ar , rbHS )1/2 »4 ( Tr (rr*) )1/2(4.3)

is finite. The space of HS-operators on H, denoted by J2 (H), is a Hilbert space
with respect to the above norm and Hermitian product.

The proofs of Theorems 4.1 and 4.2 below can be found in Ref. [24].

THEOREM 4.1. – An operator r on H is HS if and only if a function
r(x , y), belonging to L 2 (Rd

x 3Rd
y , C) exists such that

(rc)(x) 4s
Ry

d

r(x , y) c(y) dy(4.4)

for all c� H. Moreover, the correspondence between the operator r and the
integral kernel r(x , y) is an isomorphism between the Hilbert spaces J2 (H)
and L 2 (Rd

x 3Rd
y , C).

The Hilbert spaces J2 (H) and L 2 (Rd
x 3Rd

y , C) are both isomorphic to
H 7 H. In the following, for the sake of simplicity, we shall make a systematic
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identification of the three spaces. In particular, the same symbol r will be used
to indicate both the HS-operator and its kernel. Moreover, we shall allow a
double interpretation of the tensor product c7f of c , f� H:

1. as a HS-operator:

c7f»4 af , Qb c(4.5)

2. as a function (kernel of the above operator):

(c7f)(x , y) »4c(x) f(y), x , y�Rd .(4.6)

We now focus our attention on density operators, which are a special class of
HS-operators.

DEFINITION 4.1. – A HS-operator r on H is called density operator if it has
the following properties:

(i) r is self-adjoint;

(ii) r is positive (6);

(iii) Tr (r) 41.

The following characterization is a fundamental point in the analysis of
density operators.

THEOREM 4.2. – An operator r on H is a density operator if and only if
there exist a complete orthonormal system ]f j (j41

Q of H and a sequence of

non-negative real numbers ]a j (j41
Q , with !

j41

Q

a j 41, such that

r4 !
j41

Q

a j f j 7f j .(4.7)

Moreover, every f j is an eigenfunction of r with eigenvector a j and

VrVHS
2 4 !

j41

Q

a j
2 .

It is now time to come back to the operator r4 s
RD

h

Pc h
dh which we have met

at the beginning of this section. We recall that C�L 2 (Rd
x 3RD

h , C) is a wave
function of the «large» system S8 and c h »4C(Q , h) is a wave function of the
«small» subsystem S.

PROPOSITION 4.1. – The operator r defined by (4.2) is a density operator on H.

(6) We recall that r is «positive» if ac , rcb F0 for all c� H.
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PROOF. – We have to prove that r is HS and that (i), (ii), (iii) of
Definition 4.1 hold.

(i) From (4.2) and (3.8) we have, for any given c� H,

(rc)(x) 4 s
RD

h

s
Rd

y

c h (y) c h (x) c(y) dy dh4s
Rd

y

r(x , y) c(y) dy ,

where

r(x , y) »4 s
RD

h

c h (y) c h (x) dh4 s
RD

h

C(y , h)C(x , h) dh .

By using Hölder’s inequality we obtain

s
Rd

x 3Rd
y

Nr(x , y)N2 dx dyG s
Rd

x 3RD
h

NC(x , h)N2 dx dh s
Rd

y3RD
h

NC(y , h)N2 dy dhG1,

since C is a wave function and, as such, it is normalized to unity. Thus, r is a
Hilbert-Schmidt operator (see Theorem 4.1) and the self-adjointness follows
immediately from r(x , y) 4r(y , x).

(ii) For any given c� H note that

ac , rcb 4 s
RD

h

Ns
Rd

x

C(x , h) c(x) dxN
2
dhF0 ,

which means, by definition, that r is positive. (see, e.g., Ref. [24]).
(iii) Let ]ei (i41

Q be a complete orthonormal system of H. For almost every
h�RD

h we have

!
i41

Q

Naei , c h bN2 4s
Rd

x

Nc h (x)N2 dx4s
Rd

x

NC(x , h)N2 dx

and, therefore,

Tr (r) 4 !
i41

Q

aei , rei b 4 !
i41

Q

s
RD

h

N s
Rd

x

C(x , h) ei (x) dxN
2
dh4

4 !
i41

Q

s
RD

h

Naei , c h bN2 dh4 s
Rd

x 3RD
h

NC(x , h)N2 dx dh41,

where we used again the fact that C is a wave function. r

We remark that putting c(x) »4 s
RD

h

C(x , h) dh does not define a wave

function for the subsystem S since, in general, such c does not belong
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to H. The integration with respect to h of a wave function C(x , h) of
the large system S8 has a well defined meaning only as an operator.

All this considered, we are led to generalize Axiom 2.1 by defining a more
general class of quantum states.

AXIOM 4.1 (Mixed states of the system). – The mixed states of a quantum
mechanical systems, whose wave functions belong to H, are represented by
the density operators acting on H. The mixed state r is said to be a pure state
if and only if a wave function c� H exists such that r4Pc (see (3.8)).

The integral kernel r(x , y) of a density operator r (see Theorem 4.1) is
usually called density matrix. Note that, according to (4.5) and (4.6), the pure
state r4Pc has the form c7c and its density matrix of is r(x , y) 4

c(x) f(y).

REMARK 4.1. – We can restate Theorem 4.2 by saying that mixed states are
convex combinations, possibly infinite, of pure states.

We are led by (2.2), (3.9) and (4.1) to extend Axiom 2.3 as follows.

AXIOM 4.2 (Measurements in mixed states). – The result of a measurement
of the observable A , performed when the system is in the mixed state r , is a
random variable XA , r with law given by

Prob [XA , r� B] 4Tr (r IB (A) )(4.8)

for all Borel subset B of R.

We recall that IB (A) is a bounded operator and, therefore, the trace ap-
pearing in (4.8) is finite (see Ref. [24], Theorem VI.19). The discussion of the
cases in which XA , r has finite expectation, given by

Expect [XA , r ] 4Tr (rA),(4.9)

is more delicate and goes beyond the scope of the present notes.
We now turn our attention to dynamics; in fact, we still have to extend

Axiom 2.4 to the evolution of mixed states. Recall that the evolution of
a pure state is given by eq. (2.6). Therefore, if we use the operatorial
form c7c to describe pure states, we obtain from (2.6) and (4.5)

c(t)7c(t)4(e
2

i

ˇ
(t2t0) H

c 0)7(e
2

i

ˇ
(t2t0) H

c 0)4ae
2

i

ˇ
(t2t0) H

c 0, Qb e
2

i

ˇ
(t2t0) H

c 04

ac 0 , e
i

ˇ
(t2 t0 ) H

(Q)b e
2

i

ˇ
(t2 t0 ) H

c 0 4e
2

i

ˇ
(t2 t0 ) H

(c 0 7c 0 ) e
i

ˇ
(t2 t0 ) H

,

where the unitarity of e
2

i

ˇ
tH

was used. Since every mixed state has the
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form (4.7), by linearity we are led from the previous calculation to extend
Axiom 2.4 in the following way.

AXIOM 4.3 (Evolution of mixed states). – Let H be the Hamiltonian of the
system. If at time t0 the system is in the mixed state r 0 , then, at any other
time t�R the system is in the mixed state

r(t) 4e
2

i

ˇ
(t2 t0 ) H

r 0 e
i

ˇ
(t2 t0 ) H

.(4.10)

By formally differentiating eq. (4.10) with respect to time we obtain the
differential version of (4.10), called quantum Liouville equation:

iˇ
d

dt
r(t) 4 [H , r(t) ], t�R ,(4.11)

where [A , B] »4AB2BA is the commutator between the operators A and B.
The quantum Liouville equation (4.11) is the mixed-state version of
Schrödinger equation (2.7).

5. – The Wigner transform.

The Wigner transform was introduced by E. Wigner in 1932, [27]. It is a
«phase-space like» representation of (statistical) QM. By this we mean, exact-
ly, that the Wigner transform is a unitary mapping that takes a mixed state
into something that is formally similar to a distribution in phase-space. In
QM, of course, it cannot exist a thing like a «distribution in phase space» since,
owing to Heisenberg’s uncertainity relation, the position of the system in
phase-space is an undefined quantity. The analogy of the Wigner representa-
tion of QM with the classical statistical mechanics, however, turns out to be
useful and very suggestive in many situations, [8, 22, 25]. Nevertheless, it is
worth to remark that the Wigner transform constitutes also an useful tool in
other branches of pure and applied mathematics, [9, 10, 13, 16].

In the last section we introduced the main objects of statistical QM, which
are density operators on the Hilbert space H 4L 2 (Rx

d , C). We have also seen
that such operators are in a 1-1 isometric correspondence with their integral
kernels belonging to L 2 (Rd

x 3Rd
y , C) A H 7 H and, therefore, kernels and op-

erators can be canonically identified.
Let us consider the map R of L 2 (Rd

x 3Rd
y , C) into L 2 (Rd

r 3Rd
j , C) given

by

(R r)(r , j) »4rgr1
ˇ

2
j , r2

ˇ

2
jh ,(5.1)
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corresponding to the change of variables (x , y) O (r , j)

.
`
/
`
´

r4
x1y

2

j4
x2y

ˇ

.
`
/
`
´

x4r1
ˇ

2
j

y4r2
ˇ

2
j .

A simple computation yields

aR r 1 , R r 2 b 4ˇ2d ar 1 , r 2 b(5.3)

for all r 1 , r 2 , i.e., R is a unitary transformation from L 2 (R2d , C) into itself,
apart from the constant factor ˇ2d.

Let us also consider the map F2 of L 2 (Rd
r 3Rd

j , C) into L 2 (Rd
r 3Rd

p , C)
given by

(F2 g)(r , p) »4 (2p)2ds
Rj

d

g(r , j) e2ip Qj dj ,(5.4)

for all g�L 2 (Rd
r 3Rd

j , C). Note that F2 is the Fourier transform with respect
to the second group of variables, with the normalization constant (2p)2d in-
stead of the standard (2p)2d/2. Thus, Plancherel’s theorem yields

aF2 g1 , F2 g2 b 4 (2p)2d a g1 , g2 b(5.5)

for all g1 , g2 .

DEFINITION 5.1. – The Wigner transform is the map

W »4 F2 R : L 2 (Rd
x 3Rd

y , C) KL 2 (Rd
r 3Rd

p , C).(5.6)

Explicitly:

(W r)(r , p) 4 (2p)2ds
Rd

rgr1
ˇ

2
j , r2

ˇ

2
jh e2ip Qj dj(5.7)

for all r�L 2 (Rd
x 3Rd

y , C).

From eqs. (5.3) and (5.5) we obtain that

aW r 1 , W r 2 b 4 (2pˇ)2d ar 1 , r 2 b(5.8)

for all r 1 , r 2 �L 2 (Rd
x 3Rd

y , C), i.e., the Wigner transform is a unitary trasfor-
mation of L 2 (R2d , C) in itself, apart from the constant factor (2pˇ)2d. By
using (F2

21 w)(r , j) 4 s
Rd

w(r , p) eij Qp dp and (5.2), it is immediate to see that the
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inverse Wigner transform W21 4 R21 F2
21 is given by

(W21 w)(x , y) 4s
Rd

wg x1y

2
, ph ei(x2y) Qp/ˇ dp(5.9)

for all w�L 2 (Rd
r 3Rd

p , C).
So far we have considered the Wigner transform of a generic function r�

L 2 (Rd
x 3Rd

y , C). However, the r’s that interest us the most are those which
represent quantum mechanical mixed states, i.e., density matrices/opera-
tors.

DEFINITION 5.2. – A «physical Wigner function» (or, simply, «Wigner
function») is the Wigner transform of a density matrix (7).

For example, the Wigner transform of a pure state Pc is a Wigner function
that will be denoted by w c :

w c »4 W Pc , c� H .(5.10)

This is the most important example since from Theorem 4.2 it follows, by li-
nearity, that every Wigner function is a convex combination of pure-state Wi-
gner functions.

The following proposition gives another characterization of physical Wi-
gner functions.

PROPOSITION 5.1. – A function w�L 2 (Rd
r 3Rd

p , C) is the Wigner transform
of a density matrix r if and only if it has the following properties:

(P1) w is real;

(P2) s
Rd

r 3Rd
p

w(r , p) dr dp41;

(P3) s
Rd

r 3Rd
p

w(r , p) w c (r , p) dr dpF0, for all c� H.

PROOF. – Recalling Definition 4.1 and Theorems 4.1, 4.2 of Sec. 3, it is not
difficult to prove that r is a density matrix if and only if

(P1’) r(x , y) 4 r(y , x), for all x , y�Rd ;

(P2’) s
Rd

r(x , x) dx41;

(P3’) s
Rd

x 3Rd
y

r(x , y) c(x) c(y) dx dyF0, for all c� H.

(7) Note that, if the density matrix r(x , y) has, as usual, the physical dimensions of a
density in position space, then, the Wigner transform of r has the physical dimensions of
a density in phase-space.
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Now, if w4 W r , r4 W21 w , by using (5.1) and (5.9) we immediately see that
(P18) is equivalent to (P1). Moreover, if we compute s

Rd
r 3Rd

p

w(r , p) dr dp and use

the identity (2p)2d s
Rd

p

e2ip Qj dp4d(j), we can see that (P28) is equivalent to

(P2). Finally, by using (5.8) and denoting by rc the density matrix of the pure
state Pc , we can write

s
Rd

x3Rd
y

r(x, y) c(x) c(y) dx dy4ar, rcbL 2(Rd
x3Rd

y, C)4(2pˇ)d aw, w cbL 2(Rd
r3Rd

p, C)4

(2pˇ)d s
Rd

r 3Rd
p

w(r , p) w c (r , p) dr dp

(where we also used the fact that w c is real) and, therefore, (P38) is equivalent
to (P3). r

Analogously to wave functions (and density matrices), a Wigner function
does not possess a direct physical meaning and physical information has to be
extracted by taking expected values (see Axioms 2.3 and 4.2). To this aim, by
using (3.7), (4.7) and (5.7), it is not difficult to prove the following important
result.

PROPOSITION 5.2. – Let r�L 2 (Rd
x 3Rd

y , C) be a density matrix and let
w4 W r�L 2 (Rd

r 3Rd
p , C) be the corresponding Wigner function. Moreover,

let Ag be the Weyl quantization of a symbol g , such that rAg has finite trace.
Then,

Tr (rAg ) 4 s
Rd

r 3R d
p

g(r , p) w(r , p) dr dp .(5.11)

From the discussion developed in the previous sections and, in particular,
from eq. (4.9), we have that the above formula expresses expected values of
measurements of observables in the Wigner picture. Here, the analogy with
classical statistical mechanics is apparent; in fact, if w was a classical distribu-
tion in phase-space, eq. (5.11) would be the classical expectation of g. However,
w itself cannot be interpreted as a density. In fact, w is real, according to (P1),
but it is not necessarily non-negative.

Nevertheless, the «marginal distributions of w» are true distributions. In
fact, let B %Rd

r and g(r , p) »4 IB (r). Thus, recalling the definition (3.1) of the
position operator Ar and using (3.6), (4.8), (5.11) we get

Prob [XAr , r� B] 4Tr (r IB (Ar ) ) 4Tr (rAg ) 4 s
B 3Rp

d

w(r , p) dr dp
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which means that rO s
Rd

p

w(r , p) dp is the position density. This can also be ver-

ified directly by computing

s
Rd

p

w(r , p) dp4r(r , r) 4 !
j41

Q

a j Nf j (r)N2(5.12)

from (4.7). Analogously, we can verify that pO s
Rd

r

w(r , p) dr is the momentum
density

s
Rd

r

w(r , p) dr4 r×(p , p) 4 !
j41

Q

a j N(F f j )(p)N2 .(5.13)

In the last equation, r× is the «density matrix in momentum representa-
tion»

r×(p , q) »4 !
j41

Q

a j (F f j )(p) (F f j )(q)(5.14)

(see (3.3) and (4.7)). The precise meaning of the integrals and diagonal traces
appearing in eqs. (5.12) and (5.13) is discussed in Ref. [18], section II. We do
not enter here in details.

REMARK 5.1. – In Sec. 3 we have remarked that Pc is an observable that has
no classical counterpart (see Remark 3.1) and the same is true, more in gener-
al, for a density operator r. Let w4 W r be the Wigner transform of r. Then,
by using (3.7), (4.4) and (5.9) we get the following interesting relation

r4A(2pˇ)d w(5.15)

which means that the density operator is the Weyl quantization of the associ-
ated Wigner function (times a constant factor (2pˇ)d). Thus, r is not the quan-
tization of any classical symbol because it is the quantization of the non-classi-
cal symbol w. Note also from eq. (5.15) that in some sense the Wigner trans-
form and the Weyl quantization are inverse each other. r

6. – The Wigner equation.

In the previous section we have introduced the Wigner formulation of QM.
In particular, we have seen how mixed states and expected values of observ-
ables look like in such a formulation, which shows striking analogies with clas-
sical statistical mechanics.

We now turn our attention to the dynamical aspects. The aim of the present
section is to deduce an evolution equation for the Wigner functions starting
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from the evolution equation for density operators, i.e., from the Liouville equa-
tion (4.11).

In view of this, we focus now our attention on operators acting on a HS-op-
erator (or, equivalently, on a HS-matrix) r in the commutator form [A , r],
where A is a linear operator on H. The operator A is assumed to satisfy the fol-
lowing assumptions:

(A1) A is a linear operator on H with domain D(A);

(A2) D(A) is dense in H;

(A3) A is closable.

Let us suppose for a moment that r is a density operator; then, in this case,
(4.7) holds and we can easily deduce

[A , r] 4 !
j41

Q

a j ](Af j )7f j 2f j 7 (A * f j )( .(6.1)

Explicitly, the action on the density matrix is

[A , r](x , y) 4 !
j41

Q

a j](Af j )(x) f j (y)2f j (x) (A * f j )(y)( .(6.2)

This suggests to re-define

[A , Q ] »4A7I2I7A *.(6.3)

We recall (see Ref. [24], sec. VIII.10) that A7I2I7A * is defined as follows.
For elements of the form c7f , with c� D(A) and f� D(A *), we put

(AUI2IUA *)(c7f) »4 (Ac)7f2c7 (A * f) .(6.4)

Then, the definition is linearly extended to the subspace D(A) U D(A *) of fi-
nite linear combinations of such elements. Under the assumptions (A1)-(A3),
such subspace is dense in H 7 H and the operator AUI2IUA * with domain
D(A) U D(A *) is closable. Thus, the operator A7I2I7A * is defined as the
closure of AUI2IUA *.

We can now prescribe a «canonical way» of associating to an operator A
acting on H (i.e., on the pure-state space) an operator A wig acting on Wigner
functions (or, more in general, to functions belonging to L 2 (Rd

r 3Rd
p , C)). We

recall that W denotes the Wigner transform (see Definition 5.1).

DEFINITION 6.1. – For every A satisfying the assumptions (A1)-(A3) we
define the operator

A wig »4 W[A , Q] W21 : D(A wig ) ’L 2 (Rd
r 3Rd

p , C) KL 2 (Rd
r 3Rd

p , C),(6.5)

where [A , Q ] »4A7I2I7A * and D(A wig ) »4 W D( [A , Q ] ).
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We shall call A wig the «wignerization» of A. Let us illustrate the wigneriza-
tion of two significant categories of operators: the constant coefficient differ-
ential operators and the multiplication operators. In the examples we shall
proceed in a formal way, disregarding questions concerning the domains.

EXAMPLE 6.1 (Constant coefficient differential operators). – We look for
the wignerization of a constant coefficient differential operator D of the
form

D»4 !
NkNGn

ck ¯x
k ,(6.6)

where the coefficients ck are complex constants and n�NN ]0( is the degree
of D. Here we are using the multi-index convention: if k4 (k1 , R , kd ) is a d-
uple of non-negative integers, we put

¯x
k »4

¯k1

¯x1
k1

¯k2

¯x2
k2

R

¯kd

¯xd
kd

(6.7)

and NkN»4k1 1k2 1R1kd . By using (6.1) we obtain the expression for
[D , Q]:

[D , Q] 4 !
NkNGn

ck (¯x
k 2 (21)NkN ¯y

k ).(6.8)

Now, from (5.1) it follows that

R ¯x R21 4
¯r

2
1

¯j

ˇ
and R ¯y R21 4

¯r

2
2

¯j

ˇ

and from (5.4)

W ¯x W21 4
¯r

2
1

ip

ˇ
and W ¯y W21 4

¯r

2
2

ip

ˇ
,

where p denotes the vector of multiplication oparators, by p1 , p2 , R , pd . By
exploiting linearity and the commutativity of ¯r and p , from (6.8) we finally ob-
tain the wignerization D wig of D:

D wig 4 !
NkNGn

ck{g ¯r

2
1

ip

ˇ
hk

2 (21)NkNg ¯r

2
2

ip

ˇ
hk} . r(6.9)

As a particular case of the above example, let us consider the quantum-me-
chanical kinetic energy operator

Ap 2 /2m 42
ˇ2

2m
D ,(6.10)
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where D is the Laplace operator which is of the form (6.6) with

ck 4
.
/
´

1 ,

0 ,

if k 4 (2 , 2 , R , 2 ) ,

otherwise .
(6.11)

Thus, from eq. (6.9) we obtain that in the Wigner representation the kinetic
energy operator is a free-streaming operator, namely

Ap 2 /2m
wig 42

iˇ

m
p Q¯r .(6.12)

EXAMPLE 6.2 (Multiplication operators). – Consider a (complex) function
V4V(x) and let AV indicate the corresponding multiplication operator on H:

(AV c)(x) »4V(x) c(x), x�Rd
x(6.13)

(let us observe that the notation AV is consistent with the definition (3.7)). By
(6.1) we have that [AV , Q], acting on L 2 (Rd

x 3Rd
y , C), is the multiplication oper-

ator by V(x)2V(y). Then, from (5.1) we easily obtain that R[AV , Q] R21 , act-
ing on L 2 (Rd

r 3Rd
j , C), is the multiplication by the function

dV(r , j) »4Vgr1
ˇ

2
jh2Vgr2

ˇ

2
jh .(6.14)

After the application of the subsequent transformation F2 , see (5.4), we finally
obtain that the wignerization of the multiplication operator AV is given by the
pseudo-differential operator, [13],

AV
wig 4dV(r , 2i¯p ) ,(6.15)

i.e., explicitly,

(AV
wig w)(r , p) 4 (2p)2d s

Rd
j 3Rd

p 8

dV(r , j) w(r , p 8 ) e2i(p2p 8 ) Qj dj dp 8 .(6.16)

Note that the right hand side of (6.16) can be put in the convolution
form

(AV
wig w)(r , p) 4 s

Rd
p 8

(F2 dV)(r , p2p 8 ) w(r , p 8 ) dp 8 .(6.17)

After a little algebra, and assuming V real, we can relate the convolution ker-
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nel with the Fourier transform of the function V:

(F2 dV)(r , p) »4

.
`
/
`
´

g 2

pˇ
hd/2

2 Re [ e2 ip Qr/ˇ (F V)(2p) ]

g 2

pˇ
hd/2

2 Im [ e2 ip Qr/ˇ (F V)(2p) ]

if d is odd,

if d is even.

r(6.18)

It is now possible to write the dynamical equations for the Wigner func-
tions. From the previous discussion it follows that, if the density operator r
satisfies the quantum Liouville equation (4.11), then, the corresponding Wi-
gner function w»4 W r satisfies the evolution equation

iˇ
d

dt
w(t) 4H wig w(t), t�R(6.19)

in the Hilbert Space L 2 (Rd
r 3Rd

p , C), where H wig is the wignerization of the
Hamiltonian H on H, according to Definition 6.1. Let us consider a typical
Hamiltonian of the form

H4Ap 2 /2m 1AV ,(6.20)

where Ap 2 /2m is the kinetic energy operator (6.10) and AV is the potential en-
ergy operator (V is the potential energy function). From eqs. (6.12) and (6.15)
it follows that

H wig 4Ap 2 /2m
wig 1AV

wig 42
iˇ

m
p Q¯r 1dV(r , 2i¯p ).(6.21)

Therefore, the evolution equation (6.19) takes the specific form

¯

¯t
w(t)1

p

m
Q¯r w(t)1

i

ˇ
dV(r , 2i¯p ) w(t) 40,(6.22)

which is known as Wigner equation (8).
Eq. (6.22) confirms, at the level of dynamical equations, the analogy be-

tween the Wigner formulation of QM and the classical statistical mechanics.
In fact, we recall that a classical statistical ensemble f (r , p , t), subject to a po-
tential V , evolves in time according to the Liouville equation, [17],

¯

¯t
f (t)1

p

m
Q¯r f (t)2¯r V Q¯p f (t) 40.(6.23)

Note that the main formal difference between eq. (6.22) and eq. (6.23) is in the

(8) See Refs. [18, 20] for a discussion of the well-posedness of the initial-value pro-
blem for eq. (6.22).
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potential term, which in the former is given by the pseudo-differential opera-
tor (6.16).

One of the main results on the Wigner equation (6.22) is that it reduces to
Louville equation (6.23), i.e., it gives classical dynamics, in the classical limit
ˇK0. The reader can readily check this by noting that, formally,

i

ˇ(2p)d
s

Rd
j 3Rd

p 8

dV(r , j) w(r , p 8 ) e2i(p2p 8 ) Qj dj dp 8K2¯r V Q¯p w(r , p)

as ˇK0. For a precise mathematical statement and proof of this result the
reader is referred to the paper of Lions and Paul, [18].

In conclusion we leave the reader with an exercise: prove that for quadrat-
ic potentials, i.e., potentials of the form

V(r) 4
1

2
!

i , j41

d

aij ri rj 1!
i41

d

bi ri 1c

with aij , bi , c�R for i , j41, R d , the pseudo-differential operator dV(r , 2i¯p)
reduces to the operator iˇ¯r V Q¯p and, therefore, the Wigner equation is for-
mally identical to the classical Liouville equation.
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