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One-Dimensional Symmetry for Solutions
of Quasilinear Equations in R2.

ALBERTO FARINA

Sunto. – In questo lavoro si considerano le equazioni quasilineari della forma
div (a(N˜uN) ˜u)1 f (u) 40 in R2 e si studiano le proprietà delle soluzioni u il cui
gradiente è limitato e non si annulla mai. Sotto un’ipotesi naturale, riguardante la
crescita della fase del gradiente di u (si noti che la funzione arg (˜u) è ben definita
in quanto N˜uND0 in R2), si dimostra che u è a simmetria unidimensionale, ovve-
ro u4u(n Qx), dove n è un vettore unitario di R2. Come conseguenza di questo risul-
tato si ottiene che ogni soluzione u avente una derivata positiva è a simmetria uni-
dimensionale. Questo risultato fornisce la dimostrazione di una congettura di E.
De Giorgi nel più ampio contesto delle equazioni quasilineari. In particolare, nel
caso delle equazioni semilineari, si ottiene una nuova e semplice dimostrazione
della (classica) congettura di De Giorgi.

Summary. – In this paper we consider two-dimensional quasilinear equations of the
form div (a(N˜uN) ˜u)1 f (u) 40 and study the properties of the solutions u with
bounded and non-vanishing gradient. Under a weak assumption involving the
growth of the argument of ˜u (notice that arg (˜u) is a well-defined real function
since N˜uND0 on R2) we prove that u is one-dimensional, i.e., u4u(n Qx) for some
unit vector n. As a consequence of our result we obtain that any solution u having
one positive derivative is one-dimensional. This result provides a proof of a conjec-
ture of E. De Giorgi in dimension 2 in the more general context of the quasilinear
equations. In particular we obtain a new and simple proof of the classical De Gior-
gi’s conjecture.

1. – Introduction and main results.

This paper is concerned with the study of the one-dimensional symmetry
for C 1 solutions of the quasilinear equation

div (a(N˜uN) ˜u)1 f (u) 40 in D8 (R2 )(1.1)

satisfying

N˜uND0 in R2 .(1.2)

Typical representatives of quasilinear operators appearing in (1.1) are
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given by the p-Laplacian operator (1 EpE1Q) or by the prescribed mean
curvature operator.

The class of nonlinear problems described by the equation (1.1) naturally
arises in mathematical physics (reaction-diffusion problems, non-Newtonian
fluids, porous media, plasma and nuclear physics, cosmology, etc.) as well as in
geometry (theory of non parametric surfaces, theory of quasiregular and qua-
siconformal mappings, etc). Due to the role played by these models it is impor-
tant to understand the symmetry properties of the solutions of (1.1). It is the
purpose of this paper to study the one-dimensional symmetry properties of
solutions u under the assumption (1.2).

On the other hand this type of symmetry problem is also related to a con-
jecture formulated by E. De Giorgi in 1978 (see [4], open question (3), page
175) and, more generally, to the following result:

THEOREM 1.1 ([6], [1]). – Assume F�C 2 (R). Let u�C 2 (RN ) be a bounded
solution of

Du2F 8 (u) 40 in RN(1.3)

such that

¯u

¯xN

D0 in RN .(1.4)

If N42 or N43, then u is one-dimensional, i.e., there are a�RN and g�
C 2 (R) such that

u(x) 4g(a Qx) ( x�RN .(1.5)

The case N42 was proved by N. Ghoussoub and C. Gui in [6] while the
case N43 has been recently established by G. Alberti, L. Ambrosio and X.
Cabré in [1]. In particular, Theorem 1.1. gives a positive answer, in the case of
R2 and R3, to the above mentioned conjecture of E. De Giorgi (about this sub-
ject see also [2]).

In the present work we consider only the two-dimensional case. The pur-
pose of this paper is to extend the one-dimensional symmetry result of Theo-
rem 1.1 in different directions:

(i) by only assuming N˜uND0 in R2 instead of the monotonicity assump-
tion (1.4).

(ii) by only assuming N˜uN�L Q (R2 ) (in particular we do not assume any-
thing about the boundedness of u, see Remark 1.4.).

(iii) by treating quasilinear equations of the form (1.1), with f�C 0, 1
loc (R)

and a�C 1, 1
loc (0 , 1Q).
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The function a satisfies the structural assumptions:

lim
tK0

ta(t) 40, (ta(t) )8D0 (tD0(S1)

and

)T 8D0, )C4C(T 8 ) D0 : (ta(t) )8GCt 22 ( t� (0 , T 8 ].(S2)

These assumptions are satisfied by every function of the form:

a(t) 4 t g (h1 t 2 )b(1.6)

with, hD0, gD21 and bF2
g11

2
. For a suitable choice of the parameters in

(1.6), we recover the p-Laplacian operator, with 1 EpE1Q, the prescribed
mean curvature operator as well as some more general operators satisfying
non-standard growth conditions.

Ou main results are:

THEOREM 1.2. – Let f�C 0, 1
loc (R) and suppose that the structural assump-

tions (S1 )2 (S2 ) are satisfied. Let u be a C 1 (R2 ) solution of

.
/
´

div (a(N˜uN) ˜u)1 f (u) 40

N˜uND0

in D8 (R2 )

in R2
(1.7)

such that ˜u�L Q (R2 ). Assume that there exists dE1 such that:

Narg (˜u)(x)N4O( lnd NxN), as NxNK1Q ,(1.8)

then u is one-dimensional, i.e., there are n�S 1 and a function g�C 2 (R) such
that

u(x) 4g(n Qx) (x�R2 ,

Ng 8 (x)ND0 (x�R2 .

When we suppose that u satisfies:

¯u

¯x1

D0 in R2

we have that the argument of the gradient of u can be written as:

arg (˜u) 4arctang u2

u1
h in R2 ,

where uj »4
¯u

¯xj

, for j41, 2 . Since in this case (1.8) is satisfied, a direct appli-

cation of Theorem 1.2. gives the following extension of Theorem 1.1.
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COROLLARY 1.3. – Let f�C 0, 1
loc (R) and suppose that the structural assump-

tions (S1 )2 (S2 ) are satisfied. Let u�C 1 (R2 ) be a solution of

.
/
´

div (a(N˜uN) ˜u)1 f (u) 40

¯u

¯x2

D0

in D8 (R2 )

in R2
(1.9)

such that ˜u�L Q (R2 ). Then, u is one-dimensional, i.e., there are n�S 1 and
a function g�C 2 (R) such that

u(x) 4g(n Qx) (x�R2 .

To obtain our symmetry results we consider the linear system satisfied by
the first derivatives of u and rewrite it by considering ˜u as complex number.
This procedure leads to a linear system of two equations with respect to new
variables r and u, which are respectively the norm and the argument of the
gradient vector of u. At this point we remark that, one of the equations writes
as div (B(x) ˜u) 40, where B4 (bhk ) is a symmetric real matrix, whose entries
are continuous and bounded functions on R2, such that:

!
h , k41

2

bhk (x) j h j k D0 (x�R2 , (j�R2 0]0(.

To conclude we invoke a classical Liouville-type theorem for elliptic (not
necessarily uniformly elliptic) linear operators in divergence form defined
over R2, proved by D. Gilbarg and J. Serrin in 1956 ([7]).

REMARK 1.4. – Observe that any C 1 solution of (1.1)-(1.2) actually belongs to
C 2. This is an immediate consequence of the regularity results of Tolksdorf
([9]) and Ladyzhenskaya-Uraltseva ([8]) since u satisfies the assumption (1.2),
f is locally Lipschitz-continuous and a�Cloc

1 , 1 (0 , 1Q) satisfies the structural
assumptions (S1 ).

Standard elliptic estimates imply that any bounded C 1 solution of Du1

f (u) 40 in RN has bounded gradient. On the other hand, the function u(x) 4x1

is an unbounded one-dimensional harmonic function with bounded and non-
vanishing gradient. Thus our result generalizes Theorem 1.1. and it provides a
proof of De Giorgi’s conjecture in dimension 2 in the more general context of
the quasilinear equations. In particular we obtain a new and simple proof of
the classical De Giorgi’s conjecture.

The latter remark also applies to solutions of a large class of quasilinear
equations of the form (1.1). By making use of regularity results for solutions of
quasilinear equations [9], it is easy to see that the property: u�L Q ¨ ˜u�
L Q is still true for the p-Laplacian operator or, more generally, for any opera-
tor satisfying some standard growth structural conditions.
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REMARK 1.5. – In Theorem 1.2 and Corollary 1.3. the assumption ˜u�L Q is
necessary. Indeed, the function u(x , y) 42

x 2

2
1y satisfies

.
`
/
`
´

Du11 40

¯u

¯y
41 D0

N˜uN4k11x 2 �L Q (R2 )

in R2

in R2(1.10)

and it is not one-dimensional.
Before completing this section we want to mention the papers [3] and [5],

where the one-dimensional symmetry, for solutions of quasilinear equations in
any dimension NF2, is obtained under different assumptions and with differ-
ent methods. The results of the beautiful paper [3] are based on P-functions,
C 1, a a priori estimates and the strong maximum principle. The results of [5]
are obtained by variational methods.

2. – Assumptions and proofs.

We consider quasilinear operators of the form (1.1) where the function a
belongs to C 1, 1

loc (0 , 1Q) and satisfies the structural assumptions (S1 ) and
(S2 ). It follows that:

a(t) D0 (tD0 ,(2.1)

( TD0 ) C4C(T) D0 :

a(t) GCt 22 , (ta(t) )8GCt 22 ( t� (0 , T] .(2.2)

Let p4 (p1 , p2 ) c0. Then we have

¯(ph a(NpN) )

¯pk

4
a 8 (NpN)

NpN
ph pk 1a(NpN) d hk , h , k41, 2 .(2.3)

Let the right-hand side of (2.3) be denoted by a hk (p). The following lemma
will be useful in the sequel.

LEMMA 2.1. – The matrix (a hk (p) ) is symmetric and positive-definite for
all p�R2 0]0(. Furthermore, the entries a hk (p) belong to C 0, 1

loc (0 , 1Q) and
satisfy:

( TD0 ) K4K(T) D0 :

Na hk (p)NGKNpN22 , ( pc0 : NpNGT .(2.4)

PROOF. – The entries a hk are in C 0, 1
loc (0 , 1Q) by the regularity assumption

on a, furthermore, the matrix (a hk (p) ) is symmetric by (2.3). A direct calcula-
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tion shows that the eigenvalues of (a hk (p) ) are:

a(NpN), NpNa 8 (NpN)1a(NpN) .(2.5)

Note that (ta(t) )84 ta 8 (t)1a(t) so that both eigenvalues in (2.5) are positive
by (S1 ) and (2.1). This yields the first desired conclusion.

Since, for pc0,

(2.6) a hk (p) 4
a 8 (NpN)

NpN
ph pk 1a(NpN) d hk 4

(NpNa 8 (NpN)1a(NpN) )
ph pk

NpN2
1a(NpN)gd hk 2

ph pk

NpN2 h
we have that (2.4) follows immediately from (S2 ) and (2.2) and the fact that the
eigenvalues are positive. r

The next lemma is crucial to obtain our results. Before stating this lemma
we notice that, since N˜uND0 on R2 and ˜u�C 1, we have that ˜u

N˜uN
�

C 1 (R2 , S 1 ). Hence, there exists a C 1 (R2 ) real function u such that

˜u(x) 4N˜u(x)Ne iu(x) »4r(x) e iu(x) in R2 .(2.7)

LEMMA 2.2. – Let u be a C 1 (R2 ) solution of

.
/
´

div (a(N˜uN) ˜u)1 f (u) 40

N˜uND0

in D8 (R2 )

in R2 .
(2.8)

Then

.
/
´

div (r 2 A˜u) 40

div (A˜r) 4r(2 f 8 (u)1 (A˜u) ˜u)

in D8 (R2 )

in D8 (R2 )
(2.9)

where A4(ahk) is the real matrix whose entries are C 0, 1
loc functions given by

ahk »4
a 8 (N˜uN)

N˜uN
uh uk 1a(N˜uN) d hk 4a hk (N˜uN) .(2.10)

PROOF. – Differentiating the equation in (2.8) yields, for s41, 2,

div ( [a(N˜uN) ˜u]s )1 f 8 (u) us 40 in D8 (R2 ) .(2.11)

The vector field a(N˜uN) ˜u belongs to C 1, then a direct calculation gives

div (A(x) ˜us )1 f 8 (u) us 40 in D8 (R2 ) ,(2.12)

where A is the matrix whose entries are given by (2.10).
Define the complex function z4u1 1 iu2 then, z�C 1 and satisfies the fol-

lowing complex Schroedinger equation:

div (A˜z)1 f 8 (u) z40 in D8 (R2 ) .(2.13)
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Inserting (2.7) into (2.13) we have

(2.14) 2f 8(u) re iu42f 8(u) z4div (A˜z)4div (e iuA˜r)1idiv (re iuA˜u))4

e iu div (A˜r)1 ie iu (A˜r) ˜u1

ire iu div (A˜u)1 ie iu (A˜u) ˜r2e iu r(A˜u) ˜u in D8 (R2 )

hence

2f 8 (u) r4 div (A˜r)2r(A˜u) ˜u12 i(A˜r) ˜u1 irdiv (A˜u) in D8 (R2 )

where in the last identity we used the symmetry of A.
Separating the imaginary and the real parts we obtain

.
/
´

r div (A˜u)12(A˜r) ˜u40

div (A˜r)2r(A˜u) ˜u1rf 8 (u) 40

in D8 (R2 )

in D8 (R2 ) .
(2.15)

In particular, the second equation in (2.9) is established. To prove the first
one we see that

div (r 2 A˜u) 4r 2 div (A˜u)12r(A˜u) ˜r4

r(r div (A˜u)12(A˜r) ˜u) in D8 (R2 )

thus, the claim follows from the first equation in (2.15). This fact concludes the
proof. r

To obtain our symmetry result we need the following Liouville theorem for
non-uniformly linear elliptic equations in divergence form. This result was
proved in [7] (see pp. 333-334 and also p. 330).

THEOREM 2.3. – Let B4 (bij ) be a symmetric real matrix, whose entries are
bounded and mesurable functions on R2 , such that:

!
i , j41

2

bij (x) j i j j D0 (x�R2 , (j�R2 0]0( .(2.16)

Then every function v�C 1 (R2 ) satisfying

.
/
´

div (B(x) ˜v) 40 in D8 (R2 ),

) dE1 : Nv(x)N4O( lnd NxN), as NxNK1Q ,
(2.17)

is a constant function.

Now, we are in position to prove Theorem 1.2.

PROOF OF THEOREM 1.2. – By the assumptions we have that u4 arg (˜u) is
a C 1 solution of the first equation in (2.9). By applying Lemma 2.1, we obtain
that the real matrix B4r 2 A4N˜uN2 A is symmetric, has continuous and
bounded entries and satisfies (2.16).
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By (1.8) and Theorem 2.3. we conclude that u is constant on R2. So ˜u(x) 4

N˜u(x)Ne iu 0 in R2, for a real constant u 0 . Setting t4 (2sin (u 0 ), cos (u 0 ) ) we
have ˜u Qt40 everywhere. The latter implies the desired conclusion with n4

( cos (u 0 ), sin (u 0 ) ). r
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[1] G. ALBERTI - L. AMBROSIO - X. CABRÉ, On a long-standing conjecture of E. De Gior-
gi: symmetry in 3D for general nonlinearities and a local minimality property.
Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday,
Acta Appl. Math., 65, no. 1-3 (2001), 9-33.
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