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One-Dimensional Symmetry for Solutions
of Quasilinear Equations in RZ2

ALBERTO FARINA

Sunto. — In questo lavoro si considerano le equazioni quasilineari della forma
div (a(|Vu|) V) + f(u) =0 in R? e si studiano le proprieta delle soluzioni u il cui
gradiente ¢ limitato e non st annulla mai. Sotto un’ipotest naturale, riguardante la
crescita della fase del gradiente di u (st noti che la funzione arg (Vu) é ben definita
in quanto |Vu| > 0in R?), si dimostra che u ¢ a simmetria unidimensionale, ovve-
ro u = w(v-x), dove v é un vettore unitario di R%. Come conseguenza di questo risul-
tato st ottiene che ogni soluzione u avente una derivata positiva é a simmetria uni-
dimensionale. Questo risultato fornisce la dimostrazione di una congettura di E.
De Giorgi nel pin ampio contesto delle equazioni quasilineari. In particolare, nel
caso delle equazioni semilineari, si ottiene una nuova e semplice dimostrazione
della (classica) congettura di De Giorgi.

Summary. — In this paper we consider two-dimensional quasilinear equations of the
Sorm div (a(|Vu|) Vu) + f(u) =0 and study the properties of the solutions u with
bounded and mon-vanishing gradient. Under a weak assumption involving the
growth of the argument of Vu (notice that arg(Vu) is a well-defined real function
since |Vu| >0 on IR2) we prove that u is one-dimensional, i.e., u = u(v-x) for some
unit vector v. As a consequence of our result we obtain that any solution u having
one positive derivative is one-dimensional. This result provides a proof of a conjec-
ture of E. De Giorgi in dimension 2 in the more general context of the quasilinear
equations. In particular we obtain a new and simple proof of the classical De Gior-
gi’s conjecture.

1. — Introduction and main results.

This paper is concerned with the study of the one-dimensional symmetry
for C! solutions of the quasilinear equation

1.1 div (a(|Vu|) V) + f(u) =0 in @ (R?)
satisfying
(1.2) |[Vu| >0 in R%

Typical representatives of quasilinear operators appearing in (1.1) are
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given by the p-Laplacian operator (1 <p < + «) or by the prescribed mean
curvature operator.

The class of nonlinear problems described by the equation (1.1) naturally
arises in mathematical physics (reaction-diffusion problems, non-Newtonian
fluids, porous media, plasma and nuclear physics, cosmology, etc.) as well as in
geometry (theory of non parametric surfaces, theory of quasiregular and qua-
siconformal mappings, etc). Due to the role played by these models it is impor-
tant to understand the symmetry properties of the solutions of (1.1). It is the
purpose of this paper to study the one-dimensional symmetry properties of
solutions % under the assumption (1.2).

On the other hand this type of symmetry problem is also related to a con-
jecture formulated by E. De Giorgi in 1978 (see [4], open question (3), page
175) and, more generally, to the following result:

THEOREM 1.1 ([6], [1]). — Assume F e C*(R). Let ue C*(RY) be a bounded
solution of

1.3) Au—F'(u)=0 in RY

such that

(1.4) % 20 i RV
aﬂ'/'N

If N=2 or N =3, then u is one-dimensional, i.e., there are acRY and ge
C2(R) such that

(1.5) wx) =gla-x) VaeeRY,

The case N =2 was proved by N. Ghoussoub and C. Gui in [6] while the
case N =3 has been recently established by G. Alberti, L. Ambrosio and X.
Cabré in [1]. In particular, Theorem 1.1. gives a positive answer, in the case of
R% and R3, to the above mentioned conjecture of E. De Giorgi (about this sub-
ject see also [2]).

In the present work we consider only the two-dimensional case. The pur-
pose of this paper is to extend the one-dimensional symmetry result of Theo-
rem 1.1 in different directions:

(i) by only assuming |Vu| >0 in R? instead of the monotonicity assump-
tion (1.4).

(i) by only assuming |Vu| € L *(R?) (in particular we do not assume any-
thing about the boundedness of u, see Remark 1.4.).

(iii) by treating quasilinear equations of the form (1.1), with fe C%'(R)
and aeCL.1(0, + x).
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The function a satisfies the structural assumptions:

Sy tlllr(l) ta(t) =0, (ta(?)' >0 Vi>0

and

(S2) A7’ >0, 3IC=C(T")>0:(tat)) <Ct™* Vite(0,T'l
These assumptions are satisfied by every function of the form:

(1.6) a(t) =t7(p + %y

with, 7 >0,y> —land = — 1 For a suitable choice of the parameters in
(1.6), we recover the p-Laplacian operator, with 1 <p < + o, the prescribed
mean curvature operator as well as some more general operators satisfying
non-standard growth conditions.

Ou main results are:

THEOREM 1.2. — Let fe C%.'(R) and suppose that the structural assump-
tions (S;) — (Sy) are satisfied. Let u be a C(R?) solution of

(L.7) {div(“(W“l)Vqu(u):o in 0 (R2)

|Vu| >0 in R2
such that Vue L ® (R?). Assume that there exists 0 <1 such that:
(1.8) |arg (Vu)(@) | = O(In’ |x|), as |x|— + o,

then u is one-dimensional, i.e., theve are ve S* and a function g e C*(R) such
that

wx) =g(v-x) VeeR?,
lg'(®)|>0 VeeR%
When we suppose that u satisfies:
o
M50 in R
8901

we have that the argument of the gradient of u can be written as:

arg (Vu) = arctan ( Y2 ) in R?,
Uy

where u; := g—u, for j =1, 2. Since in this case (1.8) is satisfied, a direct appli-
x.

cation of Theorem 1.2. gives the following extension of Theorem 1.1.



688 ALBERTO FARINA

COROLLARY 1.3. — Let fe C%. (R) and suppose that the structural assump-
tions (S;) — (Sy) are satisfied. Let uwe C*(R?) be a solution of

div (a(|Vu]) Vu) + f(u) =0 in @' (R?)

1.9
(1.9) U in R2
Oy

such that Vue L ® (R?). Then, u is one-dimensional, i.e., there are ve S and
a function ge C%(R) such that

w) =gv-x) VeeR2.

To obtain our symmetry results we consider the linear system satisfied by
the first derivatives of u and rewrite it by considering Vu as complex number.
This procedure leads to a linear system of two equations with respect to new
variables o and 6, which are respectively the norm and the argument of the
gradient vector of u. At this point we remark that, one of the equations writes
as div (B(x) VO) = 0, where B = (b;,) is a symmetric real matrix, whose entries
are continuous and bounded functions on R? such that:

2
z bhk(gc) ghé:k>0 VWER2, V§€R2\{0}.
hk=1

To conclude we invoke a classical Liouville-type theorem for elliptic (not
necessarily uniformly elliptic) linear operators in divergence form defined
over R?% proved by D. Gilbarg and J. Serrin in 1956 ([7]).

REMARK 1.4. — Observe that any C? solution of (1.1)-(1.2) actually belongs to
C® This is an immediate consequence of the regularity results of Tolksdorf
([9]) and Ladyzhenskaya-Uraltseva ([8]) since u satisfies the assumption (1.2),
f is locally Lipschitz-continuous and a e CiL.' (0, + =) satisfies the structural
assumptions (S;).

Standard elliptic estimates imply that any bounded C' solution of Au +
f(u) = 0 in RY has bounded gradient. On the other hand, the function u(x) = a;
is an unbounded one-dimensional harmonic function with bounded and non-
vanishing gradient. Thus our result generalizes Theorem 1.1. and it provides a
proof of De Giorgi’s conjecture in dimension 2 in the more general context of
the quasilinear equations. In particular we obtain a new and simple proof of
the classical De Giorgi’s conjecture.

The latter remark also applies to solutions of a large class of quasilinear
equations of the form (1.1). By making use of regularity results for solutions of
quasilinear equations [9], it is easy to see that the property: ueL * = Vue
L ~ is still true for the p-Laplacian operator or, more generally, for any opera-
tor satisfying some standard growth structural conditions.
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REMARK 1.5. — In Theorem 1.2 and Corollary 1.3. the assumption Vu e L * is

2
necessary. Indeed, the function u(x, y) = — % + y satisfies
Au+1=0 in R?
ou . s
(1.10) —=1>0 in R
9

|[Vu| = V1+a2e¢ L *(R?)

and it is not one-dimensional.

Before completing this section we want to mention the papers [3] and [5],
where the one-dimensional symmetry, for solutions of quasilinear equations in
any dimension N = 2, is obtained under different assumptions and with differ-
ent methods. The results of the beautiful paper [3] are based on P-functions,
C1“ a priori estimates and the strong maximum principle. The results of [5]
are obtained by variational methods.

2. — Assumptions and proofs.

We consider quasilinear operators of the form (1.1) where the function a
belongs to Ci.'(0, + o) and satisfies the structural assumptions (S;) and
(S,). It follows that:

2.1) aot)>0 Vt>0,
vI>0 3IC=CT)>0:

2.2) at) <Ct ™2, (ta(t)) <Ct™%2 Vte(0,T].
Let p = (p1, p2) #0. Then we have
S(pral|p])) _ a’(p])

P 1P|
Let the right-hand side of (2.3) be denoted by a . (p). The following lemma
will be useful in the sequel.

2.3) upe+al|p]) O b k=1,2.

LEMMA 2.1. — The matrix (a,.(p)) is symmetric and positive-definite for
all peR®*\{0}. Furthermore, the entries a;(p) belong to C.' (0, + ») and
satisfy:

V>0 3IK=K(T)>0:
(2.4) law(P)| <K|p|™%, Vp=0:|p|<T.

PROOF. — The entries a;, are in C%'(0, + «) by the regularity assumption
on a, furthermore, the matrix (a,;,(p)) is symmetric by (2.3). A direct calcula-
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tion shows that the eigenvalues of (a,,(p)) are:

2.5) al|p]), |ple’(|p])+al|p]).

Note that (ta(t))’ =ta’(t) + a(t) so that both eigenvalues in (2.5) are positive
by (S;) and (2.1). This yields the first desired conclusion.
Since, for p =0,

a'(|p])

1P|
(Ipla” (I + aclp|) 22 - R )
1P| |p|
we have that (2.4) follows immediately from (S,) and (2.2) and the fact that the
eigenvalues are positive. ®

(2.6) a(p) =

PP+ al|p]) 64 =

+a(|p|)(6hk

The next lemma is crucial to obtain our results. Before stating this lemma
Vu

we notice that, since |Vu| >0 on R* and VueC', we have that €
C'(R?, S'). Hence, there exists a C'(R?) real function 6 such that Vel
2.7 Vu(x) = |Vu(x) |e® :=o(x) ¢ in RZ.

LEMMA 2.2. — Let u be a C1(R?) solution of
25 { div (a(|Vu|) V) + f(u) =0 in @' (R?)

|Vu| >0 in RZ.

Then

29 { div (02AVH) =0 in @' (R?%)
div(AVp) = o( —f"(u) + (AVO) VO) in @' (R?)
where A= (ay;,) is the real matric whose entries are CO.! functions given by
(2.10) e = muhuknLa(WuD6,lk=ahrk(|Vu|).
|Vue|

Proor. - Differentiating the equation in (2.8) yields, for s =1, 2,
(2.11) div ([a(| Vue|) Vul) + ' (w) u,=0 in @' (R?).

The vector field a(|Vu|) Vu belongs to C', then a direct calculation gives
(2.12) div (A(x) Vug) + ' (w) ug=0 in @' (R?),

where A is the matrix whose entries are given by (2.10).
Define the complex function z = u; + iu, then, ze C! and satisfies the fol-
lowing complex Schroedinger equation:

(2.13) div(AV2) +f () z=0 in @ (R?).
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Inserting (2.7) into (2.13) we have
(2.14)  —f'(u) e = —f'(u)z=div(AVz)=div (e’ AVp) +idiv (0e * AVO)) =
e div (AVo) + ie’(AVp) VO +
ioediv (AVO) +ie®(AVO) Vo — e o(AVO) VO in ' (R?)
hence

—f' () 0 = div(AVg) — 0(AVO) V6 + 2i(AVp) VO + iodiv (AVE) in (O (R?)

where in the last identity we used the symmetry of A.
Separating the imaginary and the real parts we obtain

015 o div (AV) + 2(AVo) VO = 0 in ' (R?)
' div (AVo) — 0(AVO) VO + of '(u) =0 in ' (R?).

In particular, the second equation in (2.9) is established. To prove the first
one we see that

div (02AV0) = 02div (AV6) + 20(AV0) Vo =

0(o div (AV) + 2(AVo) VO) in O (R?)

thus, the claim follows from the first equation in (2.15). This fact concludes the
proof. =

To obtain our symmetry result we need the following Liouville theorem for
non-uniformly linear elliptic equations in divergence form. This result was
proved in [7] (see pp. 333-334 and also p. 330).

THEOREM 2.3. — Let B = (b;;) be a symmetric real matrix, whose entries are
bounded and mesurable functions on R?, such that:

2
(2.16) > bjj(x)§;6;>0 VreR? VEeR®\{0}.
=1
Then every function ve C'(R?) satisfying
div(B(x) Vo) =0 in @' (R?),
@.17) v (B(x) Vv) (R%)
35<1: |v@)| =00’ |z|), as |x|—+ =,

18 a constant function.
Now, we are in position to prove Theorem 1.2.

ProOF OF THEOREM 1.2. — By the assumptions we have that 6 = arg (Vu) is
a C' solution of the first equation in (2.9). By applying Lemma 2.1, we obtain
that the real matrix B=90%A4 = |Vu|®*A is symmetric, has continuous and
bounded entries and satisfies (2.16).
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By (1.8) and Theorem 2.3. we conclude that € is constant on R2. So Vu(x) =
| Vu(a) |e™ in R? for a real constant 6. Setting 7= (—sin(6), cos(6,)) we
have Vu-t = 0 everywhere. The latter implies the desired conclusion with v =
(cos(6y), sin(f,)). =
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