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Cauchy-Dirichlet Problem in Morrey Spaces
for Parabolic Equations with Discontinuous Coefficients.

DiaN K. PALAGACHEV - MARIA A. RAGUSA - LUBOMIRA G. SOFTOVA

Sunto. - Siano Qr un cilindro in R"*led x = (x', t) e R* X R. Si studia il problema di
Cauchy-Dirichlet per Uoperatore uniformemente parabolico

w— 2 laij(x) Dju=f() qo. m Qr,
i,j=

w(x) =0 su 9Qr,

nell’ambito degli spazi di Morrey W1 (Qr), pe (1, ©), e (0, n + 2), supponendo
che 1 coefficienti della parte principale appartengano alla classe delle funzioni con
oscillazione media infinitesima. Si ottengono inoltre delle stime a priori nei sud-
detti spazi, e regolarita Holderiana della soluzione e della sua derivata spaziale.

Summary. — Let Q be a cylinder in R* "t and x = (x', t) e R® X R. It is studied the
Cauchy-Dirichlet problem for the uniformly parabolic operator

i,j=

U — ﬁ:laij(x) Dju=f(x) ae in Qr,
w(x) =0 on 9Qr,

m the Morrey spaces WI?;}(QT), pe(l, ), Ae (0, n+2), supposing the coeffi-
cients to belong to the class of functions with vanishing mean oscillation. There are
obtained a priori estimates in Morrey spaces and Holder regularity for the sol-
ution and its spatial derivatives.

1. — Introduction.

The main goal of the present paper is to study qualitative properties in the
framework of the parabolic Morrey spaces of the Cauchy-Dirichlet prob-
lem

u)=

l u(x) =0 on 9Qr

(1.1) J g’uzut— EI(I,U(%) D”u Zf(gc) a.e. in QT7
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in the case of uniformly parabolic operator & with discontinuous coefficients.
Here QcR" is a bounded and C '-smooth domain, #» =1, and @, stands for
the cylinder Q x (0, 7), T > 0. As usual, S; =32 x (0, T) means the lateral
surface and 0Q, = 2 U Sy — the parabolic boundary of Q. Throughout the
paper the standard summation convention on repeated upper and lower in-
dices is adopted. For simplicity we denote the set of the parabolic variables by
w=(x',t)=(®, ..., x,, t) e R""" and D;u = ou/dx;, D;yu = *u/dx; dx;, u; =
D,u=03u/dt, D, uw= (Dyu, ..., D,u) means the spatial gradient of u, D2 u =
{Dju}}—;. In our further considerations we shall use the notations R% "' =
R*x R, and D"*"!'=R% xR, ={x'eR":2,>0} x {t>0}.

The problem (1.1) is very well studied both in Hélder and Sobolev function-
al spaces when the coefficients a? are Holder or uniformly continuous fune-
tions in Q7 (see [16]). Relevant L>theory of (1.1) was developed in [14] suppos-
ing a¥’s to be discontinuous but owning suitable Sobolev regularity (D, o e
Ln+2’ Dta/ijEL(n+2)/2).

Our principal assumption on the coefficients a? is that they belong to the
Sarason class of functions VMO with vanishing mean oscillation (cf. [20]).
That class consists of functions f which mean oscillation is not only bounded,
i.e. fe BMO ([15]), but also converges uniformly to zero over balls shrinking to
a point. The increasing interest to VMO in the last years is due mainly to the
fact that it contains as a proper subspace the bounded uniformly continuous
functions and this ensures the possibility to extend the L”-theory of operators
with continuous coefficients ([13], [16]) to the case of discontinuous ones ([8],
(9], 3], [21]).

Differential operators with VMO principal coefficients have been consid-
ered for the first time by Chiarenza, Frasca and Longo in [8] and [9]. These
authors succeeded to modify classical methods in deriving L?-estimates for
solutions of Dirichlet boundary problem for linear elliptic equations which
allowed them to move from a¥(x) e C°(Q) into a¥(x) e VMO. Roughly speak-
ing, their approach goes back to Calderén and Zygmund (see [4], [5]) and
makes use of an explicit representation formula for the second derivatives
D?u in terms of singular integrals and commutators both with variable
Calderén-Zygmund kernels.

In the articles [3] and [21], the parabolic Cauchy-Dirichlet and oblique
derivative problems have been studied in the Sobolev spaces W,?’ L(Qp),
pe (1, »), under VMO hypothesis on the coefficients a . These results along
with other classical and modern techniques regarding both elliptic and
parabolic equations with discontinuous data, including VMO, can be found in
the monograph [17].

Here we are going to extend the considerations in [3] supposing the right-
hand side of the equation (1.1) to belong to the parabolic Morrey spaces
L?*(Qr). Let us note that the space L”* is a subspace of LJ. for every



CAUCHY-DIRICHLET PROBLEM IN MORREY SPACES ETC. 669

pe (1, ©)and 1 e (0, n +2). This way, the existence results in Sobolev class-
es W,?' 1(Qp) from [3] still hold if fe L”*(Qr). A natural question that arises is
whether PueL?* implies ue W2 }.

We show that the solution of (1.1) belongs to W71 (Qr) assuming the coeffi-
cients of the uniformly parabolic operator & to be VMO functions and fe L?*,
pe (1, ©), Ae (0, n+2). In our investigations we make use of the results ob-
tained in [22], [23] and [19] in the framework of the Morrey spaces. These arti-
cles propose detailed study of singular integrals and commutators with kernel
k(x; y) depending on parameter a and satisfying Calderén-Zygmund type
conditions with respect to y. The mixed homogeneity of the kernel in y, which
in [22] and [23] is of parabolic type and in [19] of general type, needs an appro-
priate metric as the one defined in [12].

Our goal here is to obtain L”* estimates for the nonsingular integrals
which appear in the representation of the solution near the boundary. These
estimates along with the estimates for the singular integrals lead to an a priori
estimate of the solution of (1.1) in W]? H(@Qr). Finally, Morrey’s regularity of
strong solution u to (1.1) implies Holder regularity both of » and its gradient,
which are finer than the already known in the case PueL?.

We refer the reader to [22] and [23] for similar results concerning oblique
derivative problem for the parabolic operator &, and to [11] and [18] for Mor-
rey regularity results regarding boundary value problems for elliptic opera-
tors with VMO coefficients.

2. — Definitions and preliminaries.

Suppose & is a uniformly parabolic operator, i.e., there exists a constant
A >0 such that

@.1) ATEP<al(@) &< A|ER,  aa xeQp, VEeR™

Besides that, requiring the coefficients matrix a = {a¥}}_, to be symmetric,
one gets immediately essential boundedness of a’s.

Denote by &, a linear parabolic operator with constant coefficients ag
which satisfy (2.1). The fundamental solution of the operator &, with pole at
the origin is given by the formula (cf. [16])

1 exp [ B Af YiY;
') =r(y’, v =1 (4ar)*\/deta, 47

0 as 7<0,

} as 7>0,

where a;={aj'} is the matrix of the coefficients of &, and Ay={A{}=a; .
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In the problem under consideration, the coefficients of the operator & de-
pend on x and it reflects also on the fundamental solution. To express this de-
pendence we define

1 exp[—w] as t>0
22) I'w;9) =1 (4ar)?\/deta(x) 4t ’

0 as 7<0,

with a(x)={a(x)} and A(x)={AY(x)}=a(x)"!. Set also I;=
oI(x;y', ©)/0y;, I'y=09%I(x;y', ©)/dy;dy; for i,j=1, ..., n.

For the goal of our further considerations, besid2es the standard parabolic
n

metric o(x) =max{|x'|, [t|"2}, |x'| = ("Zlacf) , d(x, y) =ox—y), we

are going to use the one introduced by Fabes and Riviére in [12]

e/l ag
23) Q(-%')=\/|x | +\/2|x P47 e, ) = ot — ).

The topology induced by d is defined through open ellipsoids centered at zero
and of radius »

2

112 2
8,(0) = {xeR”“: M + t—4 < 1}.
r 7

Obviously, the unit sphere with respect to that metric coincides with the unit
Euclidean sphere in R"*!, i.e.

n 1/2
881(0)EZ,H1={906R”“: |x|=(2x7~,2+t2) 21}
=1

X
o(x)
ders I and [ (these are balls with respect to the metric ¢) with measures com-
parable to »" *2 and such that I c &,c I. Obviously, that relation gives an equiv-
alence of the metrics ¢ and ¢ and the induced by them topologies.

and T =

) e, .. It is easy to see that for any ellipsoid &,, there exist eylin-

DEFINITION 2.1. — A function k(y): R**1\{0} =R is said to be a constant
parabolic Calderén-Zygmund (PCZ) kernel if k(y) is smooth on R"*1\{0};

k(ry', v’y =r""*?k(y’', v) for each r>0; [ k(y)do,=0 for each r> 0.
oy)=r
A function k(x; y): R"*1x (R"*1\{0}) >R is a variable PCZ kernel, if

for any fixed xeR"*! k(x; -) is a parabolic PCZ kernel and

sup

9\
(—) k(x; y) ‘ < C(B) for every multiindex B, independently of x.
oy =1

oy
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For the sake of completeness we recall here the definitions and some prop-
erties of the spaces we are going to use.

DEFINITION 2.2. — For fe LiL.(R"*1) define

1
y {R) = sup flf(y) —f1.|dy
L |1

where I, ranges over all cylinders in R" 1 of radius r and centered at some
point x, te, L(x)={yeR" ' |a' —y'|<r |t—1|<r’} and f,=
|17 [ dy.

Then, fe BMO (bounded mean oscillation, [15]) if || f]|s =supy (R) < + o,
while fe VMO (vanishing mean oscillation, [20]) if I%iinoy f(lg) =0 and the

quantity y (R) is referred to as VMO-modulus of f.

The spaces BMO(Qr) and VMO(Qy) of functions given on @7, can be de-
fined in the same manner, taking 7. N Qr instead of I, above. As follows by re-
sult of Acquistapace (see [1, Proposition 1.3]), having a function f defined in Q7
and belonging to BMO(Qy), it is possible to extend it to the whole R" ! pre-
serving the BMO seminorm of the extension. In particular, if fe VMO(Qr)
then the extended function f belongs to VMO(R"*!) and y 7 (R) is equivalent
to y /(R).

The problem (1.1) has been already studied in [3] in the framework of
Sobolev spaces WpZ’l(QT), pe (1, ©). Precisely, assuming (2.1) and ale
VMO(Qy), it is proved that for any fe L?(Qr), p e (1, ), there exists a unique
strong solution, i.e., a weakly differentiable function u belonging to L”(Qr)
with all its derivatives D/ D, u, 0 < 2r + s < 2, such that u satisfies the equa-
tion in (1.1) almost everywhere in Q7 and the boundary condition holds in the
sense of trace on 9Qy.

Our goal here is to obtain finer regularity of that solution supposing Pu be-
longs to the Morrey space LP*(Qr), pe(l, ©), Ae(0,n+2).

DEFINITION 2.3. — A measurable function fe L. (R* 1) is said to belong to
the parabolic Morrey space LP*(R" 1) with pe (1, + ») and A (0, n + 2),
if the following norm 1is finite

1 1/p
172 = (sup7 [ 1) |pdy) |
r>0 7 1.

where I, is any cylinder of radius r. To define the space L"*(Qr), we insist
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the norm

QTﬁI

1 w
W= (s [ vooran)

to be finite.

We say that the function u(x) lies in Wg;}(QT), 1<p<o,0<i<n+2,
if it is weakly differentiable and belongs to L”*(Qr) along with all its deriva-
tives D{'Dj w, 0 <2r+s<2. Then the quantity

leellwz1 = lully, 1 @p + ID2 lly, 1; g + 1Dl 1 g
defines a norm under which sz; H@Qy) becomes a Banach space.

For a given measurable function fe L. (R"*!) we define the Hardy-Little-
wood maximal operator

1
Mf(x) = sup|—f|f(y) |dy for aa. wxeR"'!,

1

where the supremum is taken over all cylinders I centered at the point x. A
variant of it is the sharp maximal operator

1
f#(x)—supmf|f(y)—ﬁ|dy for aa. xeR"M!
I>x I

The following lemmas give L”* estimates for f, Mf and f*. Analogous
bounds in the space R" endowed with the Euclidean metric can be found in [7]
and [11]. The L * estimates below follow in the same manner, making use of
the parabolic metrics ¢ or ¢ and corresponding to them diadic partition of the

space R" "1 =2TU (lile AV ) where I is either a cylinder or an ellipsoid

centered at some point # € R" *! and of radius 7. We note that 2* I means cylin-
der (ellipsoid) with the same center and of radius 2¢».

LEMMA 2.1 (Maximal inequality). — Let pe (1, ), Ae (0, n+2) and fe
LP*(R**Y). Then there exists a constant C independent of f such that

1811y, 2 < Cl£ll,, -

LEMMA 2.2 (Sharp inequality). — Let 1<p< o, 0<i<n+2, fe
LP*(R" ™). There exists a constant C independent of f such that

1fll,2 < ClLAF
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Analogous estimates are valid also in D""!=R" x R,, where the corre-
sponding diadic partition of the space has the form D%.'!'=27, U
(kl:Jl2’”1I+ \2’“I+) with I, =I'N {x,>0,¢t>0} and I is a cylinder centered

at xe D" 1. Then

HMpr,A; prtl s CHf”p,l; DYty Hf”p,l; prtl = CHf# Hp,l; prrl.

We shall exploit below the well known technique, based on an expansion
into spherical harmonics of certain kernels (cf. [4], [5], [8], [3]). Recall that the
restriction to the unit sphere ¥, , ; of any homogeneous and harmonic polyno-
mial p(x): R"*!'—R of degree m is called an (n + 1)-dimensional spherical
harmonic of degree m. Set Y,, for the space of all (n + 1)-dimensional spheri-
cal harmonics of degree m. It is a finite-dimensional linear space and setting
g = dim VY,,, we have

m+n m+n—2 o
2.4) gm=( )—( )SC(n)m” !
n n

with the second binomial coefficient to be settled 0 when m =0, 1, ie., g,=1,
g1 =mn+ 1. Further, let {Y,, (x)}{~, be an orthonormal base of Y,,. Then
{Yg, (@)}, _o is a complete orthonormal system in L*(X, ;) and

9\
— 1Y
( ™ ) om (1)

In particular, let p e C~* (2, ;1) and E by Yo () be the Fourier series expan-
sion of ¢(x) with respect to {Y,, }. Then

(2.5) sup

reXy 41

SCn)mPlre=D2 =12 ...

26) by, = f P(x) Yy, (@) do,  |by,| <C(1)m 2 sup ‘(i )yq)(x)
5 ly|=2t |\ Ox

rey i1

n+1

o Im

for every integer [>1 and >, = >, .. Therefore, the expansion of ¢ into
S, m m=0s=1

spherical harmonics converges uniformly to ¢ (see [4], [5] for details).

3. — Integral estimates in Morrey spaces.

This section is devoted to Morrey continuity of certain nonsingular inte-
gral operators near the lateral boundary Sy of the cylinder Q. For what con-
cerns the regularity of 82 we will suppose that it is C!'!-smooth. In other
words, 02 can be represented locally as a graph of function having Lipschitz
continuous first derivatives. Indeed, by virtue of Rademacher’s theorem,
Ch'=W? ~ and therefore all the diffeomorphisms which flatten locally 92
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(and thus Sy) will have L *-smooth second-order generalized derivatives.

Suppose now that Sy is locally flatten such that Q,cD%"!1=R" x R, , and
let the coefficients of the operator & be defined in D"*!. Construct a general-
1zed symmetry T in the next manner. Denote by a”(y) the last row of the ma-
trix a = {a} and define

an(y/’ t)

T(QC’, t; ?/’, t):x'_zxn—’
ann(yr’t)

T(x)=T', t; x’', t),
for any &', y' e R and any fixed £ € R,. Obviously 7 maps R% into R™ and if
k(x; -) is a variable PCZ kernel then k(x; T(x) — y) turns out to be a nonsin-
gular variable kernel for any x, y e D" "1

Let fe LP*(D"*Y) with pe (1, ), e (0, n +2) and a e BMO(D""1). De-
fine the operators

Kfew == J ks T -y fa) dy,
D'Vi‘fl

Cla, fi@) | ks T@) - platy) - a@)] f@) dy.
D7i+l
We consider the series expansion of the nonsingular kernel k(x; T(x) — %) on
3, +1 with respect to the base {Y,, ()} 1" -0
k(z, T(x) —y) = o(T(x) —y)~" P h(x, T(x) — y) =
o(T(x) — y)f("”);m by () Yy, (T() — ) = SEW b, () I (T(2) — Y).

The kernels 9C,,(-)eC*(R"*'\{0}) are constant parabolic Calderén-Zyg-
mund kernels satisfying Hormander type condition (see [3]). Thus
I, (T(x) —y) for xeD%*! are nonsingular. Further, the expansion of
k(x, T(x) —y) leads also to series expansions of the integrals Xf and

Cla, 1]

TS = 2 boue) [ 96T =) f) dy = 3 by @) Fof ),

Dy

B Clo, 10 = S b [ 96,(1@ - plat) - o) f) dy

]DiJrl
= 3 by (@) Cyla, £,

Before proving the L?”'*-boundedness of the above integrals we shall pay at-
tention to some preliminary results. For any «’ e R and t e R, we define &' =
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(X, ooy @1, —2,) €R™ and &= (ay, ..., %,_1, —Xp, ) eD"TT=RY xR_.
Hence the following integral operators

y

sy = [ L2

D’jjl Q(é% _ y)n +2

IaW)—am)VW)d

)n+2

Sa, f)(x) = ~
mfl o~y

are nonsingular.

THEOREM 3.1. — Let fe LP*(D"*!) with pe (1, ©), Ae (0, n+2) and ae
BMOD"*1). Then

3.2) 7, 25 o1 < Clflly, 2. o
3.3) 8¢, Olly, 2, o1 < Cllallsc (AL, 2. 01

and the constant C depends on n, p, A but not on f.

PROOF. — Let I be a cylinder centered at xye D".*! and of radius . We set
I, =IND""! and 27, stands for 2! 7 N D", Every function f defined on
D"+ could be written as

Sf@) = f(@) xar, (@) + Elf(x) Xokrip2ip, () = é,ofk(ﬂc)

with y being the characteristic function of the respective set. As is shown in [3,
Lemma 3.3], F is a continuous operator acting from L?” into itself, whence

[ 1t 1P dy <1 Tl e < CR A, e
I

—cp) [ 1 1Py <) 71 oner.

oI,

It is easy to see that for every ye2"'I1 \2°I, and xel,, k=1, one has

o@—y)=ow—y) = (2 —1)r=2"1p,
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Thus
P
o) |7 = R
~, n+ 2
2kr<g(x0—y)<2k+lr Q(%_y)
1 f !
< ) |dy
(2k 17,)7,+2Q(w07y)<2k+17‘
1 ( o
ot ( 1dy) ( [ If(y)lpdy)
k,
(2" Ty olwg—y) <281y o@g—y) <21y
< (kG = +2)) 2= (0 +2) Hf”g,l, Dt -
Now we get

15 1ray=3 [|5w |y
I, k‘=0Lr

o0
s CT'/I(I + > Zk(lf(””))) ||f||£z Dl S C”’J”f”g,z; DY+l
k=1

and the constant depends on %, p and 1. Moving #* on the left-hand side and
taking the supremum with respect to r we get exactly (3.2).
To prove (3.3) we use the following inequality

| Sta, £ (@) | < Cllall (MF|£D@)Y+ (M| £]9)(2)"7)

proved in [2, Theorem 3.1]. Thus, for any qe (1, p) and fe L?»*(D""!) we
write

[ sta, py*a) |dy <
I,

clale{ S 100151000 140y + [ 1310171500 1#4dy | =l + 3,
I, I,
Making use of Lemma 2.1 and (3.2), it is easy to see that

Jv= L 1M 11 Py < DG )9, 1

I,

< HIFLF DG, 2 per = IF| UG, 2 e
$ C/VJ' ||f||£,l, D?}r+1.

Analogous arguments hold also for the estimate of J,.
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The estimate (3.3) follows from the sharp inequality (Lemma 2.2) which
completes the proof of Theorem3.1. =

_ THEOREM 3.2. — Let the functions f and a be as above and K f and
Conla, f1 be the integrals from the series expansions (3.1). Then there exist
constants depending on n, p, A such that

(34) ||5€smf||p,/l; prtl < Cm(n_l)/2 ||f||p,/1; prtl

(35) || ésm[aa f]”p,/l; Dprtl s Cm(n_ D72 ||a||>< ||f||p,l; DLl

PrOOF. — From the boundedness of Y, (x) (see (2.5)) and the relation be-
tween the distances (see [3, Lemma 3.2])

Cio@—y) <o(T(x) —y) < Cyo(@ —y)

we have

~ | Yam(T(x) - ?/) | (n—1)2 |f(?4) |
R f() | < () |dy < Cm ™ —
| f | ]D@,:[l Q(T(OC) _ y)n+2 |f Y | Y 1()71:[1 Q(QE _y)n+2

The last integral is exactly &|f| so we can apply the estimate (3.2), which
gives

||5{smf||p,l; prtl s Cm(ni 1)/2||f||p,l; prtl.
Analogously we get (3.5), making use of (3.3). =

We are in position now to prove our main result concerning L” At es-
timates for the nonsingular integral operators X and C.

THEOREM 3.3. — Let fe LP*(D"*"1), pe(l, »), Ae(0,n+2) and ae
BMO(D"*1). There exists a constant C(n, p,A) such that

(3.6) ||5{f||p,/1;D'i+1 < Cflly, 2 pne

|| é[a/, f]”p,l; Dl S CHCLH* ||f||p,/l; Dyt
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Proor. — The estimates (2.4), (2.6) and (%4) ensure total convergence in
LP*(D"*1) of the series expansion (3.1) of Xf

||5{f”p,l, prtl < S%ZHbsm ||oc ||5{3mf||p,l, Dt
<C”f||p,i,m+l i "2 =12+ -1
m=1

if the integer [ is preliminary chosen greater than (3n — 1)/4. Analogous argu-
ments hold also for the commutator. =

4. — A priori estimates, strong solvability and Holder continuity.

THEOREM 4.1. — Suppose a?eVMO(Qr), 2.1), Q2eCl ! and let ue
W;?,’/%(QT), pe(l, ©), Le(0,n+2), be a strong solution to (1.1). Then

4.1) ||u||W,?;}(Qr) s C”f”p,/l; Qr

where the constant depends on n, p, A, A, T, 32 and the VMO-moduli of a.V.

PROOF. — Step 1: Interior estimate. The interior representation formula for
the second spatial derivatives ([3, Theorem 1.4]) expresses D;u in terms of
singular integral operators and their commutators with kernels I'j;(x; x —y)
(the derivatives of the fundamental solution (2.2) with respect to the second
variable). Further, I";;(x; x — y)’s are variable PCZ kernels (cf. [12]) that are
homogeneous of degree —1 with respect to ' and of degree —2 with respect
to t. Thus, the singular integrals and commutators under consideration are a
particular case of more general class of singular operators with kernels
k(x; y) of mixed homogeneity studied in [19]. We refer the reader to [23, The-
orem 3.1] for the continuity properties of these operators in Morrey spaces. As
a consequence of [23, Eq. (5.5)] (see also [19, Theorem 2]), the following interi-
or regularity of solutions to (1.1) follows

THEOREM 4.2. — Let ueWg’l(QT) be a strong solution to the uniformly
parabolic  equation Dyu—a(x) Dyu=f(x) with a¥eVMOQr) and
feL?*(Qr). Then D2, DyueLP*(QF) for any cylinder Q7 = Q' x (0, T),
Q'cc R, and

4.2) allwz.1@p < Clllully, 25 a5+ 1715, 2 @)

where Qr=2" x (0, T), Q'cc Q"cc 2 and C depends on known quantities
and on dist(0Q', 99Q).
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Step 2: Boundary estimate. Suppose Sy is locally flatten near the point x,
such that @,cD""! and consider a semicylinder I, centered at x, and of
radius 7. Recall the boundary representation formula for the second deriva-
tives Dju (see [3, Theorem 1.5])

4.3)  Dju(x) = @ij[ahk, Dy u)(x) + Ry f () + f(x) f Ii(e; y)v,do, —I;(x),

2+l

with

C;la™, Dy ul(x) =P.V. f Iy(e; x—yla™(y) — o™ (@)] Dy uly) dy,

Rn+1

R;f(x) =P.V. f I'y(xe; x—y) f(y) dy,

R +1

I;(@) = Cila"™, Dyul@) + Ryf(@) i,j=1,...,n—1;

Iy (@) = 1,;(x) = é (D, T@)' (Cala™, Dyul@) + Xaf@) i=1,...,n—-1;

L) = 5 (D, 7)) (D, @) (&[0, Dycal@) + Ko, )

where (D, T(ac))l stands for the [-th component of the vector D, T(x) and v, is
the i-th component of the unit outward normal to ¥, , ;.

The first two integrals in (4.3) are singular and of the kind treated in [23,
Theorem 3.1] and [19, Theorem 1], while the third one is bounded nonsingular
integral. Thus

(4.4) Dy ull, 1. 7, < C(llall« |1 D2 u||p,/l;l+ + ||f||p,ﬂ.;1+) + ||Iij||p,l;1+7

where the constant depends on known quantities but not on f. To estimate the
last norm above we use the results for nonsingular integrals established in
Theorem 3.3. Thus

Wil ;1. < Cllall D2 ully, 51 + 111,21,

where the constant depends on 7, p, 1, A and ||al|, = | max la¥|. By means
<ti,jsn

of the VMO-assumption on a“’s, we are able to choose 7 > 0 sufficiently small
in order to move the term [DZul, ;.;, on the left-hand side of (4.4).
Therefore,

IDZ wly, 251, < ClAll, 1,
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and similar estimate holds true also for ||Dtqu .1, by virtue of u, =

a'l(x) Djju + f(x). Finally, expressing u(x’, t) = fD u(x’, s) ds and applying
Jensen’s integral inequality, we obtain

lellwzr,) < Cllflly, 251,

Covering Q;\Q ' with a finite number of subcylinders 7, we get a szj Les-
timate of the solution near the lateral boundary S; which, combined with (4.2)
completes the proof. =

We are in a position now to derive existence of a unique strong solution to
the Cauchy-Dirichlet problem (1.1).

THEOREM 4.3. — Suppose (2.1), 32eCl! and a¥e VMO(Qy). Then the
problem (1.1) admits a unique strong solution ueWﬁ; HQr) with pe (1, ),
2e (0, n+2), for every fe L**(Qr).

ProoF. — The unicity assertion follows immediately from the a priori esti-
mate (4.1).

To prove existence of solution to (1.1), the continuity method ([13, Theo-
rem 5.2]) will be employed. Consider the Cauchy-Dirichlet problem for the
heat equation

(4.5) { Hu=wu,—Adu=f(x) ae in Qp

u=0 on 9Qy.

It is easy to see that for any fe L?'*(Qr) the above problem is uniquely solv-

able in Wl?; H@Qp). In fact, the LP-theory of linear parabolic operators (see [16])

asserts existence of a unique strong solution u e W' (Qr) of (4.5) because of

fe L?(Qyr). Further, in the interior and boundary representation formulas for

that solution the commutators disappear since X is a constant coefficients op-

erator. This means we W'} (Qy) in view of Theorem 4.2 and Theorem 3.1.
To apply the method of continuity, we define the Banach space

IMN = {u P sz/ll(Ql) u|ag, = 0}, ||'||31( = ||'||W§j,11(QT)

and for any ¢ € [0, 1] consider the convex combination &, =0 P +(1 — ) I
Obviously, & = I(, $1 = P, P,: M —LP *(Qr), and the coefficients of &P, satis-
fy (2.1). Furthermore, the a priori estimate (4.1) implies

el < Cll P, ul,, 2; g

with C independent of o.
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Since &P, is a surjective mapping, the method of continuity asserts that
P = &P is surjective too. Bearing in mind the unicity assertion, we obtain that
(1.1) possesses a unique solution w e W21 (Qy) for any fe L”*(Qr), pe (1, »),
Ae(0,n+2). =

An immediate consequence of the last result is Holder continuity of the
strong solution u to (1.1) or its spatial gradient D, u for suitable values of p
and A. To be more precise, define

|u(e’, 1) —u(y ', 7) |

O0<a<l
a2’
)

Uﬂa;QT:( Y e ( 2
0, 0eQr (' —y'|1*+ |t—1
e U7 =y P

and set C%*(Qy) for the space of all functions %: @— R of finite norm

||u||0, a;Qr = ||u||oo ; Qr + [u]a; Qr*

COROLLARY 4.1. — Suppose ae VMO(Qy), 32 Clt, (2.1), fe L»*(Qr)
with pe (1, ©) and 2e (0, n+2) and let ue Wr}(Qr) be the unique strong
solution of the problem (1.1). Then

(a) . A— 2) .
L MECO’Q(QT) and HMHO,u;QTg CHpr,MQT with a = ! + (nt2) 'Lf

A>max{0,n+2—p/(n+1)}, i !

2. D, ueC” @) and ||D, ully, o, g, < Clfllp. 1 gp with a =1+
if A>max{0,n+2—p}.

A=(n+2)
p

Proor. — Holder’s regularity of the strong solution % is a direct conse-
quence of Theorem 4.3 and [10, Theorem 4.1].

Concerning the Holder continuity of the spatial gradient D, u it is a rather
delicate matter because of the lack of derivatives Dy« and D, ,u. Anyway, a
standard approach consisting of passage through the parabolic Poincaré in-
equality ([6, Lemma 2.2], [17, Chapter 3]) yields

f |D, u— (Dyw)g,nr|’de<r? f (Jug |” + | D2 w|P) da
Qrnli QrnlI

<Crrtt ||u||W,§;}<QT)

for any cylinder I c @, of radius r. Therefore, D, u belongs to the Campanato
space £PPT4(Qp) and it is known (see [10, Theorem 3.1], [17, Section 3.3.2])
that £7P*%(Q) coincides with C%1*¢-®+20b(@y for dle(n+2—p,
n+2). N
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