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Schwartz Kernels on the Heisenberg Group.

ALESSANDRO VENERUSO

Sunto. — Sia H, il gruppo di Heisenberg di dimensione 2n + 1. Siano £y, ..., £, 1 sub-
Laplaciani parziali su H, e T Uelemento centrale dell’algebra di Lie di H,. In que-
sto lavoro dimostriamo che, data una funzione m appartenente allo spazio di
Schwartz SR™ 1), il nucleo dell’operatore m(£Ly, ..., £,, —iT) é una funzione in
S(H,,). Inoltre dimostriamo che, date altre due funzioni he S(R") e g € SUR?), i nu-
clei degli operatori h(Ly, ..., £,) e g(L, —T) stanno in S(H,). Qui £ =L+ ... +
L, ¢ il sub-Laplaciano su H,.

Summary. — Let H,, be the Heisenberg group of dimension 2n + 1. Let £y, ..., £, be the
partial sub-Laplacians on H, and T the central element of the Lie algebra of H,. We
prove that the kernel of the operator m(Ly, ..., £,, —iT) is in the Schwartz space
S(H,) if me S(R™+1). We prove also that the kernel of the operator MLy, ..., £,) is
in S(H,) if h e S(R™) and that the kernel of the operator (£, —iT) is in S(H,,) if g €
S(R?). Here £ = £+ ... + £, is the Kohn-Laplacian on H,.

1. — Introduction.

Let £ be the Kohn-Laplacian on a stratified group G and let m be the re-
striction on [0, + o) of a function in the Schwartz space S(R). Then it is well
known that the kernel of the operator m (L), i.e. the unique tempered distribu-
tion M such that m(L) f=f*M for every fe S(G), is in S(G) (see [5, 7]).

Let G be the Heisenberg group H, of dimension 2% + 1. We denote by
L1, ..., £, the partial sub-Laplacians and by T the central element of the Lie
algebra of H,. The Kohn-Laplacian on H, is £ = &, + ... + £,. The operators

Ly, ooy, £, —iT form a commutative family of self-adjoint operators, so they
admit a joint spectral resolution and it is possible to define the operator
m(Ly, ..., £,, —1T) when m is a bounded Borel function on the joint spectrum

Xof {£y, ..., L,, —iT}. It has been proved by Benson, Jenkins and Rateliff [1,
Corollary 6.3] that the kernel of the operator m(&£y, ..., £,, —iT) is in S(H,,) if
meC. (R"*1) (here we identify m with its restriction on X) and the kernel of
the operator g(£, —iT) is in S(H,) if geC.* (R?).

In this paper we prove the following stronger result (for the definitions of
the norms in S(H,) and in S(R?) see Sections 2 and 3):
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THEOREM 1.1.

(a) Let H denote the kernel of the operator h(Ly, ..., £,). Then h— H is
a bounded linear map from S(R™) to S(H,).

(b) Let M denote the kernel of the operator m(Ly, ..., L,, —iT). Then
m—M is a bounded linear map from S(R"*1) to S(H,,).

(¢) Let G denote the kernel of the operator g(£, —1iT). Then g—G is a
bounded linear map from S(R?) to S(H,).

2. — Notation and preliminaries.

In this paper N denotes the set of nonnegative integers, Z, the set of posi-
tive integers and C{E* the set of non-zero real numbers. If a = (a4, ..., ay) €

N¢, we put |a| = 2 ;. We shall denote by C a constant which will not be neces-
20

J
sarily the same at each occurrence.
Fix neZ . The 2n + 1-dimensional Heisenberg group H, is the nilpotent
Lie group whose underlying manifold is C" X R, with multiplication given by

(z,0)z",t")=(z+z',t+t'+2 Im{z,z"))
where (z,2') = > zjz_]’ The Lie algebra of H, is generated by the left-invari-
=1

J — —
ant vector fields 2., ..., Z,, Zi, ..., Z,, T, where

o)
Z] = — + 'sz 5
— 2] . 0
T ot
r-2.
ot
The commutators are
2.1) [ijzk] =—=210;,T,;
2.2) (Z;, Z1 = Z;, Z, 1 = Z;, T1=[Z;, T1=0.

H, is a stratified group endowed with a family of dilations {0,: >0} defined by
0,(z,t) = (rz, r2t).

The homogeneous dimension of H, is therefore ¢ = 2n + 2. We fix on H, the
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following subadditive homogeneous norm (see [3]):
|z, 8) |, = (|2|* + )"

n 1/2
where |z| = (Z |zi|2) . We observe that
j=1
2.3) |Gy D), = 2 2|+ [t
J=
The following lemma will be useful later:

LemmA 2.1. — Fix u,veH, and a=1. Then

a+ |ulg, <@+ |v|g )1+ |uww !t g).

Proor.

a+ |ulg,=a+ |uw |y,

Sa+ |w g, + |v|g,

<a+a|uw g + |v wv |

m,+ |V,

=(a+ |v|g)1+ |uw " g). =

H,

The bi-invariant Haar measure on H, coincides with the Lebesgue measure
on R?*"*1 The convolution f* g of two functions f, ge L'(H,) is defined by

F* ), 0 = [ e, 0E D g(E, v dede
(2.4) H
— [fe-t t—1-2 Im(z, &) (&, 1) ddr.
H,

As usual, we denote by S(H,,) the Schwartz space of rapidly decreasing smooth
functions on H, and by S'(H,) the dual space of S(H,,), i.e. the space of tem-
pered distributions on H,,. The topology of the Fréchet space S(H,) is given by
the family of norms |||y, ,, (N € N) defined by

(2.5) ||f||(N, H,) = IIS|11<pN(1 + |gg|Hn)(N+1)(Q+ 1) |le(90) |
veH,
where 1= (iy, ..., iy, 1 ooy jus D) €N2"*1 and
2.6) X'=zp .. 7T T,
+ o

If { fi }ren is a sequence of functions in S(H,,), the series >, f; converges abso-
k=0
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lutely in S(H,,) if and only if

+ oo
kg()”flc”(N, H)< t®

for every NeN. If fe S(H,) and ue S'(H,,), the convolution f* u is the tem-
pered distribution defined by

(Fru, @)= (u,f * @)
for any ¢ e S(H,), where the function f e S(H,,) is defined by
Fl@) =fla).
The partial sub-Laplacians 2, ..., £, on H, are defined by

1 — -
L= =52+ % Z).

The Kohn-Laplacian on H, is £ = E &;. The operators &, ..., £,, —iT form

Jj=
a family of commuting self-adjoint operators Their joint spectrum (see [2]) is
the subset X =3,UZX, of R""!, where

Zl={((2k1+1)|l|, ey 2k, + 1) |A|, A Ky, oy Ky €N, leR*}
and
Z:2: {(/’th ey ‘Mn, O):/’tl? (RN ‘MHE[O, +OO)}

For any bounded Borel function m on X, the multiplier operator
m(Ly, ..., L,, —iT) is bounded on LZ2(H,) by the spectral theorem. Such
operator commutes with left translations, so by [6, Theorem 3.2] it admits a
kernel M e S'(H,)) which satisfies

m(fﬁly--" no ZT)f f*M
for any fe S(H,).

3. — Schwartz functions on R? and tensor products.

Fix deZ,. Following [4] and by analogy with the definition of the
norms (2.5) on S(H,), we define the following family of norms on S(R?),
which gives the usual topology of the Fréchet space S(R?):

(3.7) Fll, ey = sup (1+ |22 D f@)]

reR?
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) 91 9ud .
where NeN, a=(ay, ..., ay) eN? and D* = F’""ﬂ) The notion
xl ,.ca

of absolute convergence of a series in S(R?) is the same as in S(H,,).
Fixm,neZ,.If fe S(R™) and g e S(R"™), their tensor product is the func-
tion f®ge S(R™*™) defined by the formula

(f®g)(9(;17 ceey mern) :f('%'l, ceey acm) g(%m+17 (RN '%"ern)o

By straight-forward calculations involving the norms (3.7), it is easy to verify
that for every N e N the following inequality holds:

(3.8) I llv, &)

Moreover, combining Theorems 45.1 and 51.6 in[8], we have the following

v, roy < Nf @ gllon s 1, Ry

THEOREM 3.1. — For every he S(R”””) there exist f,e SIR™) and g, e

S(R™) (keN) such that the series E (f ®g;) converges absolutely to h in
S(RWL‘FH)

4. — Proof of Theorem 1.1.

In order to avoid confusion, since we have to deal with Heisenberg groups
of different dimensions, in this section CE]’-"”, LM gnd = u, Will denote the j-th
sub-Laplacian the Kohn-Laplacian and convolution on H,, respectively.
Moreover, 5 will denote convolution on R and & the Fourier transform on R
defined by

Tf(&) = ff(oc) e " dw
R

for every fe L'(R) and £eR.
Fix fe S(H,), je{l,...,n} and (z,t) eH,. It is immediate to verify
that

(vean)(z t)_(veHlf(zla il 7 1 7Z]+1;"'7Zn7'))(zj7t)-

So, if y is a bounded Borel function on [0, + o) and I"e S’ (H,) is the kernel of
the operator y(L™), we have

(V(OE)HW)f)(Z t)_(f(zly °y ] 1y )z]+17"'vzn’ ) *le)(zjy t)

Moreover, for n=2, if 8 is a bounded Borel function on R" ! and Be
S'(H, _,) is the kernel of the operator B(LH -1, ..., £H.-1) we have

4.10) (B, L) )=, ) = (FC, ooy 2y ) B, B) Ry, e, 21, ).
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We prove part (a) of Theorem 1.1 by induction on n. We know that for n =1
it is verified (see [5, Theorem 2.4]), so we take n» =2 and suppose that the
statement holds for any integer up to n — 1. Fix he S(R"). By Theorem 3.1
there exist @,eSR" ') and y,eSWR) (keN) such that the series

Z ((p @) converges absolutely to 2 in S(R™). We denote by @, ¥, and H,

the kernels of the operators ¢, (L1 . Loy, (L) and
(@r Q)L . el respectively. By the mductlve hypothesis @, e
S(H, ;) and W, S(H,). Fix fe S(H,) and (z, t) e H,. By (4.10) and (2.4) we
have

((pk(‘?@H" ceey "eg’il) f)(z7 t)

= (f(y sy Ty By ) *H,,L,l(pk)(zh sy R -1 t)
n—1
= ff(zl_gla ceey znfl_gnfly Zns t—1—-2 Im(le]C]))
Hn,fl J=

ka(gl, teey én—h T) dél-"an—ldT'

Then, by applying also (4.9), we obtain

(fou,H)(z, t) = (@ (L7 QDk(o@H” s L) )z, b
= (((/)k("eHﬂ . n ") f)(zl’ s Bu—1y 7y ) *H Wk)(zru t)

_f( nfl ( 21—C1y .02, —Cpyt—0—17-—2 Im(é‘,lzjfj))

BLErs s Er 1y D) dcl...dcnldr) (e, 9) dE,dd.

The change of variable 0 =17+ 9 in the inner integral leads to

(f*H,lHk)(z)t):f( f f(%‘@p~~-,2n_§n,t_0_21m(EZ]Z]‘))
H, \H,_, J=1
cm(@l,...,:nl,a—mdcl...dcnldo) W (6 9) dE D

- ff(z_g,t—a—z Im(z, &))
H,

( [@uEr, o E sy 0= 9 Wiy D) dﬁ) dtdo .
R



SCHWARTZ KERNELS ON THE HEISENBERG GROUP 663

Therefore, the kernel Hj, is the Schwartz function on H,, defined by
Hy(z,t) = fq)k(zl, iy 21, t—T) W2, T) dT .
R

Fix I = (i1, ...y iy, J1, -5 Ju, 1) e N?*" 71 By (2.6), (2.1) and (2.2) we have that
X'=VU where U=Z{*... Z}»1Z} ... Zip-\ and V= Z»Z» T!. For every ke N
and (z, t) e H, we have

UHGz, ) = [ UG,y ooy 201 =0 Wil D de
R

= fU(Dk(zl, iy Zn_1, T) Vi (2, t— 1) dT
R
and hence

(4.11) XIHk(Z, t) = fU@k(Z'l, ceey Rp—1, T) VII/]C(Z,Z, t— T) dr
R

= fU@k(Z'l, ceey Rp—1, t_T) VII/]C(Z'”,, T) dr .
R

Fix Nye N. By the inductive hypothesis there exist C > 0 and L € IV, which do
not depend on k, such that

(4.12) |UD ()| <CA+ |ulg, )" Yol g
for every we H,_; and
(4.13) IV, ()| <CA+ |v|g) Y Pyl g

for every veH,. Fix x=(z,t)eH,, put u=(zy, ..., 2,1, t) e H, _; and de-
fine the function P: R>t—(0, ..., 0, 7)e H,_;. Note that

(Z1y ooy Zy1, t—7) =u-P(r) !
for every 7e R. Moreover, by (2.3) we observe that
|z, O |, = |2, ] + [7]"#=|2,] + |[P(D) |u,_,

for every 7eR. Then, by applying (4.11), (4.12) and (4.13), we have
|X1Hk(ﬂ7) | < C”q)k”(L’Rn—l)H’(/jk”(L,R)f(l + |?/L‘P(‘L’)71 |H,l,1)7<N0+3)'
R

(14 |2,| + |P@) |g,_ ) NP
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But Lemma 2.1, applied in H,_; with v=P(r) and a =1+ |z,|, yields
(14 |2,| + |P@) g, ) V< + |2, | + |ulg, ) YA+ |u-P@) g, O
=1+ |@|g,) Y1+ |u-P@)" g, N
for every 7 e R. By this inequality and (3.8) we have

| X Hy, () | < Clor®@yiller 1, mn1+ |2]g) N
S+ juP@ g, A o]+ )
R

The preceding integral is bounded by the constant [(1+ |7|*) ®dr. Since /
R

and N, are arbitrary, for every NeN there exist C>0 and N’ eN such
that

|Hillw, 1,y < Cllg . @ i llov, =)

for every ke N. Therefore, since the series E (qa Q) converges absolutely
to i in S(R™), the series 2 H,, converges absolutely in S(H,,) to some function
F. Then, for a fixed fe S(Hn) the series Z (f#*p, Hy) converges to f+p F in
S(H,), since convolution is continuous from S(H“) X S(Hn) to S(H,) (see e.g. [4,
Proposition 1.47]). On the other hand, the series Z (f* g, H),) converges to

f#*p H in L*(H,) by the spectral theorem. Since f 1s an arbitrary function in
S(Hn) we conclude that H = F e S(H,). The boundedness of the operator
h+— H is an easy consequence of the closed graph theorem.
Now we prove part (b). Fix m e S(R""1). By Theorem 3.1 there exist ;e
+ oo
S(R™) and y e S(R) (ke N) such that the series >, (h, ®y,) converges abso-
k=0

lutely to m in S(R™*!). We denote by H,, and M, the kernels of the operators
By (R CHYy and (B, @y (LT, L, LB —4T), respectively. Note that
H.e S(Hn) by part (a). Moreover, we denote by I';. the kernel of the operator

Vi ( —i%) which acts on L%(R). Fix fe S(H,,) and (z, t) e H,. We observe that
Fk: if_lyke S(R) and

(Y iu(=1T) f)z, ) = (f(z, ) *p [',)(D).
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Then
(f*HﬂMk)(zy t)
= ((f*m,H)z, ") *g T)(1)

= f(f*HnHk>(z, t—1) (1) de
R

= f( ff(z— g, t—t—9-2 Im(z, §)) Hi(C, V) dédﬁ) I'y(z)dv
R n

H,

=f( ff(z—@,t—a—2 Im(z,@))l—]k(é,o—r)d@do) I, (7)dr
R \H,

— [fe-t,t—0-2 Im, g))( [H.t, 0-0 10 dr) dtdo .
H, R
Therefore, the kernel M, is the Schwartz function on H, defined by
M. (z,t) = fHk(z, t—1) I (7)dr.
R

Fix e N***! and NyeN. By part (a) and by the continuity of the operator
F: S(R) — S(R), there exist C >0 and L € N, which do not depend on %, such
that

| X 'H,(2)| <CA+ |2|m) |kl rm)
for every xe H, and
|Tk(@) | < CA+ ||~ N Dy [l gy

for every reR. Fix © = (z,t) e H,. Then

| X! M ()| = | [x'H.G t-0 T dr
R

< C”hk||(L,R”)”Vk||(L,R)f(1 + (&, t=1) |g,) N (1+ || N+ D g
R

= C”hk ”(L,R,”)

(14 €0, ) |m,) M+ |7|®)dr .
But Lemma 2.1, applied with u = (z, t), v= (0, ) and a =1, yields

vl o+ G 000, D )N
R

1+ [(z, )0, D" ) M1+ [(0, D) |g) Vo< (1+ (2, 1) |5,) "
for every 7eR. By this inequality and (3.8) we have
| X M (2) | <Cll.Qyiller +1,mre1y(1+ |@|m,) .
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Since I and N, are arbitrary, for every N € IV there exist C > 0 and N’ e N such
that

”Mk H(N, H) S C”hk Yk H(N',R”“)

for every k e N. From now on, we only have to apply the argument in the final
part of the proof of part (a).
Part (c) is a corollary of part (b). We only need to observe that

g(v@; _lT) = m(vely [EXE) Oena _ZT)
where m is the function defined by
MLy ooy 1) =@+ oo F 20, 1)
It is easy to verify that if g e S(R?) then me S(R"*!) and

[mlloy, g1y < gllow + 1), =2

for every N elV.
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