BOLLETTINO UNIONE MATEMATICA ITALIANA

Alessandro Veneruso

Schwartz kernels on the Heisenberg group

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **6-B** (2003), n.3, p. 657–666.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2003_8_6B_3_657_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Schwartz Kernels on the Heisenberg Group.

Alessandro Veneruso

Sunto. – Sia \mathbf{H}_n il gruppo di Heisenberg di dimensione 2n+1. Siano $\mathcal{L}_1, \ldots, \mathcal{L}_n$ i sub-Laplaciani parziali su \mathbf{H}_n e T l'elemento centrale dell'algebra di Lie di \mathbf{H}_n . In questo lavoro dimostriamo che, data una funzione m appartenente allo spazio di Schwartz $S(\mathbf{R}^{n+1})$, il nucleo dell'operatore $m(\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT)$ è una funzione in $S(\mathbf{H}_n)$. Inoltre dimostriamo che, date altre due funzioni $h \in S(\mathbf{R}^n)$ e $g \in S(\mathbf{R}^2)$, i nuclei degli operatori $h(\mathcal{L}_1, \ldots, \mathcal{L}_n)$ e $g(\mathcal{L}, -iT)$ stanno in $S(\mathbf{H}_n)$. Qui $\mathcal{L} = \mathcal{L}_1 + \ldots +$ \mathcal{L}_n è il sub-Laplaciano su \mathbf{H}_n .

Summary. – Let \mathbf{H}_n be the Heisenberg group of dimension 2n + 1. Let $\mathcal{L}_1, \ldots, \mathcal{L}_n$ be the partial sub-Laplacians on \mathbf{H}_n and T the central element of the Lie algebra of \mathbf{H}_n . We prove that the kernel of the operator $m(\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT)$ is in the Schwartz space $S(\mathbf{H}_n)$ if $m \in S(\mathbf{R}^{n+1})$. We prove also that the kernel of the operator $h(\mathcal{L}_1, \ldots, \mathcal{L}_n)$ is in $S(\mathbf{H}_n)$ if $h \in S(\mathbf{R}^n)$ and that the kernel of the operator $g(\mathcal{L}, -iT)$ is in $S(\mathbf{H}_n)$ if $g \in S(\mathbf{R}^2)$. Here $\mathcal{L} = \mathcal{L}_1 + \ldots + \mathcal{L}_n$ is the Kohn-Laplacian on \mathbf{H}_n .

1. - Introduction.

Let \mathcal{L} be the Kohn-Laplacian on a stratified group G and let m be the restriction on $[0, +\infty)$ of a function in the Schwartz space $\mathcal{S}(\mathbf{R})$. Then it is well known that the kernel of the operator $m(\mathcal{L})$, i.e. the unique tempered distribution M such that $m(\mathcal{L})$ $f = f^*M$ for every $f \in \mathcal{S}(G)$, is in $\mathcal{S}(G)$ (see [5, 7]).

Let G be the Heisenberg group H_n of dimension 2n+1. We denote by $\mathcal{L}_1, \ldots, \mathcal{L}_n$ the partial sub-Laplacians and by T the central element of the Lie algebra of H_n . The Kohn-Laplacian on H_n is $\mathcal{L} = \mathcal{L}_1 + \ldots + \mathcal{L}_n$. The operators $\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT$ form a commutative family of self-adjoint operators, so they admit a joint spectral resolution and it is possible to define the operator $m(\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT)$ when m is a bounded Borel function on the joint spectrum Σ of $\{\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT\}$. It has been proved by Benson, Jenkins and Ratcliff [1, Corollary 6.3] that the kernel of the operator $m(\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT)$ is in $S(H_n)$ if $m \in C_c^{\infty}(\mathbf{R}^{n+1})$ (here we identify m with its restriction on Σ) and the kernel of the operator $g(\mathcal{L}, -iT)$ is in $S(H_n)$ if $g \in C_c^{\infty}(\mathbf{R}^2)$.

In this paper we prove the following stronger result (for the definitions of the norms in $S(\mathbf{H}_n)$ and in $S(\mathbf{R}^d)$ see Sections 2 and 3):

THEOREM 1.1.

- (a) Let H denote the kernel of the operator $h(\mathcal{L}_1, ..., \mathcal{L}_n)$. Then $h \mapsto H$ is a bounded linear map from $S(\mathbf{R}^n)$ to $S(\mathbf{H}_n)$.
- (b) Let M denote the kernel of the operator $m(\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT)$. Then $m \mapsto M$ is a bounded linear map from $S(\mathbf{R}^{n+1})$ to $S(\mathbf{H}_n)$.
- (c) Let G denote the kernel of the operator $g(\mathcal{L}, -iT)$. Then $g \mapsto G$ is a bounded linear map from $S(\mathbf{R}^2)$ to $S(\mathbf{H}_n)$.

2. - Notation and preliminaries.

In this paper N denotes the set of nonnegative integers, \mathbf{Z}_+ the set of positive integers and \mathbf{R}^* the set of non-zero real numbers. If $\alpha = (\alpha_1, \ldots, \alpha_d) \in N^d$, we put $|\alpha| = \sum_{j=1}^d \alpha_j$. We shall denote by C a constant which will not be necessarily the same at each occurrence.

Fix $n \in \mathbb{Z}_+$. The 2n + 1-dimensional Heisenberg group \mathbb{H}_n is the nilpotent Lie group whose underlying manifold is $\mathbb{C}^n \times \mathbb{R}$, with multiplication given by

$$(z, t)(z', t') = (z + z', t + t' + 2 \operatorname{Im} \langle z, z' \rangle)$$

where $\langle z, z' \rangle = \sum_{j=1}^{n} z_{j}\overline{z_{j}'}$. The Lie algebra of \boldsymbol{H}_{n} is generated by the left-invariant vector fields $Z_{1}, \ldots, Z_{n}, \overline{Z}_{1}, \ldots, \overline{Z}_{n}, T$, where

$$Z_{j}=rac{\partial}{\partial z_{j}}+i\overline{z}_{j}rac{\partial}{\partial t}$$
 ;

$$\overline{Z}_{j} = \frac{\partial}{\partial \overline{z}_{j}} - iz_{j} \frac{\partial}{\partial t};$$

$$T = \frac{\partial}{\partial t}$$
.

The commutators are

$$[Z_j, \overline{Z}_k] = -2i\delta_{j,k}T;$$

$$[Z_j, Z_k] = [\overline{Z}_j, \overline{Z}_k] = [Z_j, T] = [\overline{Z}_j, T] = 0.$$

 $\mathbf{\textit{H}}_{n}$ is a stratified group endowed with a family of dilations $\{\delta_{r}: r > 0\}$ defined by

$$\delta_r(z, t) = (rz, r^2 t).$$

The homogeneous dimension of \mathbf{H}_n is therefore Q = 2n + 2. We fix on \mathbf{H}_n the

following subadditive homogeneous norm (see [3]):

$$|(z,t)|_{H_n} = (|z|^4 + t^2)^{1/4}$$
 where $|z| = \left(\sum_{j=1}^n |z_j|^2\right)^{1/2}$. We observe that
$$|(z,t)|_{H_n} = \sum_{j=1}^n |z_j| + |t|^{1/2}.$$

The following lemma will be useful later:

LEMMA 2.1. – Fix
$$u, v \in \mathbf{H}_n$$
 and $a \ge 1$. Then
$$a + |u|_{\mathbf{H}_n} \le (a + |v|_{\mathbf{H}_n})(1 + |uv^{-1}|_{\mathbf{H}_n}).$$

PROOF.

$$\begin{aligned} a + |u|_{H_n} &= a + |uv^{-1}v|_{H_n} \\ &\leq a + |uv^{-1}|_{H_n} + |v|_{H_n} \\ &\leq a + a|uv^{-1}|_{H_n} + |v|_{H_n} + |v|_{H_n} |uv^{-1}|_{H_n} \\ &= (a + |v|_{H_n})(1 + |uv^{-1}|_{H_n}). \quad \blacksquare \end{aligned}$$

The bi-invariant Haar measure on \mathbf{H}_n coincides with the Lebesgue measure on \mathbf{R}^{2n+1} . The convolution f * g of two functions $f, g \in L^1(\mathbf{H}_n)$ is defined by

$$(f * g)(z, t) = \int_{\mathbf{H}_n} f((z, t)(\zeta, \tau)^{-1}) g(\zeta, \tau) d\zeta d\tau$$

$$= \int_{\mathbf{H}_n} f(z - \zeta, t - \tau - 2 \operatorname{Im} \langle z, \zeta \rangle) g(\zeta, \tau) d\zeta d\tau.$$

As usual, we denote by $S(\mathbf{H}_n)$ the Schwartz space of rapidly decreasing smooth functions on \mathbf{H}_n and by $S'(\mathbf{H}_n)$ the dual space of $S(\mathbf{H}_n)$, i.e. the space of tempered distributions on \mathbf{H}_n . The topology of the Fréchet space $S(\mathbf{H}_n)$ is given by the family of norms $\|\cdot\|_{(N,\mathbf{H}_n)}$ $(N \in \mathbb{N})$ defined by

(2.5)
$$||f||_{(N, H_n)} = \sup_{\substack{|I| \le N \\ x \in H_n}} (1 + |x|_{H_n})^{(N+1)(Q+1)} |X^I f(x)|$$

where $I = (i_1, ..., i_n, j_1, ..., j_n, l) \in \mathbb{N}^{2n+1}$ and

$$(2.6) X^I = Z_1^{i_1} \dots Z_n^{i_n} \overline{Z}_1^{j_1} \dots \overline{Z}_n^{j_n} T^l.$$

If $\{f_k\}_{k\in\mathbb{N}}$ is a sequence of functions in $\mathcal{S}(\boldsymbol{H}_n)$, the series $\sum_{k=0}^{+\infty} f_k$ converges abso-

lutely in $S(\mathbf{H}_n)$ if and only if

$$\sum_{k=0}^{+\infty} \|f_k\|_{(N,\,\boldsymbol{H}_n)} < + \infty$$

for every $N \in \mathbb{N}$. If $f \in \mathcal{S}(\mathbf{H}_n)$ and $u \in \mathcal{S}'(\mathbf{H}_n)$, the convolution f * u is the tempered distribution defined by

$$\langle f * u, \varphi \rangle = \langle u, \tilde{f} * \varphi \rangle$$

for any $\varphi \in \mathcal{S}(\mathbf{H}_n)$, where the function $\tilde{f} \in \mathcal{S}(\mathbf{H}_n)$ is defined by

$$\tilde{f}(x) = f(x^{-1}).$$

The partial sub-Laplacians $\mathcal{L}_1, \ldots, \mathcal{L}_n$ on \mathbf{H}_n are defined by

$$\mathfrak{L}_j = -\frac{1}{2}(Z_j\overline{Z}_j + \overline{Z}_jZ_j).$$

The Kohn-Laplacian on \mathbf{H}_n is $\mathcal{L} = \sum_{j=1}^n \mathcal{L}_j$. The operators $\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT$ form a family of commuting self-adjoint operators. Their joint spectrum (see [2]) is the subset $\Sigma = \Sigma_1 \cup \Sigma_2$ of \mathbf{R}^{n+1} , where

$$\Sigma_1 = \{((2k_1+1)|\lambda|, ..., (2k_n+1)|\lambda|, \lambda): k_1, ..., k_n \in \mathbb{N}, \lambda \in \mathbb{R}^* \}$$

and

$$\Sigma_2 = \{(\mu_1, \ldots, \mu_n, 0) : \mu_1, \ldots, \mu_n \in [0, +\infty)\}.$$

For any bounded Borel function m on Σ , the multiplier operator $m(\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT)$ is bounded on $L^2(\mathbf{H}_n)$ by the spectral theorem. Such operator commutes with left translations, so by [6, Theorem 3.2] it admits a kernel $M \in \mathcal{S}'(\mathbf{H}_n)$ which satisfies

$$m(\mathcal{L}_1, \ldots, \mathcal{L}_n, -iT) f = f * M$$

for any $f \in \mathcal{S}(\mathbf{H}_n)$.

3. – Schwartz functions on \mathbf{R}^d and tensor products.

Fix $d \in \mathbb{Z}_+$. Following [4] and by analogy with the definition of the norms (2.5) on $\mathcal{S}(\mathbf{H}_n)$, we define the following family of norms on $\mathcal{S}(\mathbf{R}^d)$, which gives the usual topology of the Fréchet space $\mathcal{S}(\mathbf{R}^d)$:

(3.7)
$$||f||_{(N, \mathbb{R}^d)} = \sup_{\substack{|\alpha| \leq N \\ x \in \mathbb{R}^d}} (1 + |x|)^{(N+1)(d+1)} |D^{\alpha}f(x)|$$

where $N \in \mathbb{N}$, $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d$ and $D^{\alpha} = \left(\frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}}, \ldots, \frac{\partial^{\alpha_d}}{\partial x_d^{\alpha_d}}\right)$. The notion of absolute convergence of a series in $\mathcal{S}(\mathbb{R}^d)$ is the same as in $\mathcal{S}(\mathbb{H}_n)$.

Fix $m, n \in \mathbb{Z}_+$. If $f \in \mathcal{S}(\mathbb{R}^m)$ and $g \in \mathcal{S}(\mathbb{R}^n)$, their tensor product is the function $f \otimes g \in \mathcal{S}(\mathbb{R}^{m+n})$ defined by the formula

$$(f \otimes g)(x_1, \ldots, x_{m+n}) = f(x_1, \ldots, x_m) g(x_{m+1}, \ldots, x_{m+n}).$$

By straight-forward calculations involving the norms (3.7), it is easy to verify that for every $N \in \mathbb{N}$ the following inequality holds:

Moreover, combining Theorems 45.1 and 51.6 in [8], we have the following

THEOREM 3.1. – For every $h \in \mathcal{S}(\mathbf{R}^{m+n})$ there exist $f_k \in \mathcal{S}(\mathbf{R}^m)$ and $g_k \in \mathcal{S}(\mathbf{R}^n)$ $(k \in \mathbb{N})$ such that the series $\sum_{k=0}^{+\infty} (f_k \otimes g_k)$ converges absolutely to h in $\mathcal{S}(\mathbf{R}^{m+n})$.

4. - Proof of Theorem 1.1.

In order to avoid confusion, since we have to deal with Heisenberg groups of different dimensions, in this section $\mathcal{L}_j^{H_n}$, \mathcal{L}^{H_n} and $*_{H_n}$ will denote the j-th sub-Laplacian, the Kohn-Laplacian and convolution on H_n , respectively. Moreover, $*_R$ will denote convolution on R and \mathcal{F} the Fourier transform on R defined by

$$\mathcal{T}f(\xi) = \int_{\mathcal{R}} f(x) e^{-ix\xi} dx$$

for every $f \in L^1(\mathbf{R})$ and $\xi \in \mathbf{R}$.

Fix $f \in S(\mathbf{H}_n)$, $j \in \{1, ..., n\}$ and $(z, t) \in \mathbf{H}_n$. It is immediate to verify that

$$(\mathcal{L}_{j}^{\mathbf{H}_{n}}f)(z, t) = (\mathcal{L}^{\mathbf{H}_{1}}f(z_{1}, \ldots, z_{j-1}, \cdot, z_{j+1}, \ldots, z_{n}, \cdot))(z_{j}, t).$$

So, if γ is a bounded Borel function on $[0, +\infty)$ and $\Gamma \in \mathcal{S}'(\mathbf{H}_1)$ is the kernel of the operator $\gamma(\mathcal{L}^{\mathbf{H}_1})$, we have

$$(\gamma(\mathcal{L}_{i}^{H_{n}}) f)(z, t) = (f(z_{1}, \dots, z_{i-1}, \cdot, z_{i+1}, \dots, z_{n}, \cdot) *_{H_{1}} \Gamma)(z_{i}, t).$$

Moreover, for $n \ge 2$, if β is a bounded Borel function on \mathbb{R}^{n-1} and $B \in \mathcal{S}'(\mathbb{H}_{n-1})$ is the kernel of the operator $\beta(\mathcal{L}_{n-1}^{\mathbb{H}_{n-1}}, \ldots, \mathcal{L}_{n-1}^{\mathbb{H}_{n-1}})$, we have

$$(4.10) \quad (\beta(\mathcal{L}_1^{H_n}, \ldots, \mathcal{L}_{n-1}^{H_n}) f)(z, t) = (f(\cdot, \ldots, \cdot, z_n, \cdot) *_{H_{n-1}} B)(z_1, \ldots, z_{n-1}, t).$$

We prove part (a) of Theorem 1.1 by induction on n. We know that for n=1 it is verified (see [5, Theorem 2.4]), so we take $n \ge 2$ and suppose that the statement holds for any integer up to n-1. Fix $h \in \mathcal{S}(\boldsymbol{R}^n)$. By Theorem 3.1 there exist $\varphi_k \in \mathcal{S}(\boldsymbol{R}^{n-1})$ and $\psi_k \in \mathcal{S}(\boldsymbol{R})$ ($k \in N$) such that the series $\sum_{k=0}^{+\infty} (\varphi_k \otimes \psi_k)$ converges absolutely to h in $\mathcal{S}(\boldsymbol{R}^n)$. We denote by $\boldsymbol{\Phi}_k$, $\boldsymbol{\Psi}_k$ and \boldsymbol{H}_k the kernels of the operators $\varphi_k(\mathcal{L}_1^{\boldsymbol{H}_{n-1}}, \ldots, \mathcal{L}_{n-1}^{\boldsymbol{H}_{n-1}})$, $\psi_k(\mathcal{L}^{\boldsymbol{H}_1})$ and $(\varphi_k \otimes \psi_k)(\mathcal{L}_1^{\boldsymbol{H}_n}, \ldots, \mathcal{L}_n^{\boldsymbol{H}_n})$, respectively. By the inductive hypothesis $\boldsymbol{\Phi}_k \in \mathcal{S}(\boldsymbol{H}_{n-1})$ and $\boldsymbol{\Psi}_k \in \mathcal{S}(\boldsymbol{H}_1)$. Fix $f \in \mathcal{S}(\boldsymbol{H}_n)$ and $(z, t) \in \boldsymbol{H}_n$. By (4.10) and (2.4) we have

$$\begin{split} &(\varphi_{k}(\mathcal{L}_{1}^{H_{n}}, \ldots, \mathcal{L}_{n-1}^{H_{n}}) f)(z, t) \\ &= (f(\cdot, \ldots, \cdot, z_{n}, \cdot) *_{H_{n-1}} \Phi_{k})(z_{1}, \ldots, z_{n-1}, t) \\ &= \int_{H_{n-1}} f(z_{1} - \zeta_{1}, \ldots, z_{n-1} - \zeta_{n-1}, z_{n}, t - \tau - 2 \operatorname{Im} \left(\sum_{j=1}^{n-1} z_{j} \overline{\zeta}_{j} \right) \right) \\ &\cdot \Phi_{k}(\zeta_{1}, \ldots, \zeta_{n-1}, \tau) d\zeta_{1} \ldots d\zeta_{n-1} d\tau \,. \end{split}$$

Then, by applying also (4.9), we obtain

$$\begin{split} (f*_{\boldsymbol{H}_n}H_k)(z,\,t) &= (\psi_{\,k}(\mathcal{L}_n^{\boldsymbol{H}_n})\;\varphi_{\,k}(\mathcal{L}_1^{\boldsymbol{H}_n},\;\ldots,\,\mathcal{L}_{n-1}^{\boldsymbol{H}_n})\;f)(z,\,t) \\ &= ((\varphi_{\,k}(\mathcal{L}_1^{\boldsymbol{H}_n},\;\ldots,\,\mathcal{L}_{n-1}^{\boldsymbol{H}_n})\;f)(z_1,\;\ldots,\,z_{n-1},\;\cdot,\;\cdot)*_{\boldsymbol{H}_1}\boldsymbol{\Psi}_k)(z_n,\,t) \\ &= \int_{\boldsymbol{H}_1} \left(\int_{\boldsymbol{H}_{n-1}} f\Big(z_1-\zeta_1,\;\ldots,\,z_n-\zeta_n,\,t-\vartheta-\tau-2\;\operatorname{Im}\left(\sum_{j=1}^n z_j\,\overline{\zeta}_j\right)\right) \\ &\cdot \boldsymbol{\Phi}_k(\zeta_1,\;\ldots,\,\zeta_{n-1},\,\tau)\;d\zeta_1\ldots d\zeta_{n-1}d\tau\right)\boldsymbol{\Psi}_k(\zeta_n,\,\vartheta)\;d\zeta_n\,d\vartheta\;. \end{split}$$

The change of variable $\sigma = \tau + \vartheta$ in the inner integral leads to

$$\begin{split} (f*_{H_n}H_k)(z,t) &= \int\limits_{H_1} \left(\int\limits_{H_{n-1}} f\left(z_1 - \zeta_1, \ldots, z_n - \zeta_n, t - \sigma - 2\operatorname{Im}\left(\sum_{j=1}^n z_j\overline{\zeta}_j\right)\right) \right. \\ & \left. \cdot \varPhi_k(\zeta_1, \ldots, \zeta_{n-1}, \sigma - \vartheta) \, d\zeta_1 \ldots \, d\zeta_{n-1} \, d\sigma \right) \varPsi_k(\zeta_n, \vartheta) \, d\zeta_n d\vartheta \\ &= \int\limits_{H_n} f(z - \zeta, \, t - \sigma - 2\operatorname{Im}\langle z, \, \zeta \rangle) \\ & \left. \cdot \left(\int\limits_{R} \varPhi_k(\zeta_1, \ldots, \zeta_{n-1}, \, \sigma - \vartheta) \, \varPsi_k(\zeta_n, \, \vartheta) \, d\vartheta \right) \, d\zeta \, d\sigma \, . \end{split}$$

Therefore, the kernel H_k is the Schwartz function on \mathbf{H}_n defined by

$$H_k(z, t) = \int_{R} \Phi_k(z_1, ..., z_{n-1}, t-\tau) \Psi_k(z_n, \tau) d\tau.$$

Fix $I=(i_1,\ \dots,\ i_n,\ j_1,\ \dots,\ j_n,\ l)\in N^{2n+1}.$ By (2.6), (2.1) and (2.2) we have that $X^I=VU$ where $U=Z_1^{i_1}\dots Z_{n-1}^{i_{n-1}}\overline{Z}_1^{j_1}\dots \overline{Z}_{n-1}^{j_{n-1}}$ and $V=Z_n^{i_n}\overline{Z}_n^{j_n}T^l.$ For every $k\in N$ and $(z,\ t)\in \pmb{H}_n$ we have

$$UH_{k}(z, t) = \int_{R} U\Phi_{k}(z_{1}, ..., z_{n-1}, t-\tau) \Psi_{k}(z_{n}, \tau) d\tau$$
$$= \int_{R} U\Phi_{k}(z_{1}, ..., z_{n-1}, \tau) \Psi_{k}(z_{n}, t-\tau) d\tau$$

and hence

(4.11)
$$X^{I}H_{k}(z, t) = \int_{R} U\Phi_{k}(z_{1}, ..., z_{n-1}, \tau) V\Psi_{k}(z_{n}, t - \tau) d\tau$$
$$= \int_{R} U\Phi_{k}(z_{1}, ..., z_{n-1}, t - \tau) V\Psi_{k}(z_{n}, \tau) d\tau.$$

Fix $N_0 \in \mathbb{N}$. By the inductive hypothesis there exist C > 0 and $L \in \mathbb{N}$, which do not depend on k, such that

$$(4.12) |U\Phi_k(u)| \le C(1+|u|_{H_{n-1}})^{-(N_0+3)} \|\varphi_k\|_{(L,\mathbb{R}^{n-1})}$$

for every $u \in \mathbf{H}_{n-1}$ and

$$(4.13) |V\Psi_k(v)| \le C(1+|v|_{H_1})^{-(N_0+3)} ||\psi_k||_{(L,R)}$$

for every $v \in \mathbf{H}_1$. Fix $x = (z, t) \in \mathbf{H}_n$, put $u = (z_1, ..., z_{n-1}, t) \in \mathbf{H}_{n-1}$ and define the function $P : \mathbf{R} \ni \tau \mapsto (0, ..., 0, \tau) \in \mathbf{H}_{n-1}$. Note that

$$(z_1, \ldots, z_{n-1}, t-\tau) = u \cdot P(\tau)^{-1}$$

for every $\tau \in \mathbb{R}$. Moreover, by (2.3) we observe that

$$|(z_n, \tau)|_{H_1} \simeq |z_n| + |\tau|^{1/2} = |z_n| + |P(\tau)|_{H_{n-1}}$$

for every $\tau \in \mathbb{R}$. Then, by applying (4.11), (4.12) and (4.13), we have

$$|X^I H_k(x)| \leq C \|\varphi_k\|_{(L, \mathbf{R}^{n-1})} \|\psi_k\|_{(L, \mathbf{R})} \int_{\mathbf{R}} (1 + |u \cdot P(\tau)^{-1}|_{\mathbf{H}_{n-1}})^{-(N_0 + 3)}.$$

$$(1+|z_n|+|P(\tau)|_{H_{n-1}})^{-(N_0+3)}d\tau$$
.

But Lemma 2.1, applied in \boldsymbol{H}_{n-1} with $v=P(\tau)$ and $a=1+\left|z_{n}\right|$, yields

$$\begin{aligned} (1 + |z_n| + |P(\tau)|_{H_{n-1}})^{-N_0} &\leq (1 + |z_n| + |u|_{H_{n-1}})^{-N_0} (1 + |u \cdot P(\tau)|^{-1}|_{H_{n-1}})^{N_0} \\ &\simeq (1 + |x|_{H_n})^{-N_0} (1 + |u \cdot P(\tau)|^{-1}|_{H_{n-1}})^{N_0} \end{aligned}$$

for every $\tau \in \mathbb{R}$. By this inequality and (3.8) we have

$$|X^I H_k(x)| \le C \|\varphi_k \otimes \psi_k\|_{(2L+1, \mathbb{R}^n)} (1 + |x|_{\mathbf{H}_n})^{-N_0}$$

$$\int_{R} (1 + |u \cdot P(\tau)^{-1}|_{H_{n-1}})^{-3} (1 + |z_n| + |\tau|^{1/2})^{-3} d\tau.$$

The preceding integral is bounded by the constant $\int_R (1+|\tau|^{1/2})^{-3} d\tau$. Since I and N_0 are arbitrary, for every $N \in \mathbb{N}$ there exist C > 0 and $N' \in \mathbb{N}$ such that

$$||H_k||_{(N, H_n)} \leq C ||\varphi_k \otimes \psi_k||_{(N', \mathbf{R}^n)}$$

for every $k \in \mathbb{N}$. Therefore, since the series $\sum\limits_{k=0}^{+\infty} (\varphi_k \otimes \psi_k)$ converges absolutely to h in $\mathcal{S}(\pmb{R}^n)$, the series $\sum\limits_{k=0}^{+\infty} H_k$ converges absolutely in $\mathcal{S}(\pmb{H}_n)$ to some function F. Then, for a fixed $f \in \mathcal{S}(\pmb{H}_n)$, the series $\sum\limits_{k=0}^{+\infty} (f *_{\pmb{H}_n} H_k)$ converges to $f *_{\pmb{H}_n} F$ in $\mathcal{S}(\pmb{H}_n)$, since convolution is continuous from $\mathcal{S}(\pmb{H}_n) \times \mathcal{S}(\pmb{H}_n)$ to $\mathcal{S}(\pmb{H}_n)$ (see e.g. [4, Proposition 1.47]). On the other hand, the series $\sum\limits_{k=0}^{+\infty} (f *_{\pmb{H}_n} H_k)$ converges to $f *_{\pmb{H}_n} H$ in $L^2(\pmb{H}_n)$ by the spectral theorem. Since f is an arbitrary function in $\mathcal{S}(\pmb{H}_n)$, we conclude that $H = F \in \mathcal{S}(\pmb{H}_n)$. The boundedness of the operator $h \mapsto H$ is an easy consequence of the closed graph theorem.

Now we prove part (b). Fix $m \in \mathcal{S}(\boldsymbol{R}^{n+1})$. By Theorem 3.1 there exist $h_k \in \mathcal{S}(\boldsymbol{R}^n)$ and $\gamma_k \in \mathcal{S}(\boldsymbol{R})$ ($k \in N$) such that the series $\sum_{k=0}^{+\infty} (h_k \otimes \gamma_k)$ converges absolutely to m in $\mathcal{S}(\boldsymbol{R}^{n+1})$. We denote by H_k and M_k the kernels of the operators $h_k(\mathcal{L}_1^{\boldsymbol{H}_n}, \dots, \mathcal{L}_n^{\boldsymbol{H}_n})$ and $(h_k \otimes \gamma_k)(\mathcal{L}_1^{\boldsymbol{H}_n}, \dots, \mathcal{L}_n^{\boldsymbol{H}_n}, -iT)$, respectively. Note that $H_k \in \mathcal{S}(\boldsymbol{H}_n)$ by part (a). Moreover, we denote by Γ_k the kernel of the operator $\gamma_k \left(-i\frac{d}{dt}\right)$ which acts on $L^2(\boldsymbol{R})$. Fix $f \in \mathcal{S}(\boldsymbol{H}_n)$ and $(z,t) \in \boldsymbol{H}_n$. We observe that $\Gamma_k = \mathcal{F}^{-1}\gamma_k \in \mathcal{S}(\boldsymbol{R})$ and

$$(\gamma_k(-iT) f)(z,t) = (f(z,\cdot) *_R \Gamma_k)(t).$$

Then

$$\begin{split} &(f*_{H_n}M_k)(z,\,t) \\ &= ((f*_{H_n}H_k)(z,\,\cdot)*_R\Gamma_k)(t) \\ &= \int\limits_R (f*_{H_n}H_k)(z,\,t-\tau)\,\Gamma_k(\tau)\,d\tau \\ &= \int\limits_R \left(\int\limits_{H_n} f(z-\zeta,\,t-\tau-\vartheta-2\,\operatorname{Im}\langle z,\,\zeta\rangle)\,H_k(\zeta,\,\vartheta)\,d\zeta\,d\vartheta\right) \Gamma_k(\tau)\,d\tau \\ &= \int\limits_R \left(\int\limits_{H_n} f(z-\zeta,\,t-\sigma-2\,\operatorname{Im}\langle z,\,\zeta\rangle)\,H_k(\zeta,\,\sigma-\tau)\,d\zeta\,d\sigma\right) \Gamma_k(\tau)\,d\tau \\ &= \int\limits_{H_n} f(z-\zeta,\,t-\sigma-2\,\operatorname{Im}\langle z,\,\zeta\rangle) \left(\int\limits_R H_k(\zeta,\,\sigma-\tau)\,\Gamma_k(\tau)\,d\tau\right) d\zeta\,d\sigma \,. \end{split}$$

Therefore, the kernel M_k is the Schwartz function on \mathbf{H}_n defined by

$$M_k(z, t) = \int_{\mathbf{R}} H_k(z, t - \tau) \Gamma_k(\tau) d\tau.$$

Fix $I \in \mathbb{N}^{2n+1}$ and $N_0 \in \mathbb{N}$. By part (a) and by the continuity of the operator $\mathcal{F}: \mathcal{S}(\mathbf{R}) \to \mathcal{S}(\mathbf{R})$, there exist C > 0 and $L \in \mathbb{N}$, which do not depend on k, such that

$$|X^I H_k(x)| \le C(1 + |x|_{H_n})^{-N_0} ||h_k||_{(L, \mathbb{R}^n)}$$

for every $x \in \mathbf{H}_n$ and

$$|\Gamma_k(\tau)| \le C(1+|\tau|^{1/2})^{-(N_0+3)} ||\gamma_k||_{(L,R)}$$

for every $\tau \in \mathbf{R}$. Fix $x = (z, t) \in \mathbf{H}_n$. Then

$$\begin{split} |X^I M_k(x)| &= \left| \int_{R} X^I H_k(z,\, t-\tau) \, \varGamma_k(\tau) \, d\tau \, \right| \\ &\leq C \|h_k\|_{(L,\, R^n)} \|\gamma_{\,k}\|_{(L,\, R)} \int_{R} (1+|(z,\, t-\tau) \, |_{H_n})^{-N_0} (1+|\tau|^{1/2})^{-(N_0+3)} \, d\tau \\ &= C \|h_k\|_{(L,\, R^n)} \|\gamma_{\,k}\|_{(L,\, R)} \int_{R} (1+|(z,\, t)(0,\, \tau)^{-1} \, |_{H_n})^{-N_0} \\ & \cdot (1+|(0,\, \tau) \, |_{H_n})^{-N_0} (1+|\tau|^{1/2})^{-3} \, d\tau \, . \end{split}$$

But Lemma 2.1, applied with $u=(z,\,t),\;v=(0,\,\tau)$ and a=1, yields

$$(1+|(z,t)(0,\tau)^{-1}|_{H_n})^{-N_0}(1+|(0,\tau)|_{H_n})^{-N_0} \leq (1+|(z,t)|_{H_n})^{-N_0}$$

for every $\tau \in \mathbb{R}$. By this inequality and (3.8) we have

$$|X^{I}M_{k}(x)| \leq C \|h_{k} \otimes \gamma_{k}\|_{(2L+1, \mathbf{R}^{n+1})} (1 + |x|_{\mathbf{H}_{n}})^{-N_{0}}.$$

Since I and N_0 are arbitrary, for every $N \in \mathbb{N}$ there exist C > 0 and $N' \in \mathbb{N}$ such that

$$||M_k||_{(N, \mathbf{H}_n)} \le C ||h_k \otimes \gamma_k||_{(N', \mathbf{R}^{n+1})}$$

for every $k \in \mathbb{N}$. From now on, we only have to apply the argument in the final part of the proof of part (a).

Part (c) is a corollary of part (b). We only need to observe that

$$g(\mathcal{L}, -iT) = m(\mathcal{L}_1, \dots, \mathcal{L}_n, -iT)$$

where m is the function defined by

$$m(x_1, \ldots, x_{n+1}) = g(x_1 + \ldots + x_n, x_{n+1}).$$

It is easy to verify that if $g \in S(\mathbb{R}^2)$ then $m \in S(\mathbb{R}^{n+1})$ and

$$||m||_{(N, \mathbb{R}^{n+1})} \le ||g||_{(n(N+1), \mathbb{R}^2)}$$

for every $N \in \mathbb{N}$.

REFERENCES

- [1] C. Benson J. Jenkins G. Ratcliff, The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal., 154 (1998), 379-423.
- [2] C. Benson J. Jenkins G. Ratcliff T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math., 71 (1996), 305-328.
- [3] J. CYGAN, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc., 83 (1981), 69-70.
- [4] G. B. Folland E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, Princeton, 1982.
- [5] A. HULANICKI, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., 78 (1984), 253-266.
- [6] A. Korányi S. Vági G. V. Welland, Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math. Mech., 19 (1970), 1069-1081.
- [7] G. MAUCERI, Maximal operators and Riesz means on stratified groups, Symposia Math., 29 (1987), 47-62.
- [8] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.

Dipartimento di Matematica, Università di Genova Via Dodecaneso 35, 16146 Genova, Italy E-mail: veneruso@dima.unige.it

Pervenuta in Redazione il 10 ottobre 2001