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Regular Permutation Sets and Loops.

RITA CAPODAGLIO (*)

Sunto. – Utilizzando insiemi regolari di permutazioni e due operazioni opportuna-
mente definite, si ottengono nuove caratterizzazioni di importanti classi di
cappi.

Summary. – Two suitable composition laws are defined in a regular permutation set
in order to find new characterizations of some important classes of loops.

1. – Introduction and preliminaries.

The notation and terminology employed in this paper are standard: in par-
ticular if T is a mapping of a set V into itself or some other set and if x�V,
then xT shall denote the image of x under T.

Let Sym (V) be the group of all bijections of a set V: as usually a subset
F’Sym (V) is called a regular permutation set (r.p.s.) on V if

– IdV�F

– if a , b�V then )! P�F such that aP4b.

In section 2 two suitable composition laws are defined in a r.p.s. F on a set V.
If these composition laws are denoted by 7 and » respectively, then we can
prove that

– (F , 7) and (F , ») are loops, which, in general, are neither isomor-
phic nor anti-isomorphic.

– (F , 7) is a right Bol loop if and only if (F , ») is a left Bol loop; more-
over, in this case, they are anti-isomorphic. (For the historical relevance of Bol
loops see [17, p. 113], for their main properties see [18], for further information
see [16].)

– (F , 7) is a Moufang loop if and only if (F , ») is a Moufang

(*) Work performed under the auspices of the G.N.S.A.G.A. of I.N.d.A.M. (Italy)
and the University of Bologna, funds for selected research topics.
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loop; moreover, in this case, IdF is an isomorphism between them. (Moufang
loops are the most studied loops, for their relevance see [17, p. 88].)

– (F , 7) is a Bruck loop if and only if (F , ») is a Bruck loop (In [14] it
was shown that Bruck loops and K-loops are the same; for their history see
[12], for the connection among the theory of K-loops, the hyperbolic geometry
and the theory of relativity see [5], [8], [9], [10].)

– (F , ») is an A-loop if and only if (F , 7) is a dual A-loop. (Dual A-
loops are defined in this paper, while A-loops are well known, for their study
see [2].)

These results can be more interesting if we remember (see [3], [4], [6] and the-
orem 3) that every loop (G , Q) is isomorphic to a loop (F , 7), where F is a suit-
able r.p.s. on G.

2. – Permutation Loops.

Let F be a r.p.s. on a set V. If 1 �V is fixed, we define two composition
laws in F:

P7Q4T ` 1PQ41T(1)

P»Q4T ` 1(PQ)21 41T 21(2)

where PQ is the composition of P and Q in Sym (V) and T 21 is the inverse of T
in Sym (V). The element 1 will be called special element.

THEOREM 1. If F is a r.p.s. on V then

– (F , 7) and (F , ») are loops and IdV is the neutral element in each
of them

– P�F has the inverse in (F , 7) if and only if it has the inverse in
(F , »)

– Q is the inverse of P in (F , 7) and in (F , ») if and only if
1PQ41QP41

– (F , 7) and (F , ») are groups if and only if PQ�F for all
P , Q�F.

PROOF. Trivial. r

Let x , c : VKF be the bijections defined respectively by

(a�V , ax4S ` aS41; ac4R ` 1R4a .(3)
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If we write Sa 4ax, then F4 ]Sa (a�V is a labelled set and we have

Sa »Sb 4Sc ` cSa 4b .(4)

Likewise if Ra 4ac, then F4 ]Ra (a�V is a labelled set and we have

Ra 7Rb 4Rc ` aRb 4c .(5)

Obviously R1 4S1 4IdV

DEFINITION 1. A loop (F , 7) is an upright permutation loop if

– F4 ]Ra (a�V is a labelled regular permutation set on V

– aRa
21 4bRb

21 for all a , b�V

– Ra 7Rb 4Rc ` aRb 4c .

DEFINITION 2. A loop (F , ») is a capsized permutation loop if

– F4 ]Sa (a�V is a labelled regular permutation set on V

– aSa 4bSb for all a , b�V

– Sa »Sb 4Sc ` cSa 4b .

THEOREM 2. – By the choice of the special element in V, each r.p.s. F on V
can be turned in an upright permutation loop (F , 7) or in a capsized per-
mutation loop (F , »).

PROOF. Trivial. r

In general, a r.p.s. F can be turned in capsized (or in upright) permutation
loops which are not isomorphic (a result on this subject was found by Burn: see
the corollary of theorem 6). Moreover, in general, (F , 7) and (F , ») are nei-
ther isomorphic nor anti-isomorphic.

EXAMPLE 1. If V is finite, we write each P�F as the product of disjoint cy-
cles (see [21]). Let us consider V4 ]1, 2 , R , 5( and F4 ]IdV , (123)(45),
(24)(135), (14)(253), (152)(34)(. If 1 is the special element, in (F , 7) only one
element has order 2, if 4 is the special element in (F , 7) each element does.
Let us choose 1 �V as special element and F 1 4 ]IdV, (1 , 2 , 3 , 4 , 5 ),
( (1 , 3 )(2 , 5 , 4 ), (1 , 4 , 3 , 5 , 2 ), (1 , 5 , 3 , 2 , 4 ): (F 1 , 7) and ((F 1 , ») are nei-
ther isomorphic nor anti-isomorphic because in (F 1 , 7) the only element of
order 2 is a square, while in (F 1 , ») the only element of order 2 doesn’t.

Let (V , Q) be a loop and let 1 be its identity element; as it is known,
each a�V determines a bijection V O V called right translation and defined
by x O x Qa. Obviously the set of all right translations is a r.p.s. on V
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and, since 1 Qa4a, in accordance with our notation, the right translation
determined by a can be denoted by Ra .

THEOREM 3. If F4 ]Ra (a�V is the set of all right translations of a loop
(V , Q) and 1 is the neutral element of V, let us choose 1 as special element;
then

a) (F , 7) is an upright permutation loop isomorphic to (V , Q)

b) if (b�V we define Sb 4Ra ` bRa 41, then F4 ]Sb (b�V and (F , ») is
a capsized permutation loop.

c) if in (V , Q) each element b has the inverse b i and

(a Qb) Qb i 4a for all a , b�V(6)

then the capsized permutation loop (F , ») is anti-isomorphic to (V , Q).

PROOF. a) and b) are trivial (for a) see also [3] [4] and [6].)
c) Obviously Sa : xKx Qa i ; we have: Sa »Sb 4Sc ` cSa 4b ` c Qa i 4b `

(c Qa i ) Qa4c4b Qa. This means that the map z : VKF defined by az4Sa is an
anti-isomorphism. r

Let F be the set of all right translations of the loop (V , Q). Then the loops
(F , 7) and (F , ») considered in theorem 3 are the permutation loops associ-
ated to (V , Q).

If (F , 7) is an upright permutation loop with F4 ]Ri (i�V and (a , b�V
we define a Qb4c ` Ra 7Rb 4Rc , then (V , Q) is a loop isomorphic to (F , 7).
So we can suppose that each loop is an upright permutation loop.

REMARK. Let P �F have the inverse P i in the loop (F , 7). In general
P i

cP 21 (= inverse of P in Sym (V)). For example let V4 ]1, 2 , R , 6( and
F4 ]IdV , (1 , 2 , 4 , 5 , 3 , 6 ), (1 , 3 )(2 , 5 , 4 , 6 ), (1 , 4 , 2 , 6 , 3 , 5 ),
(1 , 5 , 6 , 4 )(2 , 3 ), (1 , 6 , 5 , 2 )(3 , 4 )(. It results R2

i 4R6 cR2
21

THEOREM 4. Let F be a r.p.s. on V such that P 21 �F for all P �F.
Then

– a) each P has the inverse in (F , 7) and (F , ») and P 21 4P i in each
of them

– b) (F , 7) is anti-isomorphic to (F , »).

PROOF. a) Trivial. b) It is easy to show (see [4]) that (F , 7) satisfies
property (6) if and only if P 21 �F for all P�F. So the thesis is true by theo-
rem 3. r
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THEOREM 5. Let F be a r.p.s. on V such that P 2 �F for all P�F ;
then P7P4P»P4P 2.

PROOF. Let P4Sa in the loop (F , »); then Sa »Sa 4Sc with c4aSa
21. On

the other hand, there exists d such that Sa
2 4Sd where, by definition, dSa

2 41;
but cSa

2 4aSa 41. Hence c4d, since F is a r.p.s. on V. In a similar way, we can
prove P7P4P 2. r

THEOREM 6. Let F and C be two r.p.s on the same set V. Then

– a) the capsized permutation loops (F , ») and (C , »), where F4

]Sa (a�V and C4 ]Ka (a�V , are isomorphic if and only if there exists a per-
mutation g : VKV such that Kag4g21 Sa g for all a�V

– b) the upright permutation loops (F , 7) and (C , 7) ), where F4

]Ra (a�V and C4 ]Ha (a�V , are isomorphic if and only if there exists a per-
mutation g : VKV such Hag4g21 Ra g for all a�V

– c) the capsized permutation loops (F , ») and the upright permutation
loop (C , 7), where F4 ]Sa (a�V and C4 ]Ha (a�V , are anti-isomorphic if
and only if there exists a permutation g : VKV such that Hag4g21 Sa

21 g
for all a�V.

PROOF. Let j : F O C be a isomorphism between the capsized permutation
loops (F , ») and (C , »). We define g : VKV by ag4b ` Kb 4Sa j and we
have

(Sa »Sb ) j4Kag»Kbg ` bSa
21 g4bgKag

21

i.e. proposition a); b) and c) can be proved in a similar way. r

COROLLARY 1 (already known, see [3]). If the r.p.s. F is closed under con-
jugation by its own elements, then the loops derived by distinct choices of the
special element are isomorphic.

REMARK. Theorem 6 is analogous to theorem [6, 6] and to theorem [15, 3.1].

3. – Bol loops.

It is known that a loop (G , Q) is called a Bol loop if one of the following iden-
tities is satisfied

[ (a Qb) Qc] Qb4a Q [ (b Qc) Qb] for all a , b , c�G(7)

b Q [c Q (b Qa) ] 4 [b Q (c Qb) ] Qa for all a , b , c�G(8)
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REMARK. Identities (8) is the dual of identity (7). In defining Bol loops,
some authors (e.g. Robinson or Burn) prefer (7), others (e.g. Karzel or We-
felscheid) prefer (8). In some paper (e.g. see [17, p. 112]), a loop satisfying
identity (7) (respectively identity (8)) is called a right Bol loop (respectively a
left Bol loop).

It is known that in a Bol loop (G , Q) each element x has the inverse x i (see
[18, 2.1]).

Let F be the set of all right translations of a loop, then it is known (see [3])
that

– property (7) is equivalent to

if P , Q�F then PQP�F(9)

– if property (7) is satisfied and P�F, then P n �F for all n in Z.

Next theorems expand this result and show the connection between prop-
erties (7) and (8).

THEOREM 7. Let F be a r.p.s. on V. Then the following statements are
equivalent

– a) property (9) is satisfied in F

– b) property (7) is satisfied in the upright permutation loop (F , 7)

– c) property (8) is satisfied in the capsized permutation loop
(F , »).

PROOF. In (F , 7) we have [(Ra 7Rb )7Rc ]7Rb 4RaRb Rc Rb
. If property

(9) is satisfied in F, then Rb Rc Rb �F and its label is bRc Rb . On the other
hand, also the label of (Rb 7Rc )7Rb is bRc Rb . This means that (a�V it re-
sults aRb Rc Rb 4a[Rb 7Rc )7Rb ] i.e. property (7). The converse is trivial.

In a similar way, we can prove the equivalence between a) and
c). r

DEFINITION 3. Let F be a r.p.s. on V such that P 21 �F for all P�F. For n
in Z, we define by induction P (0 , 7) 4IdV and P (n , 7) 4P (n21, 7) 7P if nF1;
P (n , 7) 4 (P 21 )(2n , 7) if nG21.

DEFINITION 4. Let F be a r.p.s. on V such that P 21 �F for all P�F. For n
in Z, we define by induction P (0 , ») 4IdV and P (n , ») 4P»P (n21, ») if nF1;
P (n ,») 4 (P 21 )(2n ,») if nG21.

THEOREM 8. Let property (9) be fulfilled in the r.p.s F on the set V and
P , Q�F. Then

– a) (P7Q)7P) 4P» (Q»P) 4PQP
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– b) P7Q4QMQ where M�F is determined by 1P41QM
– c) P»Q4PNP where N�F is determined by 1P 21 41Q 21 N
– d) P (n , 7) 4P (n , ») 4P n for n�Z
– e) (F , 7) and (F , ») are anti-isomorphic.

PROOF. a) From the proof of theorem 7 we have (Rb 7Rc )7Rb 4Rb Rc Rb

i.e. (P7Q)7P) 4PQP. Since property (8) holds in (F , »), (a , b , c�V we
get aSb

21 Sc
21 Sb

21 4a[Sb » (Sc »Sb ) ]21 i.e. P» (Q»P) 4PQP.
b) In (F , 7) let M be such that (Q7M) 4P, i.e. 1QM41P; therefore

P7Q4 (Q7M)7Q4QMQ. Property c) can be proved in a similar way; d)
and e) are trivial. r

REMARKS. 1) By theorem 7 each Bol loop can arise from a r.p.s. which satis-
fies property (9).

2) Theorem 8 determines the composition in a Bol loop.
3) Obviously (F , 7) (respectively (F , ») is a group if and only if (P ,

Q�F the permutation M (resp. N) considered in theorem 8 is Q 21 P (resp.
QP 21).

As usually, a loop (G , Q) is called a Moufang loop if property

(a Qb) Q (c Qa) 4 [a Q (b Qc) ] Qa for all a , b , c�G(10)

is fulfilled. As it is known (see [18]), if (G , Q) is a loop, then the following state-
ments are equivalent

– (G , Q) is Moufang

– (G , Q) satisfies (7) and (8).

– (G , Q) is Bol and (x Qy)i 4y i Qx i for all x , y�G.

THEOREM 9. Let property (9) hold in the r.p.s. F on V. Then the following
statements are equivalent

– a) IdF is an isomorphism between (F , 7) and (F , »)

– b) (F , ») is Moufang

– c) (F , 7) is Moufang.

PROOF. Since the mapping P O P 21 is an anti isomorphism between
(F , 7) and (F ,»), we have (P»Q)214Q 21»P 21` P»Q4P7Q. r

THEOREM 10. Let property (9) be fulfilled in the r.p.s F on the set V and let
there exists 1 �V such that 1PQ41QP , for all P , Q�F. If we choose 1 as
special element, then both (F , 7) and (F , ») are commutative Moufang
loops.
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PROOF. The considered property is fulfilled if and only if (F , 7) is commu-
tative. So the thesis is trivial by theorem 8. r

By definition, the automorphic inverse property holds in the loop (G , Q) if

(x Qy)i 4x i Qy i for all x , y�G .(11)

Of course property (11) is consistent only if each element of G as the
inverse.

THEOREM 11. Let F be a r.p.s. on V such that P 21 �F for all P�F. Then
the following statements are equivalent

– a) IdF is an anti-isomorphism between (F , 7) and (F , »)

– b) property (11) holds in (F , »)

– c) property (11) holds in (F , 7)

– d) P4cx21 P 21 xc21 where P�F and c , x are defined by (3) in sec-
tion 2.

PROOF. Let a) hold; then (P ; Q�F it follows T4P7Q4Q»P where, by
definition, 1T41PQ and 1T 21 41(QP)21. In (F , »), the label of T 21 is 1T,
while 1PQ is the label of Q 21 »P 21 : this means (Q»P)21 4Q 21 »P 21 and
b) holds; c) holds by theorem 4, d) holds by theorem 6. Conversely, let b) hold.
Therefore if T4P»Q the label of T 21 is 1T41QP. On the other hand, in
(F , 7), the label of (Q7P) is 1QP: this means T4Q7P4P»Q i.e. the
identity map is an anti-isomorphism. r

EXAMPLE 2. Let V4 ]1, 2 , R , 6( and F4 ]IdV, (1 , 2 , 3 , 4 , 5 , 6 ),
(1 , 3 )(2 , 5 )(4 , 6 ), (1 , 4 , 2 , 6 , 3 , 5 ), (1 , 5 , 3 , 6 , 2 , 4 ), (1 , 6 , 5 , 4 , 3 , 2 )(. By
theorem 4, (F , 7) is anti-isomorphic to (F , »); but the identity map is not an
anti-isomorphism between them.

As it is well known, a Bol loop (G , Q) is called a Bruck loop if (11) is
valid.

THEOREM 12. Let property (9) hold in the r.p.s F on the set V. Then the fol-
lowing statements are equivalent

– a) (F , 7) is a Bruck loop

– b) (F , ») is a Bruck loop

– c) there exists 1 �V satisfying the following property
if P , Q�F then )M�V such that 1P41QM and 1Q 21 41P 21 M.
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PROOF. By theorems 7 and 8, both (F , 7) and (F , ») are Bol loops and
(P , Q�F we have P7Q4QMQ with 1P41QM and Q»P4QNQ with
1Q 21 41P 21 N. By theorem 11, a) and b) are equivalent, and from each of
them it follows that the identity map is an anti-isomorphism between (F , 7)
and (F , »). If a) or b) holds, we have QMQ4P7Q4Q»P4QNQ. This
means N=M i.e. condition c). The converse is trivial. r

4. – A-loops.

Let (G , Q) be a loop; (a , b�G the condition a Q (b Qx) 4 (a Qb) Qxd a , b clearly
defines a bijective map d a , b : G O G; following Ungar (see [19], [20]), in many
papers these maps are called precession maps.

Analogously we give the

DEFINITION 5. Let (G , Q) be a loop; (a , b�G the condition (x Qa) Qb4xb a , b Q
(a Qb) defines a bijective map b a , b : G O G called an anti-precession map.

It is trivial to prove that if in the loop (G , Q) property

a Qb41 ¨ d a , b 4IdG(12)

or property

a Qb41 ¨ b a , b 4IdG(13)

is fulfilled, then there exists the inverse a i of each element a.

THEOREM 13. Let F be a r.p.s. Then the following statements are
equivalent:

– a) P 21 �F for all P�F.

– b) in the loop (F , ») property (12) holds

– c) in the loop (F , 7) property (13) holds

PROOF. a) is equivalent to b): if a) holds, in (F , ») we have P i 4P 21. Let
X4Sx : the label of P» (P 21 »X) is xPP 21 4x, so b) holds. Conversely if b)
holds, let P4Sa and Sb 4Sa

i , then (x�V it follows xSb
21 Sa

21 4x, i.e. Sb 4

Sa
21 �F. In a similar way we can prove that a) and c) are equiva-

lent. r

LEMMA 14. Let F be a r.p.s. on the set V such that P 21 �F for all P�F. If
d P , Q (respectively b P , Q ) is a precession map in (F , ») (respectively an anti-
precession map in (F , 7) ) and X , P , Q�F, then (Xd P , Q )21 4X 21 b Q 21 , P 21

and (Xb P , Q )21 4X 21 d Q 21 , P 21 .
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PROOF. Recall that the map F O F defined by P O P 21 is an anti-isomor-
phism between (F , ») and (F , 7). r

THEOREM 15. Let F be a r.p.s. on the set V such that P 21 �F for all
P�F. If property (11) holds in (F , 7) or in (F , ») and P , Q , X�F ,
then

– (Xd P , Q )21 4X 21 d P 21 , Q 21

– (Xb P , Q )21 4X 21 b P 21 , Q 21.

PROOF. By theorem 11 property (11) holds in (F , 7) if and only if it holds
in (F , ») and the identity map is an anti-isomorphism between them. From
P» (Q»X) 4 (P»Q) »Xd P , Q we get (X7Q)7P4Xd P , Q 7 (Q7P);
therefore the thesis follows from lemma 14. r

As usually a loop (G , Q) is called an A-loop if each precession map is an
automorphism.

THEOREM 16. If property (12) holds in the A-loop (G , Q), then there exists a
capsized permutation loop which is isomorphic to (G , Q).

PROOF. (a , b�G let us define a1b4b Qa. Then in the loop (G , 1) each el-
ement has the inverse and property (6) holds, so, by theorem 3, the capsized
permutation loop (F , ») associated to (G , 1) is isomorphic to (G , Q). r

Since we are interested only in A-loops in which (12) holds, by theorem 16,
we can suppose that each A-loop is a capsized permutation loop (F , »).

DEFINITION 6. A loop (G , Q) is called a dual A-loop if each anti-precession
map is an automorphism.

THEOREM 17. Let F be a r.p.s. on the set V such that P 21 �F for all
P�F. Then the following statements are equivalent

– (F , ») is an A-loop

– (F , 7) is a dual A-loop.

PROOF. By theorems 4, the map FKF defined by PKP 21 is an anti-iso-
morphism between (F , ») and (F , 7), therefore each map d : FKF is an
automorphism of (F , ») if and only if it is an automorphism of (F , 7), so our
thesis follows from lemma 14. r

By theorem 6, a simple computation proves the following
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COROLLARY 2. The capsized permutation loop (F , ») is an A-loop if and
only if F4g P , Q

21 Fg P , Q where P , Q�F and g P , Q 4Q 21 P 21 (P»Q).

COROLLARY 3. The upright permutation loop (F , 7) is a dual A-loop if and
only if F4g P , Q

21 Fg P , Q where P , Q�F and g P , Q 4PQ(P7Q)21.

Moreover by theorem 15 we obtain the following

COROLLARY 4. (already known (see [15, 2.9b]): If properties (11) and (12)
hold in the A-loop (F , ») and P , Q�F, then d P , Q 4d P 21 , Q 21

COROLLARY 5. If properties (11) and (13) hold in the dual A-loop (F , 7)
and P , Q�F, then b P , Q 4b P 21 , Q 21
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