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On Quasihomogeneous Manifolds
— via Brion-Luna-Vust Theorem.

MARCO ANDREATTA - JAROS LCAW A. WIŚNIEWSKI

Sunto. – In questo lavoro si studiano varietà proiettive liscie sulle quali agisce un
gruppo algebrico semplice G con una orbita aperta. In particolare si utilizza un
teorema di Brion-Luna-Vust per correlare l’azione di G su X con l’azione indotta di
G sul fibrato normale di una orbita chiusa. Come applicazione si ottiene una clas-
sificazione nel caso G4SL(n) e dim XG2n22.

Summary. – We consider a smooth projective variety X on which a simple algebraic
group G acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order
to relate the action of G with the induced action of G on the normal bundle of a
closed orbit of the action. We get effective results in case G4SL(n) and
dim XG2n22 .

Introduction.

Let G be a simply connected simple algebraic group over complex numbers
acting on a smooth projective variety X . If the action is transitive then X is a
homogeneous variety of type G/P , where P%G is a parabolic group, and the
classification of such varieties is know (see [Ti] or [Bou]). If the action of G on
X has an open orbit then X is called quasihomogeneous and we may think
about such an X as a smooth projective equivariant compactification of G/H ,
where H%G is the isotropy group of a general point of X .

The classification of quasihomogeneous varieties was considered by seve-
ral authors. Akhiezer studied the situation in which complement of the open
orbit is either disconnected (two ends), or contains an isolated fixed point, or is
a homogeneous divisor. The latter case was also considered by Huckleberry,
Oeljeklaus and Brion. A discussion of these results can be found in chapter 7
of [Ak]. Interesting and complete results have been also obtained in the case
of SL(2)-quasihomogenous 3-folds, see [L-V], [M-U] and [Na1]. The case of
SL(3) quasihomogenous 4-folds was then studied in [Na2] while an attempt to
study this problem in higher dimension — via Mori theory, in the same way as
done by [M-U] in the 3-dimensional case — can be found in [An].
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In the present paper we adopt the following approach: let Z%X be a closed
orbit of the G action, then Z is a homogeneous variety of G . Also the normal bun-
dle of Z in X , we denote it by NZ/X , is homogeneous with respect to the tangent
action of G (for a precise definition see Section 1) and the classification of such
bundles is rather well understood, being directly related to the representations
of the parabolic isotropic group of a point of Z , via Borel-Weil-Bott Theory.

It is natural to believe that the action of G on NZ/X should somehow reflect
the action of G on X . A naive expectation is that if the action of G on X has an
open orbit then the induced action of G on NZ/X has an open orbit as well. In
fact, this is the case when Z is just a fixed point and it follows from the well
known Luna’s theorem on étale slices ([Lu]). However it turns out that, in
general, the expectation is wrong, as showed by Example (2.7).

The right method of relating these two actions is via a theorem of Brion,
Luna and Vust, namely Theorem 1.4 in [B-L-V], which is a corner-stone of a
beautiful theory of spherical varieties, i.e. varieties on which a Borel subgroup
B%G acts with an open orbit. As an immediate application of the Brion-Luna-
Vust theorem one can relate the dimension of a general orbit of an induced ac-
tion of a parabolic subgroup PA %G , opposite to the isotropy group of a point in
Z , to the dimension of the orbits of the induced action on NZ/X .

This brings us, however, to the question of relating the action of G on X to
the induced action of its parabolic subgroup P , which is a weaker version of a
general problem of identifying spherical varieties among quasihomogenous
ones, see e.g. [Br].

In this paper we deal with quasihomogeneous manifolds of the group G4

SL(n). The main result is Theorem (3.4) which is about the normal bundle of a
closed orbit CPn21 . Subsequently, we can apply results of Akhiezer and
Brion to understand the structure of quasihomogenous SL(n)-manifolds of di-
mension at most 2n22, see Corollary (3.5). We show that dim X cannot be
strictly between n and 2n24. The classification of quasihomogeneous mani-
folds of dimension at most n was done previously, so we get new results for di-
mension 2n24, 2n23 and 2n22. It turns out that, in this range – with one
possible exception – all quasihomogenous varieties are spherical.

In absense of suitable references concerning pertinent basics on the group
actions we discuss some of them in detail in section 1, risking that the experts
in the field will get annoyed.
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Notation. For a vector bundle E over Z by P(E) we denote the projective
bundle of lines in E , that is E0]0( /C*. Classes of equivalence relations will be
denoted by [ ]. SL(n) is the group of n3n matrices with determinant 1; sl(n)
is its Lie algebra of matrices of trace 0. In general, Lie algebra of a group G
will be denoted by a calligraphic letter G. For a sheaf F over the projective
space Pn by F(a) we denote its twist F 7 O(a) by a line bundle O(a).

1. – Primer on homogeneous vector bundles.

In the present section we collect material on homogeneous vector bundles
which we believe to be commonly known, however we have not been able to
find an adequate reference for.

Let G be a connected algebraic group over complex numbers. In what fol-
lows we will assume that G is simply connected and simple, but this is not
needed at the beginning of this section. Let H%G be a connected closed (alge-
braic) subgroup such that the (right) quotient G/H4 ] gH4 [ g] : g�G( is an
algebraic variety; in other words G/H is a quotient of G by the right-hand-side
action of H defined as H3G� (h , g) Kgh 21 �G . The group G acts on G/H
from the left side G3G/H� ( g , [ g 8 ] ) K [ gg 8 ] �G/H . The variety Z»4G/H is
called a G-homogeneous variety and H is called its isotropy group; Z is projec-
tive if and only if H is parabolic.

DEFINITION (1.1). – A rank r vector bundle p : EKZ is called G-homoge-
neous or simply homogeneous if one of the two following equivalent conditions
holds:

(a) There exists an action of G on E , linear on fibers of p and compatible
with the action of G on Z which means that the following diagram commutes:

G3E
I

G3Z

K

K

E
I
Z

(b) There exists a representation r : HKGL(V), with dim V4r , such
that ECEr , where Er is the vector bundle defined as the quotient of G3V via
the equivalence relation A, where ( gh , v) A ( g , r(h) v) for any h�H; in other
words Er is a quotient of G3V via a (right-hand-side) action of H defined as

H3 (G3V) � (h , ( g , v) ) K ( gh 21 , r(h) v) �G3V .

The equivalence of conditions (a) and (b) is straightforward. Given a repre-
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sentation r from (b) we defined an action of G on Er in the following way:

G3Er� ( g , [ g 8 , v] ) K [ gg 8 , v] �Er

This action in the fiber over [1G ] yields the representation r because
(h , [1G , v] ) K [h , v] 4 [1G , r(p) v].

Conversely, given an action of G on a vector bundle E over G/H , the
isotropy group H acts on the fiber of E over [1G ] as a representation r : HK

GL(E[1G ] ). We define W : EKEr by setting for v�p21 ( [ g] ), W(v) 4

[ g , g 21 (v) ]; the definition of W does not depend on the choice of g above hence
it yields an isomorphism of vector bundles.

Let us note that although our definition of the G action on Er is unique, the
above defined correspondence EDEr does not have to preserve G action. That
is: the restriction of two different actions of G on E to the action of H on E[1G ]

may define the same representation r : HKGL(E[1G ] ). For example, take H4

]1G ( and E4G3V with the action defined by any representation GKGL(V).
What is more, two different representations r 1 and r 2 of the isotropy group H
may define isomorphic bundles Er 1

CEr 2
on G/H .

EXAMPLE (1.2). – Take G4SL(n) with Z4SL(n) /PCPn21 4P(V), where
V4Cn , and the associated isotropy group P%SL(n) consisting of matrices
whose first column has zeroes outside the highest row. Then take r 1 being the
trivial representation on V so that Er 1

CPn21 3V is the trivial bundle. If we
take r 2 being the restriction to P of the standard representation of SL(n) on V
and r 3 its dual then the bundles Er 2

and Er 3
are trivial as well but the associat-

ed actions of SL(V) on Pn21 3V in these three cases are different (except
when nG3). This is a special case of the following somewhat more general ob-
servation, for a proof see ([Sl], p. 25).

LEMMA (1.3). – Let G be an algebraic group with a closed subgroup H%G.
Suppose that a representation r : HKGL(V) extends to r : GKGL(V). Then
the bundle Er over G/H is trivial and the induced action of G on the trivia-
lization G/H3VCEr is as follows

G3 (G/H3V) ) � ( g , ([ g 8 ], v) ) K ( [ gg 8 ], r( g) v) �G/H3V .

Another formulation of the preceding lemma could be as follows: If the
right-hand-side action of H on G3V , which gives rise to Er , extends to the
whole G then the bundle Er is trivial. Accordingly the argument could be re-
duced to the following observation: the right-hand-side action of G on G3V
defines a bundle E0 over G/G and, by the functoriality of this construction, Er

is a pull-back of E0 .
Let us recall the definition of the tangent bundle of a homogeneous vari-

ety. Let G be a connected algebraic group with the associated Lie algebra G of
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left-invariant fields on G . Thus we have a natural trivialization of the tangent
bundle of G , TGCG3 G, under which the left-hand-side action of G is trivial
on G. If, however, we consider the right-hand-side action of the group (or its
subgroup) then the resulting action will be described by the adjoint represen-
tation Ad : GKGL(G). That is, let H%G be a closed algebraic subgroup with
the associated Lie algebra H % G. Let us consider the right-hand-side action of
H on G: H3G� (h , g) Kgh 21 �G . Then the resulting action of H on TG4

G3 G is as follows: (h , ( g , v) ) K ( gh 21 , Ad(h) v).
Now take gH%G; then, because of the left invariance of the trivialization of

the tangent bundle, T( gH) CgH3 H %gH3 G CTGNgH . Therefore, since the
map GKG/H is smooth, its relative tangent bundle may be identified with the
trivial G-invariant sub-bundle G3 H %G3 G. So the quotient G3 (G / H) is
the pull-back of the tangent bundle T(G/H) and therefore the latter is ob-
tained from the former via a right-hand-side action of H which, as we ex-
plained in the previous paragraph, comes from Ad . That is, T(G/H) 4EAdH

× ,
where AdH

× : HKGL(G / H) is the quotient of the restriction of the adjoint rep-
resentation to the subgroup H , that is AdNH : HKGL(G).

On the other hand, since the left action of G on itself descends to the left ac-
tion of G on G/H , the left invariant fields from G descend to fields over G/H .
Thus the surjective morphism G3G KG3 (G /H) descends, via the right-hand-
side action of H , to a surjective morphism of homogeneous vector bundles

e : EAdNH
KEAdH

×4T(G/H) , e( [ g , v] ) 4 [ g , [v] ]

which is just the evaluation of these fields, as sections of T(G/H). We note that
the trivialization W : EAdH

KG/H3 G, defined in the previous lemma, identifies
the kernel of e over a point [ g] �G/H to Ad( g) H % G.

As the result of the discussion we observe the following

LEMMA (1.4). – Let H%G be as above. Let H 8%G be another connected
closed algebraic subgroup of G with the associated Lie algebra H8% G. Then
the left action of H 8 on G/H has an open orbit if and only if for some g�G we
have H81Ad( g)(H) 4 G.

PROOF. – In view of the preceding discussion the condition H81

Ad( g)(H) 4 G is equivalent to say that vector fields tangent to the automor-
phisms of G/H , arising from the action of H 8 , span T(G/H) at the point [ g],
hence the result.

Note that the above statement is symmetric. That is, in the notation of the
Lemma, the action of H 8 on G/H has an open orbit if and only if the action of H
on G/H 8 has an open orbit.

In the remainder of this section we discuss SL(n)-homogeneous vector bun-
dle over Pn21 . Let P%SL(n) be a subgroup consisting of matrices whose entries
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in the first column are zero, except the one on the diagonal. Hence G/PCPn21.
Let x : PKC* be the character generating the group of characters
Hom (P , C*) such that Ex4O(1). Thus, the line bundle O(k) is associated to the
character xk . The proofs of the following results are standard and we omit them.

LEMMA (1.5). – Let E4 5
i41

m
O(ai )5ri be a decomposable bundle over Pn21

with a1 Da2 DRDam . If, for i41Rm , we have ri En then the SL(n) action
on E is uniquely defined and comes from the natural representation r4

r1 x a1 1R1rm x am of P on a fiber of E.

PROPOSITION (1.6). – Let E be a homogeneous bundle over Pn21 of rank r. If
rEn21 then E is decomposable into a sum of line bundles. If r4n21 then
E is either decomposable or twisted tangent, or twisted cotangent bundle. In
all the cases the action of SL(n) on E is uniquely defined.

COROLLARY (1.7). – Let E be a SL(n)-homogeneous vector bundle of rank r
over Pn21 , with nF3. Suppose that rGn21. Then the associated isotropy
group representation PKGL(r) has an orbit of dimension r if and only if
one of the following occurs

(a) r41 and E is non-trivial,

(b) r4n21 and ECTPn21 (a) or ECVPn21 (a), with a�Z .

2. – Brion-Luna-Vust Theorem.

Let G be a simply connected, simple algebraic group acting on a smooth al-
gebraic variety X . Assume that there exists a closed orbit G Qz»4Z which is
projective, that is the isotropy group Gz is a parabolic subgroup of G . The
group G acts algebraically by tangent maps on the bundle TXNZ . This action
preserves the sub-bundle TZ %KTXNZ and thus it descends to the normal bun-
dle NZ/X . More precisely: for a given g�G we have the tangent map
Tg : NZ/X KNZ/X which dominates the automorphism of the base g : ZKZ . Ac-
cording to the definition (1.1.a), the bundle NZ/X is homogeneous with respect
to this action. The associated representation of the isotropy group Gz on the
fiber (NZ/X)z (as in the definition (1.1.b)) we call a normal representation of Gz .

Let us blow X along Z to get X× with the exceptional divisor Z× 4P(NZ/X ).
The action of G lifts up to X× and its restriction to Z× comes from the above ac-
tion on NZ/X .

PROPOSITION (2.1). – In the above situation let G4SL(n) and ZCPn21. If
dim XG2n22 then the tangent action of SL(n) on NZ/X is uniquely defined
and as described in Proposition (1.6).
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EXAMPLE (2.2). – Ruled quasihomogeneous manifolds. Let Z4G/P be a ho-
mogeneous G manifold with the isotropy parabolic group Gx 4P . Let l i : Gx K

C*, i41, 2 be two characters and consider the representation r4l 1 1

l 2 : Gx KGL(2). Let E4Er4El 1
5El 2

be the associated homogeneous bun-
dle with the induced action of G . If l 1 cl 2 then the projective bundle P(E) is
quasi-homogeneous under the induced G action. It has two closed orbits Z1

and Z2 which are sections of P(E) KZ with normal bundle El 1 /l 2
and El 2 /l 1

,
respectively.

EXAMPLE (2.3). – Let us consider the action of G4SL(2) on X4P 3 which
comes from the third symmetric product of the standard representation. The
only closed orbit of the action is a rational twisted cubic Z%P 3 . The action has
moreover an open orbit and a unique invariant 2-dimensional subset Y&Z
which is swept by lines tangent to Z . If we blow up P 3 along Z then the result
is a ruled 3-fold X× 4P(E), with E a stable rank 2 vector bundle over P 2 such
that c1 (E) 42 and c2 (E) 43, see [S-W]. The induced action of SL(2) on X× has
two invariant divisors: the exceptional divisor of the blow-down X× KP 3 , let us
call it Z×, and a divisor Y×, the strict transform of the divisor Y . The map Z× KP 2

is a double covering and Y× is a pull-back, via P(E) KP 2 , of its branch divisor
which is a conic in P 2 . The action of SL(2) on X× 4P(E) descends to the action
on P 2 whose only closed orbit is the conic in question. The intersection B4

Z×OY× is the unique closed orbit of the action of SL(2) on X×.
From the above it follows that Z× CP 1 3P 1 and B% Z× is the ramification of

a double cover P 1 3P 1 KP 2 , hence a curve of bidegree (1 , 1 ). Therefore
NZ/P 3 is a twisted trivial bundle (computing by adjunction its degree we get
NZ/P 3 C O(5)5 O(5)) but the tangent SL(2) action on the normal bundle in-
duces a (twisted) representation of P on the fiber coming from the standard
representation of SL(2) (which, of course, is not x 5 1x 5 ; notation as in the
previous section). Thus we are in the situation of Example (1.2).

The task now is to compare the original action of G on a smooth projective
variety X with the tangent action of G on the normal bundle NZ/X of a closed
orbit. The motivation for this is an étale linearization (corollary to Luna’s slice
theorem).

LOCAL LINEARIZATION THEOREM (2.4). – [Lu] Suppose that a reductive
group G acts on a smooth quasiprojective variety X with a fixed point z�X .
Then, up to an étale covering the action of G in an affine G-invariant neigh-
borhood of z is the same as its tangent action on the tangent space Tz X . That
is, there exists an open affine G-invariant neighborhood z�S%X and an
étale G-equivariant map SKTz X .

COROLLARY (2.5). – In the situation of the above Theorem, the dimension
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of a general orbit of the action of G on X is equal to the dimension of a general
orbit of the tangent representation GKGL(Tz X).

EXAMPLE (2.6). – If G is not reductive then the corollary is not true. Take
the unipotent subgroup of SL(2) consisting of upper-triangular matrices with
units on the diagonal and t�C in the upper-right corner – this is just the addi-
tive group C1 . Consider its standard action on P 1 around with the only fixed
point [1 , 0 ]; in the affine coordinate z around [1 , 0 ] it is given by
(t , z) Oz/(tz11). The derivative at z40 is identity, though, certainly,
P 1 0 [1 , 0 ] is an open orbit.

It would be very nice to have an instant extension of the above corollary to
the case of an arbitrary closed orbit. A naive expectation is as follows: Let a re-
ductive (or even simple, 1-connected) group G act on a projective manifold X
with a closed orbit Z. If the action of G on X has an open orbit then its tangent
action G3NZ/XKNZ/X has an open orbit as well. This is however wrong:

EXAMPLE (2.7). – Let us extend Example (2.3). That is: X× is the blow-up of
P 3 along a twisted cubic, with the induced SL(2) action and two invariant divi-
sors Z× and Y× whose intersection B is the unique closed orbit of the action. Both
divisors are smooth but their intersection along B is non-transversal, as we
have noticed that Y× is the pull-back of the branching conic related to the
double cover Z× KP 2 . Now let us blow up X× along B , call the result XA with the
exceptional divisor BA and ZA, YA denoting strict transforms of the respective di-
visors. We lift up the action of SL(2) to XA. The above three named divisors are
clearly SL(2) invariant and they intersect transversally along a 1-dimensional
orbit C of the action – transversality of the intersection can be verified along a
2-dimensional slice of XA over a curve in P 2 . In fact, let us note that BA and YA

play a symmetric role in this construction: if we contract YA then we get a pro-
jective bundle over P 2 . Thus the induced action of SL(2) on P(NC/XA ) has three
non-meeting orbits at least, which is possible only if P(NC/XA ) 4P 1 3P 1 and
the action is nontrivial along one coordinate only.

The right way to generalize the corollary goes through the following theo-
rem, due to Brion, Luna and Vust:

BLV THEOREM (2.8). – [Brion-Luna-Vust, Thm 1.4] Assume that G is an
connected algebraic reductive group acting on a smooth quasiprojective va-
riety X with a closed orbit Z4G Qz , whose isotropy group P%G is parabolic.
Let PA %G be a subgroup of G opposite to P with PAu denoting its radical unipo-
tent part and L4POPA its Levi subgroup, so that PA 4 PAu QL . Then there
exists a locally closed affine subvariety W%X such that

(1) z�W and W in L-invariant,

(2) PAu QW is an open subset of X,
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(3) the action of PAu on X induces an isomorphism of algebraic varieties
PAu 3WC PAu QW .

Before deriving an application of the theorem let us make some comments
on its contents. For simplicity, let X0 4 PAu QW4 PA QW%X and Z0 4ZOX0 .
Then both X0 and Z0 are invariant with respect to the PA action. Next, dim PAu 4

dim P u 4dim Z (see Proposition 14.21 and its proof in [Bor]) hence, because of
property (3) above, Z0 4 PAu Qz and W and Z0 intersect transversally at z . The
point z is fixed by the action of L and, because both W and Z0 are L invariant,
we have the L equivariant splitting Tz X4Tz Z5Tz W where Tz W can be natu-
rally identified with the normal space (NZ/X )z together with the induced nor-
mal representation (restricted from the isotropy group P to L), that is
LKGL( (NZ/X )z ).

We use BLV Theorem to prove the following proposition; this application is
very similar to the proof of corollary 1.5 in [B-L-V] (see also the proof of the
theorem 1.1 in [Br]).

PROPOSITION (2.9). – In the notation of the above BLV Theorem, suppose
that a general orbit of the action of PA on X is of dimension k. Then a general
orbit of the normal representation LKGL( (NZ/X )z ) is of dimension Fk2

dim Z.

PROOF. – By assumption a general orbit of the action of PA on the open sub-
set X0 4 PAu QW has dimension k; let O be such an orbit.

We note that, because PA 4 PAu QL and W is L invariant, we have PA Q(OO
W) 4 PAu Q (OOW) C PAu 3 (OOW) where the latter isomorphism follows by
property (3) of BLV Theorem. Thus dim (OOW) 4 dim O2dim PAu 4 dim O2

dim Z . On the other hand (again by (3) and PA 4 PAu QL), the stabilizer subgroup
of the set W in PA is L , hence OOW is an orbit for the action of L on W .

Since L is reductive and W is a smooth affine L-variety with a fixed point z ,
we can apply Local Linearization Theorem in order to compare the action of L
around z�W with its tangent action LKGL(Tz W). In particular this last ac-
tion has an orbit of dimension k2dim Z . But we have already noticed that the
representation LKGL(Tz W) is just the restriction to L of the normal repre-
sentation PKGL( (NZ/X )z ). This concludes the proof of the proposition.

3. – SL(n)-quasihomogeneous manifolds.

Let G be a simply-connected simple algebraic group over C . Suppose that
G acts on X so that X is a G-quasihomogeneous manifold. Let Z%X be a closed
orbit of the action, hence a homogeneous variety of G; such varieties are classi-
fied by subsets of the Dynkin diagram associated to G . The normal bundle



MARCO ANDREATTA - JAROS LC AW A. WIŚNIEWSKI540

NZ/X is homogeneous with respect to the action of G and a classification of such
G-bundles should be pretty natural; in particular we gave some results in the
case G4SL(n) in Section 1. Thus one is tempted to relate the classification of
G-quasihomogeneous manifolds with that of G-homogeneous bundles over ho-
mogeneous spaces.

In view of BLV Theorem an ideal scheme of the argument would be as
follows:

(0) choose the data as in BLV theorem: z�Z with isotropy parabolic
group P%G and its opposite parabolic PA, and Levi subgroup group L4POPA;

(1) find out the dimension of a general orbit of the action of PA on X: one
may actually expect that, if the codimension of Z in X is not too large, then PA

acts with an open orbit on X;

(2) using BLV Theorem and its application (2.9), relate the dimension of
a general orbit of PA to the dimension of the tangent action of L on the fiber of
NZ/X over z;

(3) confront the result with a possible action of L on a fiber of a homoge-
neous vector bundle over Z (see for instance (1.6) or (1.7)).

It seems that the step (1) of our ideal argument should be the hardest one;
in what follows we deal with it in the case G4SL(n), Z4Pn21 and dim XG

2n22. For this we begin with a technical result.

LEMMA (3.1). – Let F be a coherent O-subsheaf of TPn21 of rank En21.
Then dim H 0 (F) Gn 2 22n.

PROOF. – We may assume that F is a saturated subsheaf of TPn21 of corank
1, because otherwise we can replace F by a larger subsheaf of TPn21 which
still satisfies assumptions above. Thus F is reflexive and we have an exact se-
quence of sheaves of O-modules:

0 K F KTPn21 K O(k) K R K0

where O(k) is a line bundle and R is a torsion sheaf whose support is of codi-
mension F2 in Pn21 . Moreover kF2, since Hom (TPn21 , O(k) ) 40 for kG1.
On the other hand we have the Euler sequence on Pn21

0 K O K O(1)5n KTPn21 K0 .

Combining these two sequences and twisting by O(21) we get

F(21) 4ker (O5n K O(k21) ) /im (O(21) K O5n ).

Therefore F is completely defined by the morphism O5n K O(k21) which is a
choice of n sections of O(k21). Moreover, since R has support in codimension
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F2 it follows that these n sections span O(k21) in codimension 2, thus we can
choose among these sections a linear pencil without base component. There-
fore we have two section of O(k21), (homogeneous polynomials of degree k21)
f1 , f2 which have no common divisor and a commutative diagram

H 0 (O

H 0 (F) KH 0 (T

(1)5n )
I

Pn21 )

&

K

H 0 (O(1) )

H 0 (

5H 0 (O(1) )
I

O(k) )

where the right-hand-side vertical arrow is the evaluation of the pencil twisted
by O(1), so to a pair of linear forms (s1 , s2 ) it associates s1 f1 1s2 f2 . Now to con-
clude the proof we have to show that the rank of the right-hand-side horizon-
tal map is 2n21 at least. Thus it is enough to show that the kernel of the
right-hand-side vertical arrow is one dimensional at most. If however
(s1 , s2 ) Os1 f1 1s2 f2 40 then f1 /f2 42s2 /s1 which, since we assumed that f1 and
f2 have no common factor, is possible only if they are linear and equal (up to an
invertible constant) to the respective linear forms on the right-hand-side.
Thus the map in question is injective for kF3, while for k42 it has 1-dimen-
sional kernel.

REMARK (3.1.1). – The bound dim H 0 (F ) Gn 2 22n of the lemma is optimal
as one can see taking for instance n43, a point x�P 2 and the exact
sequence

0 K O(1) KTP 2 K Jx (2) K0 .

Combining the above lemma with the observation we have made in Section
1 we get:

LEMMA (3.2). – Let W%sl(n) be a linear subspace of codimension G2n22
and P %sl(n) be a maximal parabolic subalgebra of codimension n21. Then
for a general g�SL(n) we have Ad( g)(P)1W4sl(n).

PROOF. – We can identify sl(n) with the space of sections of T(G/P) C

TPn21 . Let e : Pn21 3sl(n) KTPn21 be the evaluation map. The restriction
e W : Pn21 3WKTPn21 has to be generically surjective, since otherwise we
would set F »4 im(e W ) and we contradict the previous lemma. Thus, because of
the discussion preceding Lemma (1.4), Ad( g)(P)1W4sl(n).

PROPOSITION (3.3). – Let X be a SL(n) quasihomogeneous manifold which
contains a closed orbit ZCPn21. Let P4Gz %SL(n) be the isotropy group of
a point z�Z and let PA %SL(n) be a parabolic subgroup opposite to P. If
dim XG2n22 then PA acts on X with an open orbit.
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PROOF. – Let x�X be a point in the general orbit with the isotropy group
H4Gx %SL(n) and the associated Lie algebra H %sl(n). Let P

A
be the Lie al-

gebra of PA. Then, in view of the proceeding lemma, for a general g�SL(n) we
have P

A
1Ad( g)(H) 4sl(n) and, by Lemma (1.4), PA acts on G/H with an open

orbit.
Now we can proceed with the argument explained at the beginning of this

section (applying in the consecutive order (3.3), (2.9) and (1.7)) and get the
following.

THEOREM (3.4). – Let X be a SL(n) quasihomogeneous manifold which
contains a closed orbit ZCPn21 and assume that dim XG2n22. Then one
of the following occurs:

(a) dim X4n and NZ/X 4 O(a) with ac0, or

(b) dim X42n22 and either NZ/X CTPn21 (a) or NZ/X CVPn21 (a)
with a�Z .

This theorem can be nicely combined with the results of Akhiezer and oth-
ers (see [Ak] or [Br]) to obtain a classification of SL(n)-quasihomogeneous
manifolds X of dimension G2n22, where nF3. For this we first notice that,
since the classification of projective manifolds of dimension Gn with a non-
trivial SL(n)-action was done in [Ma] (and more recently reproved considering
also the case of other simple groups with the use of Mori theory in [An]) we
can assume that n11 G dim XG2n22.

COROLLARY (3.5). – Let X be a SL(n) quasihomogeneous manifold and as-
sume n11 G dim XG2n22. Then dim XF2n24 and one of the following
occurs.

(a) dim X42n24 and X is homogeneous, XCGr(2 , n);

(b) dim X42n23 and either

(b0) X is homogeneous (then X is a flag manifold F(1 , 2 , n) or X4

Gr(3 , 6 ) for n46), or
(b1) X contains a codimension 1 closed orbit isomorphic to

Gr(2 , n);

(c) dim X42n22 and either

(c0) X is homogeneous (then n44 and XCF(1 , 2 , 3 , 4 ), or n47 and
X4Gr(3 , 7 ) ),
or X contains a proper closed orbit Z which satisifies one of the
following:

(c1) Z is a divisor in X (then either n46 and Z4Gr( (3 , 6 ) or Z is a
flag manifold F(1 , 2 , n) ),
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(c2) Z is the projective space Pn21 and the blow-up of X along Z is a
quasihomogeneous variety with the exceptional divisor being
homogeneous;

(c3) Z is the Grassmann manifold Gr(2 , n) of codimension 2.

PROOF. – We note that if a SL(n) quasihomogeneous manifold of dimension
G2n21 has a fixed point then it is Pn , with the action extending the stan-
dard one (or its dual) via the natural inclusion Cn %Pn . Indeed, if nE dim XE

2n and z is a fixed point of the action of SL(n) then the tangent representation
SL(n) KGL(Tz X) is a sum of at most one copy of n-dimensional representa-
tion and a trivial representation of complementary dimension — therefore it
has no orbit of dimension bigger than n — so X can not be quasihomogeneous
by Local Linearization Theorem (Corollary 2.5).

Thus we may assume that there exists a closed orbit of positive dimension
in X . But on the other hand, the only homogeneous SL(n)-manifolds of dimen-
sion G2n22 are the following: (1) a point, (2) Pn21 , (3) Grassmann manifold
Gr (2 , n), (or Gr (n22, n)) of dimension 2n24, (4) flags F(1 , 2 , n) (or F(n22,
n21, n) of dimension 2n23, (5) flags F(1 , 2 , 3 , 4 ) of dimension 6 if n44 or
X4Gr(3 , 6 ) if n46, or X4Gr(3 , 7 ) if n47.

These give rise to all the cases of the corollary; what is left to prove is the
statement in (c2) which follows in fact from the Theorem (3.4).

REMARK (3.5.1). – The above corollary shows that, with the exception of
case (c3), the classification of SL(n) quasihomogeneous manifolds of dimen-
sion G2n22 can be derived from the works of Akhiezer. Indeed, if X is not
homogeneous then, after possibly blowing up an orbit isomorphic to Pn21

(case (c2)), X has an orbit which is an homogeneous divisor. Thus either the
complement of the open orbit in X is disconnected, and X is classified by Theo-
rem 7.6 in [Ak], or the complement of the open orbit is the homogeneous divi-
sor, and X is classified by Theorem 7.8 in [Ak].

In case (c3) the classification is not complete and extra work is needed: for
instance a Lemma similar to (3.1) for Gr(2 , n) would be useful. In fact, it is a
very interesting question to find a suitable version of Lemma (3.1) for any G
homogeneous variety, where G is a simply connected, simple algebraic group
over C . If n43, however, the cases (c2) and (c3) in the above theorem coincide
so we get the following result known already by [Na2].

COROLLARY (3.6). – If X is a SL(3) quasihomogeneous 4-fold then, after
possible blowing up 2-dimensional closed orbits of the action, we get a SL(3)
quasihomogenous manifold with all closed orbits of codimension 1, hence
classified as an equivariant completion of rank one spherical variety, see
[Ak] or [Br].

To conclude, note that Corollary (3.5) proves also a conjecture stated in [An].
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