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Some Remarks on a Class of Elliptic Equations
with Degenerate Coercivity.

LUCIO BOCCARDO - HAÏM BREZIS

Sunto. – Si studiano problemi ellittici degeneri del tipo

.
/
´

2divg ˜u

(11NuN)u h4 f

u40

in V

on ¯V .

Summary. – We study degenerate elliptic problems of the type

.
/
´

2divg ˜u

(11NuN)u h4 f

u40

in V

on ¯V .

1. – Introduction.

In the paper [5], existence and regularity results for the following elliptic
problem (with degenerate coercivity) are studied:

.
/
´

2div (a(x , u) ˜u) 4 f

u40

in V ,

on ¯V ,
(1)

where V is a bounded, open subset of RN , with ND2, and a(x , s) : V3RKR
is a Caratheodory function (that is, measurable with respect to x for every s�
R , and continuous with respect to s for almost every x�V) satisfying the fol-
lowing conditions:

a

(11NsN)u
Ga(x , s) Gb ,(2)

for some real number u such that

0 GuG1,(3)

for almost every x�V , for every s�R , where a and b are positive constants.
The datum f belongs to L m (V), for some mF1.

The main difficulty in dealing with problem (1) is the fact that, because of
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assumption (2), the differential operator A(v) 42div (a(x , v) ˜v), even if it is
well defined between W 1, 2

0 (V) and its dual W 21, 2 (V), is not coercive on

W 1, 2
0 (V) (when v is large, 1

(11NvN)u
goes to zero: for an explicit example of the

fact that A is not coercive, see [10]).
This implies that the classical methods used in order to prove the existence

of a solution for problem (1) cannot be applied, even if the datum f is
regular.

In this note, two new and short proofs of the existence and summability
theorems, proved in [5], will be presented. The shortness relies on the use of a
technique of Guido Stampacchia ([11]); by contrast the original ones of [5] are
self-contained.

We will recall here the existence and regularity results proved in [5], then
we will give new proofs of the first two theorems.

Moreover we will study the impact on the existence assertion of the pres-
ence of a lower order term. Such a term allows to establish existence even if
uD1. We recall that in [2] a nonexistence result (also for bounded data f ) is
proved if uD1.

The first result concerns the existence of bounded solutions, and coincides
with the classical boundedness results for uniformly elliptic operators (that is
the case u40, see [11]). The main tool of the proof will be an L Q (V) a priori
estimate, which then implies the W 1, 2

0 (V) estimate, since if u is bounded then
the operator A is uniformly elliptic.

THEOREM 1.1. – Let f be a function in L m (V), with mD
N

2
. Assume (2) and

(3). Then there exists a weak solution of (1) u in W 1, 2
0 (V)OL Q (V).

The next result deals with a given f which yields unbounded solutions in
W 1, 2

0 (V).

THEOREM 1.2. – Assume (2) and 0 EuE1. Let f be a function in L m (V),
with m such that

2N

N122u(N22)
GmE

N

2
.(4)

Then there exists a function u in W 1, 2
0 (V)OL (V)m **(12u), which is a

weak solution of (1), where m **4 (m *)*4
mN

N22m
.

Notice that, since 2N

N122u(N22)
Gm and 0 EuE1, then mF

2N

N12
so

that f belongs to the dual of W 1, 2
0 (V).
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We recall that Example 1.5 of [5] shows that the result of Theorem
1.2 is sharp.

Observe that if u40, the result of the preceding theorems coincides with
the classical regularity results for uniformly elliptic equations (see [11] and [7]).

We refer to [10] for a uniqueness result for (1).
If we decrease the summability of f ( f�L m (V), mG

N

N112u(N21)
) , in [5]

it has been proved that there exist solutions which do not in general belong

anymore to W 1, 2
0 (V), even if the assumptions on f ( f�L m (V), mF

2N

N12
) im-

ply that f�W 21, 2 (V). This is stated in the following theorem proved in [5].

THEOREM 1.3. – Let 0 EuE1 and f be a function in L m (V), with m such
that

N

N112u(N21)
EmE

2N

N122u(N22)
.(5)

Then there exists a function u in W 1, q
0 (V), with

q4
Nm(12u)

N2m(11u)
E2,(6)

which solves (1) in the sense of distributions, that is,

s
V

a(x , u) ˜u Q˜W4s
V

fW , (W�C Q
0 (V).(7)

Moreover, the truncation Tk (u) belongs to W 1, 2
0 (V) for every kD0,

where

Tk (s) 4 max ]2k , min ]k , s(( .(8)

Up to now, we have obtained solutions belonging to some Sobolev space. If
we weaken the summability hypotheses on f , then the gradient of u (and even
u itself) may no longer be in L 1 (V). However, it is possible to give a meaning
to solution for problem (1) (using the concept of entropy solutions which has
been introduced in [3]). The existence result can be found in [5].

2. – Existence results.

In this section, we will prove Theorems 1.1, 1.2. The proofs of the existence
results will be obtained by approximation. Let f be a function in L m (V), with m
as in the statements of Theorems 1.1, 1.2. Let ] fn ( be a sequence of functions
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such that

fn �L
2n

N12 (V) , fn K f strongly in L m (V),(9)

and such that

V fn VL m (V) GV f VL m (V) , (n�N .(10)

Take, for instance, fn 4Tn ( f ).
Let us define the following sequence of problems:

.
/
´

2div (a(x , Tn (un ) ) ˜un ) 4 fn

un 40

in V ,

on ¯V .
(11)

The existence of weak solutions un in W 1, 2
0 (V) of the Dirichlet problem (11) is

classical, since the differential operator in (11) is uniformly elliptic.

2.1. Bounded solutions.

LEMMA 2.1. – Assume the same hypotheses of Theorem 1.1. Let f be in
L m (V) and let un be a solution of (11) with fn 4 f for every n�N. Then the
norms of un in L Q (V) and in W 1, 2

0 (V) are bounded by a constant which de-
pends on u , m , N , a , meas V and on the norm of f in L m (V).

PROOF. – Let us start with the estimate in L Q (V). Define, for s in R and for
kD0,

Gk (s) 4 (NsN2k)1 sgn (s) 4s2Tk (s) ,

and

H(s) 4s
0

s

1

(11NtN)u
dt .

For kD0, if we take Gk (H(un ) ) as test function in (11) and use assumption
(2), we obtain

a s
]NH(un (x) )NDk(

N˜unN2

(11NunN)2u
G s

]NH(un (x) )NDk(

fGk (H(un ) );

that is

as
Ak

N˜(H(un ) )N2 Gs
Ak

fGk (H(un ) ),(12)
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where we have set

Ak 4 ]x�V : NH(un (x) )NDk( .

Inequality (12) is exactly the starting point of Stampacchia’s L Q-regularity
proof (see [11], [9]), so that there exists a constant c1 such that

VH(un )VL Q (V) Gc1 .(13)

The properties of the function H (in particular the fact that lim
sK1Q

H(s) 41Q ,

lim
sK2Q

H(s) 42Q) yield a bound for un in L Q (V) from (13):

Vun VL Q (V) Gc2 .

The estimate in W 1, 2
0 (V) is now very easy. Taking un as test function in (11),

one obtains

a

(11c2 )u
s

V

N˜unN2 Gs
V

fun ,

and the right hand side is bounded since f belongs, at least, to L 1 (V).

REMARK 2.2. – We point out that Lemma 2.1 can be proved under the
slightly more general assumption

h(s) Ga(x , s) Gb ,(14)

where the real function h(s) is continuous, positive and such that its
primitive

H(s) 4s
0

s

h(t) dt(15)

satisfies lim
tK1Q

H(t) 41Q , lim
tK2Q

H(t) 42Q .

Thus it is possible, for instance, to study also problems where h(s) 4
1

(e1NsN) ln (e1NsN)
.

PROOF OF THEOREM 1.1. – Since Vun VL Q (V) Gc2 , take nDc2 , so that Tn (un ) 4

un . Then un is a weak solution of (1) in W 1, 2
0 (V)OL Q (V). r

2.2. Unbounded solutions.

The next result will be used in the proof of Theorem 1.2.

LEMMA 2.3. – Assume the same hypotheses as in Theorem 1.2. Let f belong
to L Q (V), and let u�W 1, 2

0 (V)OL Q (V) be a solution of (1) (which exists by
Theorem 1.1). Then the norms of u in L m **(12u) (V) and in W 1, 2

0 (V) are
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bounded by constants depending only on u , m , N , a , meas V and the norm of
f in L m (V).

PROOF. – Multiplying (11) by

( (11NunN)p 21) sign (un ), p4
(12u) N(m21)

N22m
,

integrating on V and using the standard Sobolev imbedding W 1, 2
0 (V) %

L 2* (V), yields

Vun VL (p112u)2* /2 (V) Gc3 ,(16)

and

s
V

N˜unN2 (11NunN)p212uGc4 .(17)

It is convenient to observe that pm 84 (p112u)2* /2. So far, we have not
used (4). Note that

(p112u) 2* /2 4m **(12u),

and that (4) is equivalent to p212uF0.
Thus, if (4) holds, then (16) implies a bound for ˜un in L 2 (V). Here the con-

stants c3 and c4 depend only on u , m , N , a , meas V and the norm of f in
L m (V). r

PROOF OF THEOREM 1.2. – The estimates for un in W 1, 2
0 (V) imply that there

exist a subsequence ]unj
( and a function u�W 1, 2

0 (V), such that unj
converges

weakly in W 1, 2
0 (V) to u. The coefficient a(x , unj

) converges to a(x , u) in any
L q (V). Thus it is possible to pass to the limit in (11) in order to obtain the exis-
tence of a weak solution u of (1). r

3. – Lower order terms.

In this section we will study the Dirichlet problem

.
/
´

2div (a(x , u) ˜u)1u4 f

u40

in V ,

on ¯V ,
(18)

where a(x , s) still satisfies the following inequality

a

(11NsN)g
Ga(x , s) Gb ,(19)
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for some real number gD0 (for almost every x�V , for every s�R , a ,
bD0) and f belongs to L m (V), for some mF1.

Even in semilinear problems the impact of a lower order term can be im-
portant (see [4], [8]). For us, the presence of lower order terms in the bound-
ary value problem (1) may change the nature of the existence results. Let ] fn (

be the sequence of functions

fn 4Tn ( f ).(20)

Define the following sequence of problems:

.
/
´

2div (a(x , Tn (un ) ) ˜un )1un 4 fn

un 40

in V ,

on ¯V .
(21)

The classical result about semilinear equations saying that the lower order
term has, at least, the same summability as the right hand side can be repeat-
ed here. We recall the following lemma (see [4]).

LEMMA 3.1. – If un is a solution of (21), then we have

Vun VL m (V) GV fn VL m (V) . r

3.1. Solutions with finite energy.

In this section we will assume that f�L m (V), mFg12.
The following lemma gives the a priori estimate in W 1, 2

0 (V).

LEMMA 3.2. – Assume

mFg12.(22)

and (19). Then the sequence ]un (, defined by (21), is bounded in
W 1, 2

0 (V).

PROOF. – The use of

[ (11NunN)11g21] sign (un )

as test function in (21) implies that

s
V

N˜unN2 Gc5 ]11V fn VL m (V) (VNunN(11g)
VL m 8 (V) .

Since (11g) m 8Gm if and only if mF21g , the a priori estimate follows
from the result of Lemma 3.1. r

Then, if f belongs to L m (V), mFg12, the existence of solutions follows as
in the proof of Theorem 1.2.
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So we can state the following theorem.

THEOREM 3.3. – If f belongs to L m (V) and if (19), (22) hold, then there
exists a solution u�W 1, 2

0 (V)OL m (V) of the boundary value problem (18).

3.2. Bounded solutions.

Now we assume that (19) holds with gD1. Let f�L m (V), with mDg
N

2
;

we will prove the existence of bounded solutions.

THEOREM 3.4. – If f belongs to L m (V), with mDg
N

2
and gD1, then there

exists a solution u�W 1, 2
0 (V)OL Q (V) of the boundary value problem

(18).

PROOF. – The use of

y (11Nun N)g21 2 (11k)g21

g21
z1

sgn (un ), kD0,

as test function in (21) and Young inequality imply that

s
Ak

a(x , Tn (un ) )N˜unN2 (11NunN)g22 1s
Ak

NunN
(11Nun N)g21 2 (11k)g21

g21
G

1

g21
s

Ak

NfnN[ (11NunN)g21 2 (11k)g21 ] G

Ce

g21
s

Ak

NfnNg1
e

g21
s

Ak

[ (11NunN)g21 2 (11k)g21 ]
g

g21 ,

where

Ak 4 ]x�V : Nun (x)NDk(.

We shall use the inequality

[ (11 t)g21 2 (11k)g21 ] G
.
/
´

cg t g21 , (tDkF2
g22

g21 21, cg42g22 , if gF2;

cg t g21 , (tDk , cg41, if 1 EgE2

and we choose e such that

e(cg )
1

g21 4
1

2
.
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Then one obtains

s
Ak

N˜unN2

(11NunN)2
Gc1 (g)s

Ak

NfnNg ,

which implies, by Hölder’s inequality,

s
Ak

N˜ logg 11NunN

11k
hN

2
Gc1 (g)s

Ak

NfnNgGc2 (g , rV f VL m (V) ) (meas Ak )
12

g

m .

Then, using Sobolev’s inequality, we find

g s
Ak

[ log (11NunN)2 log (11k) ]2*h
2

2*

Gc2 (g , V f VL m (V) ) (meas Ak )
12

g

m .

Now we set

log (11NunN) 4vn

and

log (11k) 4h .

Remark that Ak 4 ]x�V : vn (x) Dh(. So the last inequality gives

g s
]x�V : vn (x) Dh(

(vn 2h)2*h
2

2*

Gc2 (g , V f VL m (V) ) ( meas ]x�V : vn (x) Dh()
12

g

m .

Note that k12
g

m
l 2*

2
D1, since mDg

N

2
. Then Stampacchia’s technique (see

[11], [9]) implies that, for some positive constant c4 ,

Vvn VL Q (V) 4Vlog (11NunN)VL Q (V) Gc4 ,

that is Vun VL Q (V) is bounded.
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