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The p-Laplacian in Domains with Small Random Holes.

M. BALZANO - T. DURANTE

Sunto. — Attraverso un metodo variazionale, si studia un processo di omogeneizzazione
relativo al p-Laplaciano in regioni perforate in maniera stocastica. Per particolart
distribuzioni aleatorie dei «buchi» si caratterizza pienamente il problema limite.

Summary. — We investigate sequences of nonlinear Dirichlet problems of the form

—div(|Du, |?P~%2Du,) =¢ in D\E
®,) { (| h,| n 9 \E),

w,e Hy?(D\E),).
where 2 < p < n and K, are random subsets of a bounded open set D of R" (n = 2).
By means of a variational approach, we study the asymptotic behaviour of solu-

tions of (P),), characterizing the limit problem for suitable sequences of random
sets.

1. — Introduction.

A variational framework has been proposed in [2], for studying the asymp-
totic behaviour of sequences of nonlinear Dirichlet problems in randomly per-
forated domains of the form

min ff(ac,Du) dx + fgudm,

weHy ! (D\ED p\g, D\E,
where (£)) is a sequence of closed random subsets of a bounded open set
DcR" n=21<p<nand geLYD), with X +2 =1.

P q
In this paper, by using the abstract setting established in [2], we analyze
the p-Laplacian operator

A ,u=div(|Du|"~%Du)
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in domains with randomly distributed small holes, when p takes values in the
interval [2,n]. More specifically, we deal with sequences of problems of the
form

( —A,u,=g in D\E,

1.1) .
Uy, EHO ’p(D\E’h) .

The problem (1.1) is the Euler equation of the minimization problem

min f | Du|Pdx —p f gudex .

u EHO P(D\E}) D\E, D\E,

The probabilistic problem that we are going to consider can be rigorously
stated as follows. Let 5 be a nonnegative finite Radon measure on D such that
peH 19(D) and define

f f dp(x) dp(y)

UxU |x_?/|n_p

[Jnt

UxU

if 2<p<n
1.2) &p(U) =

dﬁ(ﬂc) dply) if nm=p

for every open set U of D.
We assume that there exists a strictly monotone and continuous funetion
f: R*— R with f(0) =0 such that

&R(U) < f(diam U) B(U)
for every open set U of D. For every heN, let
vl Q—D, 1<i<h,

be a family of independent, identically distributed random variables defined
on a probability space (£, ¥, P), whose distributions are given by

PloeQ:aleBY=pB), 1<is<h

for every Borel set B¢ D. Furthermore, we consider a sequence of positive
numbers (o;) such that

hhrn ho’~? if2<sp<n
(1.3) =470
hhril h(—Ing,)' ™" if p=n
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is finite and strictly positive. Finally, we define

h
Eh = Al:Jl (mih + QhF)

where F' is an arbitrary closed subset contained in the unit ball, such that the
interior of F' is not empty. We prove that the sequence (u;) of weak solutions
of (1.1) converges (strongly in L”(D)) in probability to the solution of the re-
laxed Dirichlet problem

-A,U+cB|UIP"*U=g in D
UeHE7(D)

where

[min{ f|Du|pdx:ueH1*”(R”), u=1 p-q.e. on F} if 2<p<n
R?Y

1 w,_y if p=mn,

[ is given by (1.3) and w, _; is the area of the unit sphere of R".

In the linear stochastic case p = 2, the result is well-known. It has been in-
vestigated in [10], [11], [4] by Brownian motion methods, in [12], [7] by Green
function methods, in [1], [3] by a variational method. To the best of our know-
ledge, any result exists on the p-Laplacian operator in randomly perforated
domains with Dirichlet boundary conditions. Also the corresponding deter-
ministic case has been analyzed by many authors; we refer, for a wide bibli-
ografy on the subject, to [5]. Our paper is organized as follows. Section 2 pro-
vides the necessary preliminaries. In Section 3 we give the formulation of the
problem and state the main result (Th. 3.5) of the paper. Section 4 is complete-
ly devoted to the proof of Theorem 3.5; some of the results in this section, in
particular Lemma 4.2, may be of independent interest. In that Lemma we con-
struct an explicit supersolution relative to the p-Laplacian in a perforated
domain.

Aknowledgements. We gratefullly aknowledge many fruitful discussions
with Gianni Dal Maso and Antonio Corbo Esposito.

2. — Notation and preliminaries.

Let D be a bounded open subset of R" with diameter less than or equal to
one. In all that follows we shall assume 7 = 2. We denote the family of all open
sets Uc D by U, the family of all compact sets Kc D by X and the family of all
closed sets F'¢ D by . Moreover, we indicate the o-field of all Borel subsets of
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D by &B. For every xe R" and r >0 we set
B.(x)={yeR": |x—y| <r},

and for every Borel set BCc R" we denote its Lebesgue measure by |B|. More-
over, for every set ECR" and xe R" we set

r+E={yeR":x—yek}.

The symbol #(I) indicates the number of elements of the set I.
Throughout this paper we shall indicate a real constant such that 2 <p<mn

by p. Further, we denote the Sobolev space of all functions in L” (D) with first

order distributional derivatives in L?(D) by H'?(D) and the closure of C;* (D)

in H?(D) by H&?(D). For all ¢ such that - + 1 =1, we denote the dual of

qg p
H{P(D) by H V9(D). For every K € X, we define the p-capacity of K with re-
spect to D by

C,(K, D):inf{ [1Dg|rde: gy D), 9=1 on K}
D

The definition is extended to the sets Ue U by
C,(U,D)=sup{C,(K); KcU, Ke X}
and to arbitrary sets EcD by
C,(E,D)=inf{C,(U); U2E, Ue U}.

The basic properties of the variational capacity so defined can be found, for
example, in [9], Th. 2.2. We say that a property P(x) holds for p-quasi every
xeF (or p-quasi-everywhere in E) if

C,({xeE : P(x) is not verified}, D) =0

Note that the property of being of p-capacity zero is independent of the open
set D. It can be proven that there exists one and only one u e H{'?(D) such
that 4 =1 p-quasi-everywhere on E such that

C,(E,D)= f | Du |P da.

D

We shall call such a u the p-capacitary potential of E with respect to D. The
next Lemma is needed in order to identify a class of random sets. The proof
can be obtained adapting to the case of the p-capacity that one of Lemma 4.1 in [1].
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LEMMA 2.1. — Let F be a closed set of R". For every Ke X and heN, the
real-valued function

h
(1, 2y ..y xh)—>Cp(‘U1(ac,; +F)NK, D)
is upper semicontinuous in (R™)".

A nonnegative countably additive set function u defined on & and with
value in [0, + o] such that u(¢) = 0 is called a Borel measure on D. A Borel
measure which assigns finite value to every compact subset of D is called a
Radon measure.

DEFINITION 2.2. — Let B e H ~1%(D). In the following, we need the set func-
tion so defined

f f dp(x) df(y)

AxA |90_?J|n7p

ffln

AxA

if 2<sp<mn
E(A) =

dﬂ(m)dﬁ(y) if n=p

for every A e U.

REMARK 2.3. — Let e H ~1'9(D). Defining the measure ¢ on the Borel fam-
ily of D X D by

f dB(x) dB(y)

e
[Ju

we can check (e.g. see Remark 5.1 in [3]) that for every ¢ > 0 there exists 6 >0
such that for every EcD X D with diam £ < we have o(F) <e.
Let (2, %, P) be a probability space.

if2<sp<n
o(E) =

dﬁ(%) dply) if n=p

DEFINITION 2.4. — A function F': Q— F is called a p-random set if the
function

weQ—C,(F(w)NK)eR

is Z-measurable for every K e X.
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ExAMPLE 2.5. — In order to identify a class of random sets according to the
previous definition, let us consider a family of vector-random variables, name-
ly a family of Z-measurable functions x/: Q—D, heN, 1 <i<h.

Let F be a closed set of R" such that F'c B;(0) and the interior of F' is not
empty; for any ke N, 1 <i<h, w e and r > 0, we denote by F/,(w) the fol-
lowing set

Fi(w) = {xED : l(90 — a2 (w) eF)}
¥

we note that F,(w) ¢ B,(x}'(w)). Finally, we denote by F; the random set
h

A r
Fh_iUlFi,h-

By Lemma 2.1 the sets F'; are actually random sets in according to the Defini-
tion 2.4.

For every Y-measurable real-valued function X we define the expectation
of X by

Ex] = [ xap.
Q

Let X, Y be two real-valued functions in L2(£2). Then the covariance of X and
Y is defined by
Cov[X, Y] =E[XY] - E[X] E[Y].

Let (F7,) be a sequence of p-random sets. We shall need the following set func-
tions defined on U

2.1 a'(U) = li;riiile[Cp(Fh NU)]
(2.2) a"(U) = lim sup E[C,(F, N U)]
h—>

Next we consider the inner regularizations a’_ and a”. of the set functions a’
and a”, defined for every Ue U by

2.3) {a’(U):SuP{a’(V)IVe U, Vcc U},

a” (U)=sup{a"(V): Ve U, VccU}.
Then we extend the definitions of o’ and a” to the Borel sets Be &B by:

[a”(B)=inf{a" (U): UeU, U2B},

2.4)
a" (B) = inf{a"” (U): UeU, U2B}.
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Finally, we denote by v’ and v” the least superadditive set functions
on B greater than or equal to a’_ and a”, respectively.

3. — Formulation of the problem and statement of the main result.

We are interested in analyzing the asymptotic behaviour of sequences of
quasi-linear problems in randomly perforated domains of the form

—A,u,=¢ in D\E
3.1) P "
w,e Hi'"(D\E),).

where £, is a sequence of random subsets of D and g e L %(D) with Lyl
p

1
and 4, is the p-Laplacian operator, that is g
A ,u=div(|Du|"~?Du).

Problem (3.1) is the Euler equation of the random minimization problem
3.2) min f | Du|Pdx —p f gudx,
weHy ' (D\Eip\, D\E,

which is equivalent to the following problem

3.3) min{ f|Du|”—pfgudx cueHPP(D), u=0 p-q.e. on Eh}.
D D

REMARK 3.1. — For every we Q there exists a unique wu,(w) € H}*?(D),
u,(w) =0 p-q.e. on E), solution of problem (3.3).
Let § be a Borel measure on B. For a weak solution of the problem

[ -4,U+B|U|" 2U=g in D

(3.4)
UeH{ " (D).

we mean the unique solution of the minimum problem

(3.5) min f|Du|”dx+f|u|pd,8(9c)—pfgudx.
ueH{P(D) D D D
Problems of this type have been extensively studied in [6].
In what follows, we want to study the behaviour of the sequence (u;,(w)) of
solutions of (3.3) as h— + . In particular we would like to identify the limit
problem of the sequence of random minimization problems (3.3).

THEOREM 3.2. — Let (E}) be a sequence of p-random sets, with 2 <p <n.
Let a' and a” be the set functions defined in (2.1), (2.2), and let v' and v" be
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the least superadditive set functions on B greater than or equal to a' and
a”, i.e. the set functions defined in (2.3) and (2.4).
Assume that

1) v'(B)=v"(B)< o for every Be®

and denote by v(B) the common value of v' (B) and v"(B) for every B € B; fur-

ther, there exist n >0, a continuous function & : R x R— R with £(0,0) =0

and a Radon measure B on B such that

1) lim sup|Cov [C,(E,NUY), C,(E,NUy]| < &(diam Uy, diam U,) (U, B(Uy)
h—+ o

for every Uy, Uye U with UyNU,=0 and diam(U;) <n, diam(U,) <.

Let

66  m@= min [ |Dupde-p [ guda

weHo " O\EW@) D\ g, () D\By (@)

for any ge L1(D), with 1 +l =1 and we Q.
P q

Then v is finite Borel measure on B and (m;,) converges in probability, as
h— + o, to

3.7 my= min f|Du|”dx+f|u|pdv—pfgudx,
D D

weHyP(D) p
that s, for any >0,

, lim P{weQ, |my(w)—m|>e}=0.

h— +

Morvreover, if U,(w) is the unique minimum point in Hi?(D\E,(w)) of prob-
lem (3.6) for every w € 2, and U, is the unique minimum point in Hy P (D) of
problem (3.5), we also have, for any >0,

hhm P{(U e: ||U]7(CU) - UOHL”(D) > 8} =0.

ProoF. — The proof can be deduced,by means minor changes, from Proposi-
tion 3.3, Theorem 4.10 and Corollary 4.11 in [2]. An inspection of those proofs,
in particular, that one of Proposition 3.3, shows that the more general assump-
tion (i) above is sufficient to get the result.

REMARK. — 3.3. — We could interpret the assumption (iz) as a sort of
«asymptotic weak correlation» of the random variables C,(E,NU;) and
C,(E, N Us,) on disjoint sets Uy, U, in U.

Our aim is to characterize, by applying the previous result, a class of prob-
lems, concerning the p-Laplacian operator in randomly perforated domains,
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for which the measure appearing in the limit problem can be explicitely
computed.

ASSUMPTIONS 3.4. — Let us assume the following hypotheses:

i) let Be H "1 9(D) such that B(D) = 1. Furthermore, there exists a con-
tinuous function f: R * — R with f(0) =0, strictly monotone in a neighbor-
hood O of t=0, such that

&4(U) < f(diam U) AU

for every Ue U;

1y) for every heN we set I, =1, ..., h and we consider & measurable
functions «/': Q@ — D, iel,, such that (x}*),. 1, is a family of independent, iden-
tically distributed random variables with probability distribution 5, that is

PlweQ:x!eBY=BB), iel,

for every Borel set B e $;
13) let o, be a sequence of positive numbers such that 0 <, <1 and the
limit

hEIPthZ‘p if 2<p<n
l

: _ 1-n : —
hgrgw M—Ing,) if p=n
is finite and strictly positive.

REMARK 3.5. — In this remark some significant examples of measures satis-
fying hypothesis i;) of Assumptions 3.4 are given.

(a) Let M be a smooth, compact manifold in D (with or without boundary),
whose dimension is equal to n—1. We denote the (n — 1)-dimensional
Hausdorff measure by 9" ! Let us consider a non-negative function
VeL"(M, 3" 1), such that [V(x) dIC" ' (x) =1, with > "—71 and 2<p<mn.

M p—
Let us define the measure on D

B = [ viw)dse @),

BNnM

for every Be &.
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If we set t = diam U, with U e U, we have

() - f dp(x) dp(y) _

M — 7 =~
UxU |9€-y|” b

< f( f mﬂdscnl(y))vm)dwl(x).
B(x,t)yNM

UnM —y|"r
Moreover, by Holder’s inequality, we obtain

W(y) d

n—p

:}Cnfl(y) <
Ba,hnm €= Y]

r—1

1 r
slmw,wl)[ [ —stcn—uy)] |

Bx,t)nM |9(;—y| 1

By using the elementary formula

1
adgcnfl(y) —

B(x,tyn M |2 —y]|

t
I~ (B(x, ) N M) I~ (B(x, 0) N M)
do +

a+1

0 0 t”

=a

(n—p)r
r_

with a = , and by noticing that, for any xe M and o >0,

9"~ (B(e, 0) N M) < Co" !

where C is a constant independent of x and g, it is easy to get

r—1
n—1 ] " t(n*d*l)%
n—a-—1

) =k [c

WheI‘e k = ||‘/||LT(M, :)Cnfl).

(b) Consider a measure defined, for every B e B, as
pB) = [ Vi) da,
B

where V(x) is a non-negative function such that f V(x) doc = 1.
D

If V(x) is a continuous function of compact support in D, an easy computa-
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tion gives
e if2<p<n
p
ft) = .
kmt"(— —lnt) if p=n.
n n

where k= max{V(x): xeD}.
If Ve L"(D), with > ” in the case 2 <p<mnor r>1in the case p=mn,
p

with a computation similar to that developed in (a), we obtain

r r—1

-1\ »
lc(wn_lr—) T if2<p<n
™D —n
f(t) = 2 ' r—1
r—1 1 r+1 !
ko, |7 (ln—) 0" tdo if p=mn,
L 0 0
where k = [V,

From now on we shall consider the sequence of random sets (F,) defined in
Example 2.5, with » = g,, that is, by setting

Fl(w) = {ac eD: i(9c — M (w) eF)}
O

we define
(3.8) Fy(w) = UI Fl(w).

Finally, denoting by w, _; the area of the unit sphere of R", we set

[min{ f|Du|pdac:ueH1’p(R”), u=1 p-q.e. on F}, if 2<p<n
R?I

(3.9) c¢=
Wy -1, lfp:n

The next theorem is the main result of the paper.

THEOREM 3.6. — Let (E},) be the sequence of random sets, as defined in (3.8).
Assume that the hypotheses (i,),(i2) and (i3) hold. Moreover, suppose that
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2<p<n For every heN and we 2, let U,(w) be the weak solution of the
problem

-A4,U,=g in D\E,(o)
U,eHy"(D\E,(v)),
where ge LY(D) and 1yl Then, for every € >0,
p q
hlim PlweQ: ||U,(w) - U,

L?(D) > 8} = 0
where U, is the unique weak solution of the relaxed Dirichlet problem

[ -4, U+cp|U|”"?U=g inD
UeHy " (D),

where ¢ 1s the constant defined in (3.9).

4. — Proof of the main result.

By Theorem 3.2, Theorem 3.6 is an immediate consequence of the following
proposition.

PROPOSITION 4.1. — Let (F},) be the sequence of random sets, as defined in
(3.8). Let o' and a" be the set functions defined in (2.1), (2.2), and let v’ and v"
be the least superadditive set functions on B greater than or equal to o’ and
a" , i.e. the set functions defined in (2.3) and (2.4). If hypotheses (i,), (i5) and
(13) are satisfied and 2 < p < n, we have:

t) v'(B)=v"(B)=clp(B) for every Be B,

where ¢ 1s defined in (3.9).

Moreover, there exist 5 >0, a continuous function &: R X R—R with
£(0,0) =0 and a Radon measure 51 on B such that
tz) lim sup |Cov[C,(E), N Uy), C,(E, N U,)]| <

h— + x

< E(diam U, diam Uy) B1(U;y) B1(Us)
for every Uy, Uye U with U, N Uy =0 and diam (U;) <5, diam (Us,) <.

The next two lemmas will be essential in the proof of Proposition 4.1. In the
first one, we identify a suitable supersolution of the p-Laplacian (for a defini-
tion see, for example, [8]) in perforated domains; in the second one, we give a
result which allows us to estimate from below the p-capacity of the union of a
family (%;);.; by means of the sum of p-capacities of the sets E;.
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LEMMA 4.2. — Let (E;);c; be a fomily of closed subsets of D and let
E= AUIEi. Assume that there exist a finite family (x;);<; of points in D and a

real number o such that 0 <o <1 and
E;cB,(x;))cD  for iel.

Further, for every xeR" and 1€l, set

n—p

e )" Al if 2 <
_ sSp<
zi(w) = ( |w — ;| ) rzsps<n

(-Ing) 'In(Jx —x; )AL if p=mn.
Finally, let
2(w) = Elzf,(ac).

Then ze HL.P(R"\E), z=0 on 8D, z=1 on E, and it satisfies the following
condition

4.1) f |Dz|P 2Dz Dgpdx =0
D\E
for every non-negative @ € Cy° (D\E).

ProOF. — We consider the case 2 < p <n. The case p = n can be proven in
the same way. It is easy to see that the hardest part of the proof is to show that
the condition (4.1) holds. Let us set
n—p
p-1

y =

First, we establish that, for every & >0,
ﬂ;ﬁ
(4.2) div [( | Dz(x) |*+ ¢) Dz(m)] <0,

for all xte R"\E.
Let us define, for every xe R"\E and ¢ >0, the function

a.(x) = (|Da(x) |2 +¢) * .
Note that
(4.3) div (a, Dz) = (Da,, Dz) + a,4z.

where (,) is the scalar product in R", and 4 is the Laplace operator in R".
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A simple computation gives

a, “ Oz Oz &z

Da,, Dz)=(p —2) ———— O .
( )=@-2) |Dz|*+ & i,h=1 w; Ow), Ow; O,

Moreover, we have that

2": o oz Pz

i,h=1 0x; Ox;, Jx;dx,
=@W(V+2)<j§|x—xj|*W“)(x—xj)@(ac—xj)pz,Dz>

| Dz|*

—ypr" TP |y+2

Jjel |90_.')C]

<e’y(y+1) |Dz|22 | — ;| ~7 2.
jel
Therefore,

D 2
(Da,, D)< (p—2) y(y + 1) a, #
(4.4) |Dz|*+ & jeI

<(p-2)y(y + l)agEllw—wj |~
JE

a0

It is also straightforward to show that

4.5) Az=0"y(y +2—m) X e —a; | "2,
jel /

Thus, by (4.3), (4.4) and (4.5), we get

div [( | Dz(x) |* + e)# Dz(ac)] <

(4.6)

vo"(|Da(x) |>+ &) = ZI |w—a; | "2y +2-n)+ (p—2)(y + 1]
JE

By applying the definition of y, we see that the quantity in bracket on the
right-hand side of (4.6) is equal to zero and so (4.2) is proven.

Now we are in a position to prove condition (4.1). Indeed, from (4.2), inte-
grating by part, we obtain

p—2
4.7) [ (D) + &% DeDgde=0
D\E

for every non-negative ¢ € Cy* (D\E).
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Finally, by taking the limit for e—0 in (4.7) and by applying Lebesgue’s
dominated convergence theorem, we get (4.1) and the proof is accom-
plished.

LEMMmA 4.3. — Let (E;);c; be a faomily of closed subsets of D and let
E= AUlEi. Assume that there exist a finite family (x;);<; of points in D and

two real positive numbers o and R such that

@) 0<o<R<1;
(1) EngQ(%i)gBR(%'i)QD Jor iel;
(212) |o;—x; | Z2R  for 1#].
Define

. Qﬁ f2<sp<n

. e_“n%)"%l if p=mn.
Let us set

P\ P

48) 5o Z(E) if2<p<n

2(—In)!""InR~' if p=n.

If, in addition, we suppose
PP

& (Qa;—a; | Ry 7

0
<E f2<sp<n
(iv)
1-n -1 6 .
(=In7) Zln(lxi_xil_R) <E if p=mn.
1#] :

then, for 6 <1,

Cy(E) = (1-0) EICp(Ei; B ().

PRrROOF. — Let w e Hy'?(D) be the capacitary potential of E with respect to
D. We claim that the proof is achieved, whenever u < 6 on 9Bg(x;) for every
iel. Indeed, if this is the case, let us define the function v = (1 — &) *(u —
0)". By definition of capacitary potential, it is easy to see that ve H}'?(D),
v =1 p-q.e. on £ and v = 0 p-q.e. on IBx(x;), for every 7 e I. Since (27) holds, we
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have

C(E,, Bee) < | |Do|rde

Bp(x;)

for every iel. Hence,

4.9) f|Dv|pdm> ) [ \Dojpdz= 3 €y, Br(@)).

1el BR(.X‘ )

By definition of v, we have also

f|Dv|pdﬁc— f|D(u 0)" |Pdw

D (1 5)p

(4.10)
f |D |de_ ! ¢ (B).
< a)ﬁ )

We obtain the assertion by (4.9) and (4.10). Now, it remains to prove that u < ¢
on 0By (x;) for every i e I. We shall give the details only for the case 2 <p <n.
The case p = n is obtained in the same way. Consider the function z(x) defined
in Lemma 4.2.

The function z is a supersolution relative to the p-Laplacian operator in
D\E (see Remark 4.3), such that z =0 on D and z =1 on E. Since the capaci-
tary potential % is a weak solution in D\E relative to the p-Laplacian, that is

f |Du|P~2DuDgdx =0
D\E

for every ¢ € Cy° (D\E), we can apply the comparison principle for supersolu-
tions relative to the p-Laplacian in D\E (see [9] Lemma 3.18), which
gives

(4.11) w<z ae. in D\E.

Finally, it is easy to see that, for every iel, z < 0 on dBg(«;). For a fixed 1 € I,
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let y e dBR(x;). By definition of function z and by assumption () we
obtain

/'/."’L*p
Z(?/)SZ—H
Ty —a oy

» n—p pnD
(O

. n—p
Ty g e

) PP
S e —
2 =i (ly—x )P
) P
< =+ <
2 izj (o= | —R)"TP

This inequality, together with (4.11), shows that the assumption #<d on
OB (x;), for every iel, is always satisfied and so the proof is complete.
For our purposes we also need a suitable probabilistic result. In order to
state it, we have to introduce some more notation.
Let (&;);<; be a finite family of independent, identically distributed random
variables with values in D, and with distribution given by

PlweQ:&,(w)eB} =p(B) for every Be B,

where fe H 1 4(D).
For 0 <r< R <1 and for any subset Z¢c D, let us introduce the following
random sets of indices

NZ)={iel :£;eZ},
I(Z)={iel :Br(§)cZ, |E;—&;| =2R, Vjel, j=i},
J(Z)={iel: Bp(&)cZ, Fjel, j=i, |E;—&;| <2R},

and for every n >0

) PP N
ZEI(Z)ZE < = if2<p<n
{ (& —&|-Ry? 2}

1,(2) =
{ic—:](Z):(—lnr)l‘”EAln(|§i—éj| -R)'< g}, if p=mn;
%]
and finally
1,(2) = (Z\I,(2).

We are now in a position to state the Lemma announced above. Its proof
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can be obtained by adapting to our case the proofs of (i) and (ii) of
Lemma 5.1 in [3].

LEMMA 4.4. — For any 0 <o <R <1, let 0 be the positive real number de-
fined i (4.8) of Lemma 4.3. Then, for every A e U, the expectation of the ran-
dom variable #(J5(A)) satisfies the inequality

( %) (20) P(#ID)EA)  if2<p<n
@) E#(J,A)] <
(5 ) (—Ing)' ~"(#D)PEHA) if p=mn,

the expectation of the random variable #(J(A)) satisfies the inequality

(2R)" P (#()?85(A) if2<p<n

(i) E[#(J(A)] < ~
(~In2R)' " "(#D)1*&A)  if p=mn,

where & is the set function as in Definition 2.2 and A= {yeD:
dist(y, A) < 2R}, with R < %

ProOF OF PROPOSITION 4.1. — To get the proof, we can apply exactly the
same scheme of the proof of Proposition 5.1 in [3]. For the readers conve-
nience, we repeat the basic steps in our case. We shall prove the proposition
when 2<p<n. The case n=p, can be adapted in a straightforward
way.

For 0 <6 <1 and heN, we choose R;, >0 such that g9, <R, and

a:z(ﬁ)”,
R,

where 7, is defined as in Lemmma 4.3 (in the definition of the quantity » put
o0=0y). For every Ue U and he N, let us introduce the following families of
random indices

N,(U)={iel:EeUY,
]}L(U)z {iEI:BRh(EZ‘)CU, |§Z_§]| BZR}“ Vje[h, ]¢Z},
Jh(U)z {iEIh:BRh(Si)CU’ HjEIhaj¢i) |‘Si_§j|S2Rh})

and

n—p S
1) = lien,(): > i <21,
) [16 n i¢j(|§i_§j| _Rh)nfp 2
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Furthermore, we set
J3(U) =L\
and
U,={yeU:dist(y, 8U) >R,}.
It is not difficult to see that
L,(U) = N, (U)\J,(U)
L) = N U)\T((DNJ ).

Denote by F), the random set

Fl(w)= U {meD:i(x—gcﬂ(w)eF)}.
iel§(U) o

By Lemma 4.3, we have that , for every we Q,

4.12)  Cy(F) ()N U) = C,(Fj(w)) = (1 -0) > C,(F] (), Bg,(x]")) =

ieIl(U)

#N,(U)  #L0) #J§<U>]

(1 =po)hey ") C,(F, BRh/@h(O))[ h 7 h

On the other hand, by using the elementary properties of the capacity, we im-
mediately get that, for every Ue U,

@13) C,(F()NU)< 2 C)(Fl(w), By, ! =

iENh(f]h)

#N,(U,
(ho~") C,(F, By, (0)) [ %]

where we have set U, = {yeD:dist(x, U) <2R,}.

ProoF oF (¢;). - By Lemma 4.4 we deduce that

E[#(J,(U on-pl
(4.14) lim sup [#J,(OD] 185(U)
h— + h 6

E[#(J,(U AR
(4.15) lim sup [ (}:'( )] < 5 L&g(l).
h— +
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Further, it is not difficult to check that
E[#(N,(U)))]

h— + h

(4.16) B = .
E[#(N,(U)))]

for every Ue U with S(U) = 0.
Noticing that

Rlim C,(F, Bg(0))=c,
— 4+
where c¢ is the constant defined in (3.9), we get, from (2.4), (4.13) and (4.14),

4.17) a" (B) <clB(B)
for every Be &B; and from (24), (4.12), (4.14), (4.15) and (4.16) it follows
that

n—p+2

lo(B X B)

(4.18) a”(B)=z(1-9)cl [ﬁ(B) -

for every B € B, where o is the measure defined in Remark 2.3. From (4.17) we
have

(4.19) v"(B) <clp(B)

for every Be $B.
On the other hand, we also have

(4.20) v'(B)=(1-0)clp(B)

for every B e B. Indeed, let us fix B € $B; for arbitrary 0 <» <1, take a Borel
partition (B;);.; of B with diameter of (B;) less than 7. Since v’ is superaddi-
tive, we have

n—p+2

)

2n—p+2 d d
=(1—5)”6l(ﬁ(3)— EJf fW)
JE

0 Bxp |C=y["?P

V'(B)ZZV'(Bj)B(l—é)pCl(ﬁ(B)— G(BjXBj))
ied jed

n—p+2
2(1—6)”cl(,8(3)—2 p f ﬂ(dm)ﬂ(dy))

0 p, le—y["""

2n7p+2

=(1-0)c (ﬁ(B)— O(D,,)),

where o is the measure defined in Remark 2.3 and D, = {(®,y)eDxD: |x—
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y| <n}. Notice that B; x B;c D,, for every j eJ and that the diameter of D, is
less than #. Since fe H 19(D), by Remark 2.3 we find that

lim o(D,) =0
n—0
and we get (4.20); finally, letting 6 —0, we obtain
v'(B) =ZclB(B)=v"(B)

for every B e $B. So, (t;) is proved, because v" =v'.

PRrOOF OF (t5). — We observe that, for every U e U, by Strong Law of Large
Numbers, we have

#(N,(U)

(“421) ym  —— —— =)
for a.e. we 2, and
N,(U,
(4.22) lim TV O) BU)
h— + o h

in LY(RQ). N
Since the sequence of random variables ("' #(N,,(U,))),cn is equibound-
ed, we also have

#(N,(U
4.23) lim T U BU)
h— + o h
in L2(Q).
By (4.12), we obtain
(4.24) lim infELC,(F, N U, D) C,(F,NV, D)]
— +

> [(1-2pd) clF x 1himEnf{E[ #(Nhh(Uh)) #(N;;L(Vh)) ]

~ E[ #(N,(U) #(J3 (V) ] ~ E[ #(N, (V) #(J3 (D) ]
h h h h

h h h h
for any pair U, Ve U with UNV = @. From (4.23) we obtain

#(N,(U,)) #N, V)
h h

~ E[ #(N,(U) #(1,(1V) ] ~ E[ #N, (V) #(, (D) ]}

(4.25) lim E [

h— + o

] =BWHBV)
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moreover, by Lemma 4.4 and (4.21) we have

T7 (T ] n—p+1
w26 E[ #NT) #ILT] 2707
h h i 0
17 h(TTV) ] n—p+1
WD E[#MMM#@MM 2 e,
h no 5
77 7)) T n—p+1
(4.28) 4#Www#mm>$2p B SV,
h h i 0
1 7N T n—p+1
4.29) E[ #(N};L(Vh)) #(J];L(U)) < 2 (: BV 850,

for any pair U, Ve U. Then (4.24), (4.25), (4.26), (4.27), (4.28) and (4.29)
give

(4.30) 1}im+infE [C,(F,nU,D)C,(F,NV, D)]

n—p+2 n—p+2

‘- _
3 1BU) 85(V) 5

= [(l—pé)cl]z[ﬁ(U)ﬁ(V)— BV 8£(U)]
for any pair U, Ve U with UNV = g.
By (4.13) and (4.23) we also deduce

(4.31) lim sup E[C,(F), N U, D) C,(F, NV, D)] < [ BU) B(V)

h— + o
for any pair U, Ve U with (0U) = (V) = 0. Estimates similar to (4.30) and
(4.31) for the upper and lower limit of the sequence (E[C,(F),N
U, D)IE[C,(F,NV, D)1),<n can be obtained in the same way. Therefore, we
get for any pair U, Ve U with UNV =¢

lim sup |Cov [C,(F,N U, D), C,(F,NV, D)]|

h— +

< (el BU) B(V) = [(1 = po) el F %

n—p+2 7 —p+ 2
2 2

A —
B SV — 1=

x [ﬁ(U)ﬁ(V) -1 BV) 8@(U>] :

Moreover, by ;) of Assumptions 3.4 and by taking

6 = max (\/f(diam U), \/f(diam V"))
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we obtain

lim sup |Cov [C,(F,N U, D), C,(F,NV, D)]|

h— +

n—p+2

< BU) BV)(el)?*| 2pd + I(f(diam U) + f(diam V))]

< (clAU) (V)| 2p max (V/f(diam U), \/f(diam V)) +

+20=r+21(\/f(diam U) + \/f(diam 1))
for every U, Ve U with f(diam U) <1 and f(diam V) < 1. Finally, let
ty=sup{te O: f(t)<1}.
So, for 1 =f"1(ty),

Ex, y) = [2p max (Vf@), V@) + 207 210\/f@) + V)]

and ,=clpB, the assertion ¢, of Proposition 4.1 follows and the proof is
accomplished.

REFERENCES

[1] M. BALzANO, Random Relaxed Dirichlet Problems, Ann. Mat. Pura Appl. (IV), 153
(1988), 133-174.

[2] M. BarLzAaNO - A. CorBO ESPoSITO - G. PADERNI, Nonlinear Dirichlet problems in
randomly perforated domains, Rendiconti di Matematica e delle sue Appl., 17
(1997), 163-186.

[3] M. BALzANO - L. NOTARANTONIO, On the asymptotic behaviowr of Divichlet prob-
lems in a Riemannian manifold less small random holes, Rend. Sem. Mat. Univ.
Padova, 100 (1998).

[4] J. R. BaXTER - N. C. JAIN, Asymptotic capacities for finely divided bodies and
stopped diffusions, Illinois J. Math., 31 (1987), 469-495.

[6] G. DAL Maso, Comportamento asintotico delle soluzioni di problemi di Dirichlet,
Conference XV Congress U.M.I. (Padova, Italy) 1995 - Boll. Un. Mat. Ital. (7), 11-A
(1997), 253-271.

[6] G. DAL MASO - A. DEFRANCESCHI, Limits of nonlinear Dirichlet problems in vary-
g domains, Manuscripta Math., 61 (1988), 251-278.

[7] R. F1GARI - E. ORLANDI - A. TETA, The Laplacian in regions with many small ob-
stacles: fluctuation aroun the limit operator, J. Statist. Phys., 41 (1985), 465-
487.

[8] J. HEINONEN - T. KILPELAINEN, A-superharmonic functions and supersolutions of
degenerate ellipitic equations, Arkiv for Matematik, 26 (1988), 87-105.



458 M. BALZANO - T. DURANTE

[9] J. HEINONEN - T. KILPELAINEN - Q. MARTIO, Nonlinear potential theory of degen-
erate ellipitic equations, Oxford Mathematical Monographs - Clarendon Press,
1993.

[10] M. Kac, Probabilistic methods in some problems of scattering theory, Rocky
Mountain J. Math., 4 (1974), 511-538.

[11] S. Ozawa, Random media and the eigenvalues of the Laplacian, Comm. Math.
Phys., 94 (1984), 421-437.

[12] G. C. PAPANICOLAOU - S. R. S. VARADHAN, Diffusion in regions with many small
holes, Stochastic Differential Systems, Filtering and Control. Proc. of the IFIP-
WG 7/1 Working Conference (Vilnius, Lithuania, 1978), 190-206. Lectures Notes in
Control and Information Sci., 25, Springer-Verlag, Berlin (1980).

[13] W. P. Z1EMER, Weakly Differentiable Functions, Springer-Verlag, 1989.

Dipartimento di Automazione, Elettromagnetismo,
Ingegneria dell'Informazione e Matematica Industriale
Universita degli Studi di Cassino
Via G. Di Biasio, 43 - 03043 Cassino (FR) - Italy

Pervenuta in Redazione
il 26 luglio 2001



