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Bollettino U. M. I.
(8) 6-B (2003), 399-414

Homogenization of a One-Dimensional Model
for Compressible Miscible Flow in Porous Media.

CATHERINE CHOQUET

Sunto. – Si considera un modello unidimensionale di flusso in un mezzo poroso etero-
geneo di due fluidi miscibili e compressibili. Si studia l’omogeneizzazione del si-
stema parabolico che governa tale flusso, e si dimostra la stabilità della derivazio-
ne al livello macroscopico.

Summary. – We discuss the homogenization of a one-dimensional model problem de-
scribing the motion of a compressible miscible flow in porous media. The flow is
governed by a nonlinear system of parabolic type coupling the pressure and the
concentration. Using the technique of renormalized solutions for parabolic equa-
tions and a compensated compactness argument, we prove the stability of the ho-
mogenization process.

1. – Introduction and main result.

We consider a compressible miscible flow in the simple physical setting, a
one-dimensional porous medium. We assume that the flow occurs during the
time interval (0 , T), TD0, in V4 (0 , 1 ). Let V T 4V3 (0 , T). We denote by
u the concentration of mass of one of the two fluids of the mixture, and by p
the pressure. The equations of the flow are given in Douglas and Roberts [5],
Peaceman [10], Scheideger [11]. The pressure p(x , t) verifies the equation

f(x) a(u) ¯t p1¯x q40 in V T ,(1.1)

where the rate of flow q(x , t) is given by the Darcy law

q42
k(x)

m(u)
¯x p in V T ,(1.2)

where f(x) and k(x) are the rock porosity and permeability and m(u) is the vis-
cosity of the mixture. We neglect here the gravitational term. The concentra-
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tion u(x , t) is such that

(1.3) f(x) ¯t u1q ¯x u1f(x) b(u) ¯t p2

¯x (f(x)(dm 1dp NqN) ¯x u) 40 in V T ,

where dm and dp are respectively the molecular diffusion constant and the dis-
persion constant. The functions a and b are defined on the interval (0 , 1 ) by

a(u) 4 (z1 2z2 )u1z2 , b(u) 4 (z1 2z2 ) u(12u) ,

where the nonnegative numbers z1 and z2 are the compressibility factors of
each component of the mixture.

We assume

f�L Q (V), 0 Ef2Gf(x) Gf1 a.e. in V ,(1.4)

k�L Q (V), 0 Ek 2Gk(x) Gk 1 a.e. in V .(1.5)

We consider an extension of m to R such that

m�W 1, Q (R), 0 Em2Gm(u) Gm1 (u�R .(1.6)

For instance, in the Koval model (cf. Ref. [6]), m is defined on the interval
(0 , 1 ) by

m(u) 4m(0)(11 (M 1/4 21) u)24 ,

where M4m(0) /m(1) is the mobility ratio. The molecular diffusion and the dis-
persion are assumed such that

dm D0 , dp D0 .(1.7)

The equations (1.1)-(1.3) are provided with the initial and boundary condi-
tions:

q(0 , t) 4q(1 , t) 40, p(x , 0 ) 4p0 (x),(1.8)

¯x u(0 , t) 4¯x u(1 , t) 40, u(x , 0 ) 4u0 (x),(1.9)

for x�V and t� (0 , T). For sake of simplicity, we impose here no-flow bound-
ary conditions. But our results remain true for other conditions (see Remark 1
below). We assume that the initial conditions verify

p0 �H 1 (V), u0 �H 1 (V), 0 Gu0 (x) G1 a.e. in V .(1.10)

The existence of a solution (p , u) is proved by Amirat and Ziani [3], using a se-
mi-Galerkin approach and the technique of renormalized solutions for
parabolic equations. More precisely, the following result has been estab-
lished.
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THEOREM 1. – Suppose that assumptions (1.4)-(1.7), and (1.10) hold. Then,
Problem (1.1)-(1.3), provided with the boundary conditions (1.8)-(1.9), admits
a weak solution (p , u) in the following sense:

i) p�L Q (0 , T ; W 1, 1 (V) )OW 1, u (V T ), for u� (1 , 3 /2), and is solution
of Problem (1.1), (1.8) verified in L u (V T );

ii) u�L Q (0 , T ; L 2 (V) )OL 2 (0 , T ; H 1 (V) ), with 0 Gu(x , t) G1 for al-
most every (x , t) �V T , and is a weak solution of (1.3), (1.9), that is u satisfies
the integral identity

s
V T

fu ¯t g dx dt1 s
V T

(q¯x u1fb(u) ¯t p) g dx dt1

s
V T

f(dm 1dp NqN) ¯x u¯x g dx dt4s
V

f(x) u0 (x) g(x , 0 ) dx

with q42k(x) ¯x p/m(u), and for any testing function g in C 1 (VT ) with sup-
port contained in V3[0 , T[. Moreover, the function NqN1/2 ¯x u belongs to
L 2 (V T ), and the function NqN¯x u to L 2s/(s11) (V T ), with sE2u .

In this paper, we investigate the homogenization of Problem (1.1)-(1.3),
(1.8)-(1.9) when porosity f and permeability k are highly oscillating. Let e be-
longs to a sequence of positive real numbers which converges to zero. The
porosity and the permeability are now denoted by fe and k e and are highly
oscillating with respect to e . We assume that fe and k e are mesurable func-
tions satisfying

0 Ef2Gfe (x) Gf1 a.e. in V ,

0 Ek 2Gk e (x) Gk 1 a.e. in V ,

and we define the functions f*, f 21 and k21 by

fe � f*,
1

fe
�

1

f 21

weakly* in L Q (V T ) ,(1.11)

1

k e

1

k21

weakly* in L Q (V T ) .(1.12)

Let (pe , ue ) be a weak solution of

(1.13) fe (x) a(ue ) ¯t pe1¯x qe40 in V T ,

(1.14) qe42
k e (x)

m(ue )
¯x pe in V T ,

(1.15) fe (x) ¯t ue1qe ¯x ue1fe (x) b(ue ) ¯t pe2

¯x (fe (x)(dm 1dp NqeN) ¯x ue ) 40 in V T ,
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(1.16) qe (0 , t) 4qe (1 , t) 40 for t� (0 , T), pe (x , 0 ) 4p0 (x) for x�V ,

(1.17) ¯x ue (0 , t)4¯x ue (1 , t)40 for t� (0 , T), ue (x , 0 )4u0 (x) for x�V .

We want to describe the limit (p , q , u) of the sequence (pe , qe , ue ) as eK0.
The main result of this paper is the following.

THEOREM 2. – There exists a subsequence of (pe , ue ) which weakly con-
verges as eK0 to (p , u), where (p , u) is a weak solution of the homogenized
problem

(1.18) f* a(u) ¯t p1¯x q40 in V T ,

(1.19) q42
k21 (x)

m(u)
¯x p in V T ,

(1.20) f* ¯t u1q ¯x u1f* b(u) ¯t p2¯x (f 21 (dm1dp NqN) ¯x u)40 in V T ,

(1.21) q(0 , t) 4q(1 , t) 40 for t� (0 , T), p(x , 0 ) 4p0 (x) for x�V ,

(1.22) ¯x u(0 , t) 4¯x u(1 , t) 40 for t� (0 , T), u(x , 0 ) 4u0 (x) for x�V .

Let us mention some previous papers dealing with the homogenization.
For the model without molecular diffusion and dispersion, see Refs. [1]-[2].
The immiscible case was treated in [4].

Our aim is now to establish Theorem 2. The rest of the paper is organized
as follows. In Section 2, we establish some estimates on the concentration and
the pressure, and we use the technique of renormalized solutions as in Ref. [9]
to obtain estimates on the Darcy velocity. In Section 3 we pass to the limit on
oscillating solutions through a compensated compactness argument.

2. – Preliminary estimates.

W e r e c a l l t h e f o l l o w i n g r e s u l t o f e x i s t e n c e f o r t h e s y s t e m ( 1 . 1 3 ) - ( 1 . 1 7 )
( c f . [ 3 ] ) .

THEOREM 3. – There exists a weak solution (pe , ue ), with pe in the space
L Q (0 , T ; W 1, 1 (V) )OW 1, u (V T ), with u� (1 , 3 /2), and the function ue in the
space L Q (0 , T ; L 2 (V) )OL 2 (0 , T ; H 1 (V) ), to the nonlinear system (1.13)-
(1.15) provided with the boundary and initial conditions (1.16)-(1.17). More-
over we have

0 Gue (x , t) G1
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for almost every (x , t) �V T , and the function NqeN
1/2 ¯x ue belongs to

L 2 (V T ).

The techniques applied in this section are used in Ref. [3] to prove the exis-
tence of a solution, but we recall most of the proofs to clearly specify the de-
pendence of the oscillating solutions on the parameter e . We begin by the fol-
lowing properties of the rate of flow qe and of the concentration ue .

LEMMA 1. – i) The Darcy velocity qe is uniformly bounded in
L Q (0 , T ; L 1 (V) ). More precisely, for all eD0, we have the estimate

s
V

Nqe (x , t)NdxG
k 1

m2
s

V

Np 80 (x)Ndx a.e. in (0 , T) .(2.1)

ii) The sequence (ue ) is uniformly bounded in L 2 (0 , T ; H 1 (V) ), and
the sequence (NqeN

1/2 ¯x ue ) is uniformly bounded in L 2 (V T ).

PROOF. – The first point comes directly from [3]. For the second one, we
multiply Eq. (1.15) by ue and integrate over V . We obtain

1

2

d

dt
s

V

fe Nue (. , t)N2 dx1s
V

fe (dm 1dp NqeN)N¯x ueN
2 dx1

s
V

qe ¯x ue ue dx1s
V

fe ¯t pe b(ue ) ue dx40 .

We introduce the functions g , h : RKR , defined as g(s) 4sb(s)2a(s) and
h(s) 411g(s) /a(s). We can write

s
V

fe b(ue ) ¯t pe ue dx4s
V

fe a(ue ) ¯t pe dx1s
V

fe g(ue ) ¯t pe dx

42s
V

h(ue ) ¯x qe dx4s
V

h 8 (ue ) ¯x ue qe dx .

Since h�W 1, Q (R), and Nue (x , t)NG1 a.e. in V T , using the Cauchy-Schwarz
inequality and the inequality abGda 2 1 (1 /4d) b 2 for any real dD0, we
have

1

2

d

dt
s

V

fe Nue (. , t)N2 dx1s
V

fe (dm 1dp NqeN)N¯x ueN
2 dx

Gs
V

Nh 8 (ue )NN¯x ueNNqeNdx1s
V

NqeNN¯x ueNNueNdx
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GC1s
V

NqeNN¯x ueNdx1C2s
V

NqeNN¯x ueNdx

Gds
V

NqeNN¯x ueN
2 dx1

C

4d
s

V

NqeNdx ,

for any dD0. Since the sequence (qe ) is bounded in L Q (0 , T ; L 1 (V) ), we
have

1

2

d

dt
s

V

fe Nue (. , t)N2 dx1s
V

(dm f21 (dp f22d)NqeN)N¯x ueN
2 dxG

C

4d
,

where C is a constant which does not depend of e . Taking 0 EdEdp f2 and
using the Gronwall lemma, we obtain the result of the lemma.

We now use the technique of renormalized solutions to estimate the flux
function qe . We claim that the following result holds true.

LEMMA 2. – The sequence (qe ) is bounded in L u (0 , T ; W 1, u (V) )OL s (V T )
for any reals u� (1 , 3 /2) and sE2u . Moreover the sequence (pe ) is bounded
in W 1, u (V T ).

PROOF. – Note that the function qe is a solution of

¯tg m(ue )

k e
qeh2¯xg 1

fe a(ue )
¯x qeh40 in V T ,(2.2)

qe (0 , t) 4qe (1 , t) 40 for t� (0 , T),(2.3)

g m(ue )

k e
qeh (x , 0 ) 42p 80 (x) for x�V .(2.4)

Let then mF0 be an integer. Throughout the sequel we denote by C a generic
constant independant of e and m . We define the odd function Sm on R by

Sm (s) 4

.
/
´

0

s22m

2m

if 0 GsE2m ,

if 2m GsE2m11 ,

if sF2m11 ,

and the set Bm by

Bm 4 ](x , t) �V T ; 2m GNm(ue ) qe N(x , t) G2m11 ( .
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We multiply eq. (2.2) by Sm (m(ue ) qe ) and integrate over V to obtain

s
V

¯tg m(ue )

k e
qeh Sm (m(ue ) qe ) dx1s

V

m(ue )

fe a(ue )
S 8m (m(ue ) qe )N¯x qeN

2 dx4

2s
V

m 8 (ue )

fe a(ue )
S 8m (m(ue ) qe ) qe ¯x qe ¯x ue dx in (0 , T) .

We introduce the function Sm : RKR , defined as Sm (s) 4 s
0

s

Sm (z) dz . Inte-
grating the latter relation on (0 , T), we obtain

s
V

1

k e
Sm (m(ue ) qe )(x , T) dx2s

V

1

k e
Sm (m(ue ) qe )(x , 0 ) dx1

s
Bm

m(ue )

fe a(ue )
S 8m (m(ue ) qe )N¯x qeN

2 dx dt4

2s
Bm

m 8 (ue )

fe a(ue )
S 8m (m(ue ) qe ) qe ¯x qe ¯x ue dx dt .

Since (m(ue ) qe )(x , 0 ) 42k e (x) p 80 (x) in V and N Sm (s)NG2m NsN for any s�R ,
and using the properties of Sm , k , f , m and a , we have

s
V

1

k e
Sm (m(ue ) qe )(x , T) dx1s

Bm

m(ue )

fe a(ue )
S 8m (m(ue ) qe )N¯x qeN

2 dx dtG

2m k 1

m2
s

V

Np 80 (x)Ndx1Cs
Bm

NqeNN¯x qeNN¯x ueNdx dtG

2m Cs
V

Np 80 (x)Ndx1ds
Bm

N¯x qeN
2 dx dt1

C

4d
s

Bm

NqeN
2 N¯x ueN

2 dx dtG

2m Cs
V

Np 80 (x)Ndx1ds
Bm

N¯x qeN
2 dx dt12m C

2d
s

Bm

NqeNN¯x ueN
2 dx dt ,

for any real dD0. By hypothesis on p0 and Lemma 1-ii), it implies

1

2m
s

Bm

N¯x qeN
2 dx dtGC .(2.5)

Now let u be a real number, 1 EuE2. Then using the Hölder inequality,
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we get

s
Bm

N¯x qeN
u dx dtGg s

Bm

N¯x qeN
2 dx dthu/2

NBmN12u/2 ,

where NBmN denotes the measure of Bm . We note that on Bm , we have NqeNF

C2m where the constant C depends only on variations of the function m .
Therefore,

NBmNG
C

2m
s

Bm

Nqe (x , t)Ndx dt .

By the Hölder inequality, we also have

s
Bm

Nqe (x , t)Ndx dtGg s
Bm

Nqe (x , t)Ns dx dth1/s

NBmN1/s 8 ,

for any s , s 8D1 with 1 /s11/s 841. This produces

NBmNG
C

2ms g s
Bm

Nqe (x , t)Ns dx dth .

Thus, in view of inequality (2.5),

s
Bm

N¯x qe (x , t)Nu dx dtG
C

2m(s(12u/2 )2u/2 ) g s
Bm

Nqe (x , t)Ns dx dth12u/2

and then

(2.6) !
mF0

s
Bm

N¯x qe (x , t)Nu dx dtG

!
mF0

C

2m(s(12u/2 )2u/2 ) g s
Bm

Nqe (x , t)Ns dx dth12u/2

.

We now choose sDu/(22u). Using the discrete Hölder inequality, the right-
hand side of inequality (2.6) is majorized as

!
mF0

1

2m(s(12u/2 )2u/2 ) g s
Bm

NqeN
s dx dth12u/2

G

g!
mF0

1

2mr(s(12u/2 )2u/2 ) h1/ru!
mF0

g s
Bm

NqeN
s dx dth(12u/2 ) r 8v1/r 8
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with 1 /r11/r 841. Choosing r 842/(22u), we infer from (2.6)

!
mF0

s
Bm

N¯x qeN
u dx dtGCg !

mF0
s

Bm

NqeN
s dx dth12u/2

GCg s
V T

NqeN
s dx dth12u/2

.

Now we define B as the set

B4 ](x , t) �V T ; 0 GNm(ue ) qe N(x , t) G1( ,

so that V T 4BNg 0
mF0

Bmh . So we have to estimate s
B

N¯x qeN
u dx dt . Let

R , R : RKR defined as

R(s) 4

.
/
´

1

s

21

if sF1,

if 21 GsG1,

if sF21,

R(s) 4s
0

s

R(z) dz .

We multiply Eq. (2.2) by R(m(ue ) qe ) and integrate over V T . Similarly to the
first part of the proof, we get

s
V

1

k e
R(m(ue ) qe )(x , T) dx2s

V

1

k e
R(m(ue ) qe )(x , 0 ) dx1

s
B

m(ue )

fe a(ue )
R 8 (m(ue ) qe )N¯x qeN

2 dx dt4

2s
B

m 8 (ue )

fe a(ue )
R 8 (m(ue ) qe ) qe ¯x qe ¯x ue dx dt .

We have

Ns
V

1

k e
R(m(ue ) qe )(x , 0 ) dxN GCs

V

Np 80 (x)Ndx .

Then, using the properties of R, f , m and a , it follows

s
V

1

k e
R(m(ue ) qe )(x , T) dx1s

B

m(ue )

fe a(ue )
R 8 (m(ue ) qe )N¯x qeN

2 dx dtG

Cs
V

Np 80 (x)Ndx1ds
B

N¯x qeN
2 dx dt1

C

4d
s

B

NqeNN¯x ueN
2 dx dt ,
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for any real dD0. This implies

s
B

N¯x qeN
2 dx dtGC .

Finally we have established the estimate

s
V T

N¯x qeN
u dx dtGCg11g s

V T

NqeN
s dx dth12u/2h ,

for any sD2/(22u).

We now use the Gagliardo-Nirenberg multiplicative embedding inequality
for the flux function qe (Q , t), which satisfies qe (0 , t) 4qe (1 , t) 40 for almost
every t� (0 , T). We have

g s
V

Nqe (x , t)Ns dxh1/s

GC g s
V

N¯x qe (x , t)Nu dxhl/ug s
V

Nqe (x , t)Nr dxh(12l) /r

,

with rF1, 0 GlG1, and such that

l4g 1

r
2

1

s
hg12

1

u
1

1

r
h21

.

We take r41, and this gives

l4g12
1

s
hg22

1

u
h21

.

Then, since Vqe VL Q (0 , T ; L 1 (V) ) GC ,

s
V T

Nqe (x , t)Ns dx dtGCs
0

T

g s
V

N¯x qe (x , t)Nu dxh(s21) /(2u21)

dt .

Applying the Hölder inequality to the right-hand side yields for sE2u

s
0

T

g s
V

N¯x qe (x , t)Nu dxh(s21) /(2u21)

dtGCg s
V T

N¯x qe (x , t)Nu dx dth(s21) /(2u21)

.

Therefore,

s
V T

N¯x qeN
u dx dtGCg11gs

V T

N¯x qeN
u dx dthu*h ,
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with u*4
(22u)(s21)

2(2u21)
, for u/(22u) EsE2u . We note that 0 Eu*E1. This

implies

V¯x qe VL u (V T ) GC ,

Vqe VL s (V T ) GC ,

for any real uE3/2 . And this ends the proof of the lemma.
We can now state and prove the following result.

LEMMA 3. – The sequences (ue ) and (qe ) are sequentially compact in
L 2 (V T ).

PROOF. – In view of Lemma 2, the sequence (qe ) is bounded in

L u (0 , T ; W 1, u (V) ). Moreover, it follows from Eq. (2.2) that g¯tg m(ue )

k e
qehh is

uniformly bounded in L u (0 , T ; W 21, u (V) ). Let the real u 8 be defined by

1/u11/u 841. Since g m(ue )

k e
qeh is bounded in L s (V T ), and since the imbedding

L s (V) %W 21, u 8 (V) is compact, a compactness argument of Aubin (cf Ref. [7])

implies that g m(ue )

k e
qeh is sequentially compact in L u 8 (0 , T ; W 21, u 8 (V) ).

Now let (we ) be the sequence defined by

we4m(ue ) qe .

Since (we ) is bounded in L u (0 , T ; W 1, u (V) ) (cf. lemmas 1-ii) and 2), we can
define a function w�L u (0 , T ; W 1, u (V) ) such that (up to a subsequence, not
relabeled for convenience)

we � w weakly in L u (0 , T ; W 1, u (V) ) .

We then assert that

we

k e
�

w

k21

weakly in L u (V T ) .

Indeed, taking a test function c� D(V T ), we study the limit as eK0 of

s
V T

we (x , t)

k e (x)
c(x , t) dx dt4s

V

1

k e (x)
u s

0

T

we (x , t) c(x , t) dtv dx .

Let ve�L u (V) be defined by

ve (x) 4s
0

T

we (x , t) c(x , t) dt .
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We have ¯x ve�L u (V), and so the sequence (ve ) is compact in L u (V). We de-
note by v its strong limit, then

veKv in L u (V) ,

and v satisfies

v(x) 4s
0

T

w(x , t) c(x , t) dt .

We then have as eK0

s
V T

we (x , t)

k e (x)
c(x , t) dx dtKs

V

v(x)

k21 (x)
dx4

s
V

1

k21 (x)
u s

0

T

w(x , t) c(x , t) dtv dx4 s
V T

w(x , t)

k21 (x)
c(x , t) dx dt ,

and our assertion is proved.
We then obtain the sequential compactness of (we ) in L 2 (V T ) by using the

following decomposition

s
V T

1

k e
(we2w)2 dx dt4 o 1

k e
we , we2wl

L u% (0 , T ; W 21, u 8 (V) )3L u (0 , T ; W0
1, u (V) )

2

s
V T

we

k e
w dx dt1 s

V T

1

k e
w 2 dx dt .

Clearly, the right-hand side tends to zero with e . And since k e (x) D0 a.e. in V ,
we have shown

weKw in L 2 (V T ) .

Furthermore, in view of lemmas 1 and 2, and of eq. (1.15), the sequence
(fe ¯t ue ) is bounded in L u (0 , T ; W 21, u (V) ). Since (ue ) is bounded in L Q (V T )
and then (fe ue ) in L u 8 (V T ), a compactness argument of Aubin implies that
(fe ue ) is sequentially compact in L u 8 (0 , T ; W 21, u 8 (V) ). On the other hand,
we can assert the existence of a function u�L 2 (0 , T ; H 1 (V) ) such that, up to
a subsequence,

ue � u weakly in L 2 (0 , T ; H 1 (V) ) .

Following the lines used to prove the weak convergence of the sequence
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(we /k e ) to w/k21 in L u (V T ), we can state that

fe ue � f* u weakly in L 2 (V T ) .

We then consider the decomposition

s
V T

fe (ue2u)2 dx dt4 afe ue , ue2ubL u 8 (0 , T ; W 21, u 8 (V) )3L u (0 , T ; W0
1, u (V) ) 2

s
V T

fe ue u dx dt1 s
V T

fe u 2 dx dt .

Since its right-hand side tends to zero with e , and since fe (x) Ff2D0 a.e. in
V , we conclude that the sequence (ue ) converges strongly to u in
L 2 (V T ).

Finally, since the sequences (we4m(ue ) qe ) and (ue ) are compact in
L 2 (V T ), we conclude that (qe ) is sequentially compact in L 2 (V T ).

3. – Proof of Theorem 2.

The results of the previous section allow us to assert the existence of func-
tions u�L 2 (0 , T ; H 1 (V) ), q�L s (V T )OL u (0 , T ; W 1, u (V) ), p�W 1, u (V T )
such that, up to subsequences not relabeled for convenience, we have the fol-
lowing convergences

ue � u weakly in L 2 (0 , T ; H 1 (V) ), and a.e. in V T ,

qe � q weakly in L u (0 , T ; W 1, u (V) ), and a.e. in V T ,

pe � p weakly in W 1, u (V T ), and a.e. in V T .

Moreover, we recall that we have shown in the proof of Lemma 3 that

m(ue ) qe

k e
�

m(u) q

k21

weakly in L u (V T ) ,

and then

q42
k21 (x)

m(u)
¯x p .

On the other hand, we can assert

1

a(ue )
¯x qe �

1

a(u)
¯x q weakly in L u (V T ) .

We are now going to determine the limit of the sequence gfe ¯t pe42
¯x qe

a(ue )
h
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by using the Div-Curl lemma of Murat and Tartar (cf. Ref. [8]) as follows. We
define two sequences of vector fields (A e ) and (B e ) in R2 by

A e4 (fe , 0 ) ,

B e4g ¯x qe

a(ue ) fe
,

m(ue )

k e
qeh .

We first note that the sequence (A e ) (respectively (B e )) is bounded in
(L u 8 (V T ) )2 (respectively in (L u (V T ) )2), where the real u 8 is such that 1 /u1

1/u 841. Moreover,

divt , x (A e ) 4curlt , x (B e ) 40 .

Therefore,

aA e , B e b42fe ¯t pe � aA , Bb42f* ¯t p in the sense of distributions in V T .

On the other hand, aA e , B e b 4
¯x qe

a(ue )
� ¯x q

a(u)
weakly in L u (V T ). The identifica-

tion gives

2f* ¯t p4
¯x q

a(u)
.

Then, we deduce that q and p are solutions of the following system

f* a(u) ¯t p1¯x q40 in V T ,(3.7)

q42
k21 (x)

m(u)
¯x p in V T ,(3.8)

q(0 , t) 4q(1 , t) 40, p(x , 0 ) 4p0 (x) .(3.9)

We study now the limit behaviour of the concentration equation (1.15):

fe ¯t ue1qe ¯x ue1fe b(ue ) ¯t pe2¯x (fe (dm 1dp NqeN) ¯x ue ) 40 .

Our previous results, and in particular the strong convergence of the se-
quences (qe ) and (ue ), allow us to pass to the limit as eK0 and to obtain u sol-
ution of

f* ¯t u1q ¯x u1f* b(u) ¯t p2¯x (fe (dm 1dp NqeN) ¯x ue) 40 in V T ,(3.10)

where (fe (dm 1dp NqeN) ¯x ue) denotes at this step the weak L u (V T )-limit of
the sequence (fe (dm 1dp NqeN) ¯x ue ). Let us specify this limit. To this aim, we
use once again the Div-Curl lemma. We define the vectors fields C e and D e in
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R2 by

C e4g 1

fe
, 0h ,

D e4 (fe (dm 1dp NqeN) ¯x ue , fe ue ) .

The sequence (C e ) (respectively (D e )) is uniformly bounded in (L u 8 (V T ) )2 (re-
spectively in (L u (V T ) )2). We have divt , x (C e ) 40. And by Eq. (1.15),
curlt , x (D e ) 4qe ¯x ue1fe b(ue ) ¯t pe is also bounded in L u (V T ). Therefore,

aC e , D e b �
1

f 21

(fe (dm 1dp NqeN) ¯x ue)

in the sense of distributions in V T . On the other hand,

aC e , D e b 4 (dm 1dp NqeN) ¯x ue � (dm 1dp NqN) ¯x u

weakly in L u (V T ). By the unicity of the limit, we conclude that

(fe (dm 1dp NqeN) ¯x ue) 4f 21 (dm 1dp NqN) ¯x u .

The function u is therefore solution of

(3.11) f* ¯t u1q ¯x u1f* b(u) ¯t p2¯x (f 21 (dm1dp NqN) ¯x u)40 in V T .

This completes the proof of Theorem 2.

REMARK 1. – This result remains true for other choices of boundary condi-
tions in (1.8)-(1.9) and (1.16)-(1.17). Let us consider for instance the case of a
given pressure drop: we replace (1.16)-(1.17) by

pe (0 , t) 4p1 (t), pe (1 , t) 4p2 (t), pe (x , 0 ) 4p0 (x) ,

ue (0 , t) 4u1 (t), ue (1 , t) 4u2 (t), ue (x , 0 ) 4p0 (x),

for t� (0 , T) and x�V . We assume pi �H 3/4 (]0 , T[), ui �L Q (]0 , T[) and
0Gui (t)G1 a.e. in (0 , T), for i41, 2 . Then the function qe is a solution of

¯tg m(ue )

k e
qeh2¯xg 1

fe a(ue )
¯x qeh40 in V T ,

¯x qe (0 , t) 42 fe a(u1 ) p18 (t), ¯x qe (1 , t) 42 fe a(u2 ) p28 (t) for t� (0 , T),

g m(ue )

k e
qeh (x , 0 ) 42p 80 (x) for x�V .

Thus, the tools of the proof of Lemma 2 can be used in this case, with minor
changes due to the Neumann boundary conditions. We could also choose
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mixed boundary conditions for the pressure, that is

pe (0 , t) 4p1 (t), qe (1 , t) 4q1 (t) for t� (0 , T) ,

with q1 �H 1/2 (]0 , T[).
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