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Restricting Cuspidal Representations
of the Group of Automorphisms of a Homogeneous Tree.

DoNALD I. CARTWRIGHT - GABRIELLA KUHN

Sunto. — Sia X un albero omogeneo dove a ogni vertice si incontrano q + 1 (q¢ = 2) spi-
goli. Sia A = Aut(X) il gruppo di automorfismi di X e H un sottogruppo chiuso
isomorfo a PGL(2, F) (F campo locale il cui campo residuo ha ordine q). Sia 7 una
rappresentazione continua unitaria e irriducibile di A e si consideri wy, la
sua restrizione ad H. K noto che se m ¢ una rappresentazione sferica o speciale
7 g rimane irriducibile. In questo lavoro si mostra che quando x ¢ cuspidale la
situazione é molto pint complessa. St studia in dettaglio il caso in cui il sottoal-
bero minimale associato a w sia il piw piccolo possibile, ottenendo una esplici-
ta decomposizione di 7.

Summary. — Let X be a homogeneous tree in which every vertex lies on q + 1 edges,
where q = 2. Let A = Aut(X) be the group of automorphisms of X, and let H be the
its subgroup PGL(2, F'), where F is a local field whose residual field has order q.
We consider the restriction to H of a continuous irreducible unitary representation
7 of A. When m is spherical or special, it was well known that & remains irre-
ducible, but we show that when m is cuspidal, the situation is much more compli-
cated. We then study in detail what happens when the minimal subtree of w is the
smallest possible.

1. — Introduction.

Continuing the notation in the abstract, A is a locally compact totally dis-
connected unimodular topological group with the topology of pointwise con-
vergence. Fix a vertex o of X and a vertex o’ adjacent to 0. A classification of
the irreducible continuous unitary representations 7 of @ was given by
Or'shanskii [11, 12], and is described in [4], the notation of which we shall basi-
cally be following. They are parametrized by (orbits of) finite complete sub-
trees r of X (a subtree t is complete if for every vertex v of r not in the bound-
ary of r, all of the ¢ + 1 neighbours of v are also in r). For such a subtree, let
K(x) denote the compact group of g € @ for which gv = v for all vertices v of ¢,
and let K(x) = {ge Q:gx =1}. We write K,= {ge A:go=0} =K({o}). If &
has non-zero K(x)-fixed vectors, but no non-zero K(1))-fixed vectors for any fi-
nite complete subtree ) with fewer vertices than r, we call t a minimal sub-
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tree for ;. If ¢ is a minimal subtree for sz, then so is gy for any g e . If w has a
minimal subtree with only one vertex, which we may assume is o, then = is
called spherical. If & has a minimal subtree with exactly 2 vertices, which we
may assume are o and o', then s is called special. If & has a larger minimal
subtree r, i.e., diam (y) = 2, then x is called cuspidal. These are obtained by
induction from K(g) to @ of irreducible representations o of K(g) which are
trivial on K(x) and which have no non-zero K(1)-fixed vectors for any of the
maximal proper complete subtrees 1) of r (note that K(x) c K(y)c I?(g) for such
a 1)). The set of equivalence classes of these «standard» representations of
IN{(g) is denoted (IN{(g))a. Because any automorphism of r can be extended to an
automorphism of X, the map g—g, g~induces an isomorphism K(x)/K(x) =
Aut (1), and so the representations of K(r) satisfying the above conditions cor-
respond to certain irreducible representations of Aut(xr), which we also refer
to as standard.

Note that in Ol'shanskii’s papers, the representations classified were the
algebraically irreducible admissible ones. If 7 is a cuspidal irreducible contin-
uous unitary representation on a Hilbert space I(;, let V, denote the space of
vectors & e I, which are K(y)-invariant for some finite complete subtree .
This a dense invariant subspace of JC,. Let 7°: @ — GL(V}) be the representa-
tion of @ obtained from sr. Then z° is admissible and algebraically irreducible
[4, p. 115]. Conversely, if 7': A — GL(V) is an admissible and algebraically ir-
reducible representation of @, which has minimal subtree of diameter at
least 2, then 7’ is unitarizable [12, § 2.6], and extends to irreducible continuous
unitary representation.

Let F' be a commutative non-archimedean local field. Let ord : F—7Z U
{ @} be the valuation on F'. Let © = {x e F : ord (x) = 0} be the valuation ring
of F, and let @we © be an element of valuation 1. Let O* = {x e O :ord (x) =0}
denote the group of invertible elements of the ring £. Let ¢ be the order of
the residual field /@, which equals p” for some prime p and some integer
r=1. Let Ac£ be a set of ¢ elements, one of them 0, such that the canonical
map £ — /@, restricted to A, is a bijection. Each element of O is express-
ible uniquely as the sum of a series ay+ a; @+ a, @*+ ..., where each ¢;isin A.

Recall the construction of the Bruhat-Tits tree X associated with G =
GL(2, F) [16, p. 69; 4, p. 127]. Let V = F? denote the space of all column vec-
tors of length 2 with entries in F. A lattice in V is a subset of V of the form
{tiv; + a2t 1y, ty € O}, where {v;, v, } is a basis of V over F. If {v;, v, } is the
usual basis of V, then the corresponding lattice is 2, and is denoted L. If L is
a lattice and if g € G, then g(L) is a lattice, and so G acts on the set of lattices.
This action is clearly transitive, and the stabilizer of L, is the group K=
GL(2, O) of matrices with entries in O and having determinant in *. Two
lattices L, L' are called equivalent if L' = AL for some A e F'*. Let [L] denote
the equivalence class of the lattice L. The Bruhat-Tits tree X has as vertex set
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the set of equivalence classes of lattices. Two distinct lattice classes [L] and
[L'] are adjacent if representative lattices L and L' can be found such that
wLCL'CL. The tree X is homogeneous of degree q + 1.

The above action of G on X gives a homomorphism ¢ : G — @ with kernel
Z = {M:2eF >} Wewrite H for the image of ¢. Thus PGL(2, F) = H < A. It
is natural to ask how the irreducible unitary representations = of ¢l behave
when restricted to H. When  is spherical or special, the restriction is known
to remain irreducible [4, p. 117]. We are concerned here only with the cuspidal
case.

We identify H and PGL(2, F') throughout. The representations of H corre-
spond to, and are here frequently identified with, representations of G which
are trivial on Z. Everything we shall need about the representations of G is
contained in Bump’s book [1].

Let 7 be an irreducible unitary representation of @ with minimal subtree ,
where diam (r) =2. In Section 2 we prove some general results, showing in
particular that the restriction of 7 to H is a direct sum of induced representa-
tions. Then in Sections 3 and 4 we discuss in detail the case when g is as small
as possible: o together with its ¢ + 1 neighbours. Except for the one example
with ¢ = 2, the restriction of 7 to H is then never irreducible, and we give for it
an explicit decomposition as a direct integral of irreducible representa-
tions.

We thank Tim Steger for useful conversations on the subject of this

paper.

2. — Restricting cuspidal representations to PGL(2, F).

Let Q, G, K, Z, ¢ :G— A and H = G/Z = PGL(2, F) be as above.

Now let r be a finite complete subtree of X, with diam (r) =2. Let oe
(I?(g))g have representation space I(, (finite dimensional, of course). Let 7 =
Ind,%ma. Because we are inducing from an open subgroup, the definition of an
induced representation is particularly simple here. Counting measure on the
discrete set @1/K(x) is an invariant measure, and so the representation space
of & is the space IC, of functions f : @ — I, such that

() flkg) =0(k)(f(g)) for all ge d and kel?(g), and
(i) Zlfg)lP < o,

and we define ||f]| to be the square root of the sum in (ii). Here {g,} is any set
of coset representatives for K(gg) in @. Notice that we do not have to add mea-
surability conditions, because any fe JC, is left K(r)-invariant, and therefore is
locally constant. For ge @, the action of 7(g) on fe IC, is right translation:
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((g) f)(g') =f(g'g). Because I?(g) is also compact, if fe I(;, then the inte-
gral of ||f(¢)|]? over @ with respect to a Haar measure m is m(K(x)) times the
sum in (ii) above.

Notice that in [4], the induced representation is defined so that IC, consists
of functions satisfying f(gk) = o(k ~1)(f(g)) for all ge @ and kel?(g), with
a(g) being left translation. The intertwining operator f— f, where f(x) =
f(x 1), shows that the two definitions give equivalent representations.

The algebraically irreducible admissible representation z° corresponding
to 7 is just the representation obtained from ¢ by compact induction (see, for
example, [1, p.470]). To see this, let feV,, the representation space of 7°.
Then fe IC, is right K(y)-invariant for some finite complete subtree 1 of X. So
for any & e IC,, the function g—(f(g), &) is in S(x) (see [4, p. 87]) and is left
K(y)-invariant, and so [4, Prop. IT1.3.2] is supported on the compact set {ge
@: grcy}, which is a finite union of cosets g K(x). Hence fis supported on a fi-
nite union of cosets K(xr) g. Conversely, if fe ¢, is supported on the union of
cosets K(x) g;,j=1, ..., r, choose a finite complete subtree 1) containing the
union of the trees g, 'x. If ke K(v), then g;kg; ' € K(x) and so o(g;99; ') =1
for each j. It follows that f is right K(py)-invariant, and so in V.

We start with two quite general results. In the first one, the hypotheses
diam(y) =2 and o€ (K(g))a are not needed.

PRrOPOSITION 2.1. — Let ¢ be a finite complete subtree of X satisfying
diam (x) = 2. Then A is a finite disjoint union

2.1) a=URwgH,

of double cosets K(x) gH. Let oe (K(x))y, and let 7= Indl‘%(m o. Then the re-
striction of w to H 1s unitarily equivalent to the representation

(22) ]@1 Indg’ll?(p) giNnH 0,

where o;(k) = o(g;kg ™) for keg, ' K(x) g;N H. In particular, if v =2, then
this restriction is reducible.

ProoF. — Fix any vertex v, e r. There are only finitely many subtrees of X
containing v, and of the form g(r) for some ge 1. Write these y;(x), j =
1, ..., m. If ge A, then as H acts transitively on the vertices of X, there is an
h e H such that g ~'(vy) = h ' (v). Thus kg ~*(vy) = vy, so that kg ' (x) = y;(x)
for some j. Thus ge K(x) y j’lh. Hence there are only finitely many distinct
double cosets K(g) gH, so that (2.1) holds for some gy, ..., g,.

We may write K(g) g;H as a union of disjoint cosets K(g) g;h;j,,, where the
h; s are in H. Hence, for each j, H is the union of the disjoint cosets
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(gj’ll?(g) 9; "V H) h; . Let IC, be defined as above, and let $ denote the repre-
sentation space of the representation (2.2), i.e., the space of r-tuples
(fi, ..., f;) of functions f;: H— IC, which satisfy

(i) fi(kh)=0(g;kg; )(f;(h)) for all heH and keg;, ' K(x) g;nH, and
(@) D[fih;, )< oo
v

Given FeJ(,;, let fj(h)=F(g;h) for heH. It is clear that the map
T:F—(fi, ..., f) is an isometry IC,— $. Moreover, this map is surjective,
because if (fi, ..., f,) € 9, then we may define F e J(, by setting F(kg;h) =
o(k)(fi(h))forallhe H, ke I?(g), and all 7. It is routine to check that F' is well-
defined and that (fi, ..., f,)=TF). =

Let & be as in Proposition 2.1. The following result, while not used in the
sequel, is of interest because it guarantees that any irreducible subrepresen-
tation of the restriction 75 of 7w to H occurs with only finite multiplicity. Since
my is still square integrable as a representation of H, standard arguments
show that it is a subrepresentation of the sum of infinitely many copies of the
left regular representation 15 of H. In fact, we can show more:

PropoSITION 2.2. — Let 7 be as in Proposition 2.1. Then for some n < oo
the restriction to H of 7 is contained in the sum nl i of n copies of the left reg-
ular representation of H.

PrOOF. — Let I, be the representation space of &z and let M be the space of
K(x)-fixed vectors in IC,. Notice that if fie M and ke f{(g), then n(k) e M
because K(x) is normal in I?(g;). Let ¢4, ..., g be as in (2.1). Suppose that
(f, nh) 2(g;"") fi) =0forallfyeM,all he H and all j. Then f= 0. To see this,
pick any fye M\{0}. For if g e @1, we can write g = hg;” ' k for some j, and some
heH and k e K(x). Then (f, () fo) = {f, 7(h) Jt(gj’l)(n(k) f0))=0.Butf;is
a cyclic vector for mz, and so f=0.

Now M is finite dimensional because M cV, and z° is admissible (cf. [4,
p-112]). Let M’ be the sum of the subspaces Jt(gj’l)M, j=1,...,r. Let
fis -+, fn be any basis of M'. For each i, let (T;f)(h) = (f, w(h) f;). Then
T;feL?*(H) by [4, Lemma3.12]. Define T:9C,—>L*(H)®...®L*H) (n
copies) by Tf=(T: f, ..., T, f). It is easily checked that T intertwines s and
nlAy. Moreover, T has kernel {0} by the first paragraph of this proof. Now
T*T :9C,— IC, must intertwine s with itself, and so be ¢/ for some ¢ =0. As T
is injective, we have ¢ = 0. Hence ¢ 2T is an isometry embedding IC, in
L:H)®...®L?*(H) and intertwining & and niy. =
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We shall henceforth only be concerned with the case when the = in (2.1)
is 1. In this case, Proposition 2.1 takes the following simpler form:

COROLLARY 2.3. — Let x be a finite complete subtree of X satisfying
diam (y) =2 for which

2.3) a=Kx) H.

Let o e (K(x)),, and let = = Ind3 0. Then the restriction of 7 to H is unitarily
equivalent to the representation

(2.4) Indf o |RwnH

obtained by inducing from K(x) N H to H the restriction of o to K(x) N H.

Notice that the hypothesis (2.3) is satisfied by r=1,={ve X : d(v, 0) <n},
because K(x,) = K,, and (2.3) holds because H acts transitively on the set of
vertices of X.

Another example in which (2.3) holds is r = 1,, the subtree whose vertices
are those at distance at most » from o or o’ (recall that o’ is a neighbour of o).
Here n=1. Clearly K(x),) = {geA:9{0,0'} ={o0,0'}} for any n. Since G
acts transitively on the vertices of X, (2.3) holds because K = GL(2, O) acts
transitively on the set of neighbours of o. See the beginning of the next
section.

Here is an example for which (2.3) is not true, i.e., » >1 in (2.1). Assume
that ¢ =4, and let xy, ..., 5 be 5 distinet neighbours of 0. For each j, let v; be
a vertex at distance j + 1 from o such that x; is on the geodesic from o to v;. Let
L be the smallest complete subtree having all the vertices v; as interior points.
Choose a g € K, which interchanges x; and «,, but leaves the other neighbours
of o fixed. Then any & e G which satisfies gr = hx must interchange x; and «x,,
and fix x3, x4 and x5. But an & € G which fixes three neighbours of o must fix
them all by Lemma 3.1 below.

In the context of Corollary 2.3, it is convenient to work with representa-
tions of G = GL(2, F) instead of H, and so we transfer the last lemma to that
setting:

LEMMA 2.4. — With notation and hypotheses of Corollary 2.3, the represen-
tation of G obtained from the representation (2.4) of H by composing with
¢:G—H 1is

(25) Ind}%G(Jg) O—’ ’

where Kg(x) = {9eG:¢(g) el?(g)} and where o' is the representation of
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Kq(x) obtained from O kwynu by composing with the restriction of ¢ to
Kq(x).

PROOF. — Write G as a disjoint union of cosets Kg(x) g,. Then H is the dis-
joint union of the cosets (K(x) N H) ¢(g,). It is easy to see that f>fo ¢ is an
isometric isomorphism from the representation space $ of the representa-
tion (2.4) to that of 2.5). =

Let Kq(x) = {geG: ¢(g) e K(x)}. Then ¢ induces an embedding

(2.6) K(0)/Kq () — K(x)/K(x) = Aut (v),

and o' corresponds to a representation of KG(g)/KG(g), obtained by restricting
the irreducible standard representation o of Aut(r). So o' will in general be a
finite sum

2.7 o' =01+...+0,,

of irreducible representations of I?G(g)/KG(g). Thus (2.5) will be the sum of the
corresponding induced representations.

Obtaining the decomposition (2.7) is a non-trivial problem in the represen-
tation theory of the finite group Aut(x), even for the simplest of y’s.

3. — The case ; =1y;.

Recall that A denotes a set of ¢ elements in £ containing 0 such that the
map a—a + @D is a bijection A — O/w. The neighbours of 0 = [L,] are the
vertices [¢. Lo] and [g,Ly], a € A, where

)

3.1) [1 0] q [w a
. o = an 0=
g 0 @ g 0 1

Clearly K;(x)) =ZK=27-GL(2, D), and it is easy to see that Kg(x;)
equals

{(AI+@M):AeF* and MeM,, (D)},

where M, »(£) is the space of 2 X 2 matrices with entries in £. Since {I +
oM :MeM,;,»,(O)} is the kernel of the natural map GL(2, O)—
GL(2, O/wD), we see that K;(x;)/Ks(x;) = PGL(2, IF,), where F, = /w9 is
the field with ¢ elements. Thus the o;’s in (2.7) can be thought of as represen-
tations of PGL(2, I;). The map GL(2, ) —GL(2, IF,) induced by the surjec-
tion 0 —/wO =7, naturally gives rise to a surjection

3.2) ZK—PGL(2, IF,)
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which is trivial on Z. So the o/’s can be thought of as representations of
ZK.

It is also clear that Aut(x;) = &, , the symmetric group on ¢ + 1 letters.
So in this case the embedding (2.6) gives us an embedding of the group
PGL(2, I,), which has order (¢ +1) g(¢ — 1), into &, ;. This embedding is
equivalent to the following well-known construction. Let P'(IF,) be the projec-

tive line over I, i.e., the set of equivalence classes of non-zero vectors v = (a)
in %, where v ~v" if v’ = Av for some Ae I . Let [Z] be the equivalence class
of (Z) The natural action of PGL(2, I¥;) on Pl(Fq), which has ¢ + 1 elements,
is faithful. This gives an embedding of PGL(2, IF,) into &, , ;. We can define a

bijection from P'(F,) to the set of neighbours of 0 by mapping [ﬂ to [g.Lol,

a €A, and mapping [(1)] to [ g Lo]. One may check that this is an isomorphism

of PGL(2, IF,)-spaces. The following is a well-known and easily checked fact
about the action of PGL(Z,F,) on Pl(Fq) (see, for example, [15, Theo-
rem 10.6.7]).

LEMMA 3.1. — If uy, us, us are three distinct neighbours of o, and if also
V1, Vo, Vg are three distinct neighbours of o, then there is a unique ge
PGL(2, F,) such that gu; =v; for each j.

It is well-known that the irreducible representations of Aut(x;) =S,
are in one to one correspondence with the partitions of ¢ +1 [8, Theo-
rem 2.1.11]. We next identify which of them are standard.

LEMMA 3.2. — Of the irreducible representations of S, 1, only two are non-
standard, namely the trivial representation and the q dimensional represen-
tation of &, % 1obton'ned from the natural action of ©,., on V=

{(ry ooy 1) gltZ:O}.

PrOOF. — Any maximal proper subtree of x; consists of o and a neighbour of
0. So given any two maximal proper subtrees 1); and Y, of x;, there is a g e
Aut(x;) such that g(y;) =9,. Thus to check whether a representation of
Aut (x;) is non-standard, we need only check when it has a non-zero K(1))-fixed
vector for any particular maximal proper subtree ). The subgroup K(y)) corre-
sponds to the subgroup ©, of &, ; which fixes a particular one of the letters
1, ..., ¢ + 1. The irreducible representations of &, ; having a non-zero &,
fixed vector are just the subrepresentations of the quasi-regular representa-
tion 1, say, of ©,, 1 on &, 1/, (see [4, p. 104]). But it is easy to see that 1" is
equivalent to the representation obtained from the natural representation of
S,+1 00 C?*1 which is the sum of one copy of the trivial representation (be-
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cause of the constant ¢ + 1-tuple (1, 1, ..., 1)), and the above g-dimensional
representation on the orthogonal complement V of (1,1,...;1). =

The two non-standard representations of &,.; appearing above corre-
spond to the partitions (¢+1) and (g, 1), respectively, of ¢+ 1 (see [8,
Lemma 2.2.19(ii)]).

The irreducible representations of PGL(2, ;) are also well-known. In [14]
and [1, §4.1], for example, the irreducible representations of G,= GL(2, I,)
are described, and those of PGL(2, I;) are just the ones which are trivial on
the centre Zy = {A] : A e ') } of Gy. If q is odd, there are 2 characters, 2 «spe-
cial» representations of degree q, (¢ —3)/2 «principal series» representations
(all of degree g + 1), and (¢ — 1)/2 «cuspidal» representations of degree ¢ — 1.
If ¢ > 2 is even, there is only 1 character, and 1 special representation of de-
gree ¢, and there are (q — 2)/2 principal series representations (all of degree
q+1), and ¢/2 cuspidal representations of degree ¢ —1. If ¢ =2, there are
2 characters and 1 representation of degree 2.

Thus for r=1y;, the problem of describing the representation (2.4), or
equivalently, (2.5), becomes the following: Firstly, take an irreducible repre-
sentation o of ©,, 1, not one of the two non-standard ones described in Lem-
ma 3.2, and consider its restriction ¢’ to PGL(2, I,), embedded in &, as de-
scribed before Lemma 3.1.

(a) Decompose ¢ into the sum (2.7) of irreducibles o}, j=1, ..., m.

(b) Regard each o; as a representation on ZK via(3.2), and determine
Ind$x o;.

We are able to perform step (a) explicitly for any particular small g. If
g<3, then (¢+1)q(g—1)=(¢+1)!, and so PGL(2, IF,) = @qH. Thus m
in (2.7) is 1. By Lemma 3.2, if ¢ = 2, then only the sign character ¢ is standard.
If ¢ =3, then &, ; has trivial character, the sign character ¢, 1 representation
of degree 2, and two of degree 3 (see, for example, [8, p. 349]). Thus the stan-
dard representations are ¢, and one each of degrees 2 and 3. These must «re-
strict» to a non-trivial character, a cuspidal and a special representation, re-
spectively, of PGL(2, IF;).

For somewhat larger ¢’s, we first use [14, §1.5] to determine the conjugacy
classes C; in PGL(2, IF,)). Then for each 7, after choosing a representative g; of
C;, it is easy to caleulate the cycle type of the permutation of P'(F,) induced by
¢;. Then we use the character tables in [8, pp. 349-355], and routine calcula-
tions to find the decomposition into irreducibles of the restriction to
PGL(2, IFy) of each irreducible representation of ©,. ;. By way of example,
the result for case ¢ =7 is given in the table below. It is the smallest case in
which multiplicities greater than 1 occur. The first row of the table gives the
degree of each irreducible representation of S, ., in the order used in [8]. In
the first column, y; is a character, and c;, p; and s; refer to cuspidal, principal
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series, and special representations, respectively. The next two columns refer
to the two non-standard representations of S, ;, and so do not concern us
here.

The case ¢ =T7.

1 7 20 21 28 64 35 14 70 56 90 35 42 56 70 64 21 14 28 20 7 1
X100 0 0 0 01 0 1 0100 O0O0OTO0OT1TTUO0TO0O0O0
xJ00 0 0 0 01 10 0O0O0O0100O01000T1
001 0 1 2 00 1 2 211 1 221000060
3001001110212110211010 s
sy0 0 0 111 1 0 2 0 2 1 1 1 2 1 0 0 1 0160
2001 0 0 1 1 112110 2 11010100
g0 0 1. 0 0 1. 1. 112 1 1 0 2 1 1 0 1 0 100

We now turn to step (b) in the procedure for describing the representa-
tion (2.4): finding Ind‘Z;Koj’- for each j. There are four cases, according to
whether 7 =0 is cuspidal, a character, special or principal series.

PROPOSITION 3.3. — When t is cuspidal, then Indjgt is an irreducible su-
percuspidal representation of G.

Proor. — This is a special case of a result of Kutzko [9], which is stated and
proved in exactly our situation in [1, Theorem 4.8.1], with the central character
being trivial in our case. A word is needed about the various types of induced
representations used here and in [1]. Let us call the type defined at the begin-
ning of Section 2 unitary induction. In[1], ordinary induction is defined as
in our definition above, but without the condition (ii) there; compact induction
is defined with (ii) replaced by the condition that f(g,) =0 for only finitely
many o’s. If the representation spaces of Indfxz are Vs, V' and V, respect-
ively, for these three representations, then VcV,cV'. In the proof of irre-
ducibility in Theorem 4.8.1 in [1], it is shown that Homg(V, V') is one-dimen-
sional, and since there is a natural injection Homg(Vs, Vo) = Homg(V, V'),
the irreducibility of the representation on V, follows. The representation on V,
is the completion of the representation on V, which is shown to be supercuspi-
dal and admissible in[1]. =

Before dealing with the case when 7 is a character, we first need to give
some properties of the spherical principal series representations =z of A stud-
ied in[4], for example. Recall the boundary Q of X consists of equivalence
classes of infinite geodesics in X. If (x, @4, ...) and (%, %1, ...) are both in the



RESTRICTING CUSPIDAL REPRESENTATIONS ETC. 363

class w, with x, = x and y, = y, there is an & € Z such that y,, = «,, , ;, for all suf-
ficiently large n. We write h(x, y; w) = h. There is a natural topology on £
making it a totally disconnected compact space. Let C* (£2) denote the space of
locally constant functions 2 — C. There is also a natural action of @ on 2. For
non-zero s e C, we can define a representation of d on C*(Q) by

s h(go, 0; w)
(7,(g) F)®) :F<g1w>(—) .

Vg

The factor \/q on the right is a normalization so that, when |s| = 1, &, is unita-
rizable with respect to the inner product (Fy, F») = [ F;(w) Fy(w) dv,(w) on
Q

©” (). Here v, is the natural probability on £ associated with the vertex o [4,
p. 34]. The representations 7, are irreducible for |s| =1, and make up the
spherical principal series of representations of @. They remain irreducible
when restricted to H, and are also so named in that context.

Let y,: F*—C* be the quasi-character a+>s®4@ of F'*. Then it is rou-
tine to see that the restriction of 7 to H, regarded as a representation of G, is
the principal series representation o, = B(y, xs-1) defined in[1, p. 471]. In-

deed, let w, be the class of the geodesic (g0, g;0, ...), where g, = (1 On)

0 o

for n e N. The set of g € G such that gw (= w is the set P of upper-triangular
matrices in G. We define T : C*(2)—V,, the representation space of ¢, by

(TF)(g) = F(g ' w,) (i

Va

It is not hard to show that 7 is a bijection, intertwining s, and ¢, on H.
The following is well-known. See [3]; cf. [4, Corollary I1.6.5]. We include a
proof for the convenience of the reader.

)h(go,O;wo)

PROPOSITION 3.4. — Let A be the unitary representation of A on 1*(X) ob-
tained from the natural action of A on X. Then 4 is unitarily equivalent to
Indl“'}ol, and A ts the direct integral of the representations mg, |s| =1. The
same 1s true when we restrict A and the m,’s to H.

ProoF. - Firstly, 4 is unitarily equivalent to Indg 1. To see this, for each
vertex x € X, choose g, e @ such that g,x =0. Then @ is the disjoint union of
the cosets K, g,, xe X. For fel?(X), define F : A —C by F(kg,) = f(x) for all
ke K,and x € X. Then F' is in the representation space of Ind}%ﬂ 1, and it is easy
to check that this defines a unitary map intertwining A and Indg 1.

The remaining statements are well-known, and implicit in [FN, The-
orem 6.4], and we omit the proof. Proposition 4.7 below is a similar but
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somewhat less well-known fact, and we prove that for the convenience
of the reader. =

PROPOSITION 3.5. — When 7 is a character, and q > 2, then Ind$xt, as a rep-
resentation of H = PGL(2, F), is the product of a character of H and the di-
rect integral of the spherical principal series representations of H. When t is
a character and q =2, then Ind%xt is an irreducible supercuspidal represen-
tation of G.

PROOF. — Our 7 comes from a character of PGL(2, IF)), and hence a charac-
ter of Gy = GL(2, IF,) trivial on the centre Z, of G. So when g # 2, it is of the
form gZ, —yx((det (g)), where x is a character of ')’ [14], [1, § 4.1]. For trivial-
ity on Zy, o must take only values 1 and —1. Using /w0 =, y, lifts to a
character of O, and then to a character y of F* by setting y(w) =1. So 7 is
the restriction to ZK of the character y: g—yx(det(g)) of GL(2, F), which is
trivial on Z. Then

IndgKT = Ind(Z;K)hZK = )?Ind(Z;Kl .

Now Indf1 is clearly trivial on Z, and so factors through the representation
Ind¥ y1 of H, which is the restriction to H of the representation Indg 1 of d.

Let 1 be as in Proposition 3.4. Then Ind}%ol is equivalent to A. Hence by
Proposition 3.4, Ind%}n g1, regarded as a representation of G, is the direct in-
tegral of the representations B(ys, xs-1), |s|=1.

The product of the character y:g+—y(det(g)) and B(y,, x-1) is equivalent
to BUexs, xxs-1) [1, p.490], and so Ind% 7 is the direct integral of these principal
series representations, which are not in the spherical series if y, is non-trivial.

Finally, suppose that ¢ =2, and that 7 is the non-trivial character of

= 1 1\ 1 . 0 1 ..
PGL(2, Fy) = ©3. Then (0 1) fixes (0) and interchanges (1) and (1) So it is
an odd permutation of P! (F,), and the value of 7 there is —1. Hence there is no

(1) 1)) v) = ¢(v) for all

veC. So 7 satisfies the condition of being cuspidal (though it is usually not
thought of as such), and the proof of Theorem 4.8.1 in [1] goes through without
change, taking V,=C and 7,=r7. So Indfx7 is irreducible and supercuspi-
dal. m

non-zero linear functional ¢ : C— C such that ¢ (r ((

The case when t is special.

When 7 is special we are led to consider the representation = of @ obtained
from its natural action on the set & of (undirected) edges of X. We also consid-
er the natural action on the set & of directed edges of X. If e = (x, %) is a di-
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rected edge, let ¢’ denote the edge (y, x). If f: 8 — C is a function, let f': §*—
C Dbe defined by f'(e) =f(e’). We call f even if f' =f, and odd if f' = —f. Let
12(8) and 12(&%) denote the spaces of square summable functions on & and &7,
respectively. Let 12(87) and {2(8?) denote the spaces of even and odd elements
of 12(8%), respectively. Clearly, the map f—((f+f')/2,(f—f')/2) is an isomor-
phism 12(8%) —=12(8") @ 12(8%). Also, (Tf)({x, y}) = V2f((x, 1)) defines an iso-
morphism T : [2(8%) —12(8).

The group @ acts on & and &% in a natural way, and hence on each of the
spaces [%(8), 12(&%), 12(87) and 12(8%). Let &, 7%, 7¢ and x¢ denote the corre-
sponding representations of d.

LEMMA 3.6. — Let y:Q—{—1,1} denote the non-trivial character
g—>(—1)19 of A. Then we have the following unitary equivalences.
(i) n'=ni@ns,
(it) 7l=m, and
(i) ml=yQ@ml.

Proor. — The equivalences in (i) and (ii) are given by the bijections
128 =128 @ 12(8%) and 12(8%) —1%(8) defined above. To see (iii), fix a ver-
tex 0e X, and define S : [2(8%) —12(&%) by (Sf)((x, ) = (= 1)"> D f((x, y)).
This is easily checked to be a well-defined map. For g e @,

(S(i(g) ), y) = (=1 (x5 (g) ), y)
= (D™ (g ta, g 'y)
= (=)@ (=)0 f((g e, g 7 y))
= 2(9)SH(g 'z, g y)

= (x(9) 7 NSO (@, ). =

Ife=(x,y e &% let i(e) denote the initial vertex x of e. The space V, of
fel2(&?) which satisfy >, f(e) =0 for each x € X is invariant under ¢, and

e:ife) =

so gives a subrepresentation sp, of 7#¢. In the same way, we can define a sub-
representation sp, of 7% on V,c(2(&%). The representations sp, and sp, are
known to be irreducible, and are called the special representations of @ (see
[4, § II1.2]). By part (iii) of the above lemma, sp, =y & sp,.

LEMMA 3.7. — Let A denote the unitary representation of @ on 1*(X) ob-
tained by the natural action of A on X. Then ml=sp,®A, and so
7l=sp.® (y @A)
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PROOF. — Define T : 12(X) —12(&%) by (Tf)((x, v)) =f(y) — f(x). It is easy
to check that T is continuous, with norm at most 21/q + 1, and intertwines 14
and ¢, Let T = UA be the polar decomposition of 7'. Thus A is a positive her-
mitian operator on (2(X), and U is a partial isometry, inducing an isometric
isomorphism of M =ker(T)* onto N =ker(T*)* (cf.[13, Theorem 3.2.17]).
From the construction of this decomposition, it is clear that U intertwines
A and 7¢. Clearly T is injective, and so M =1%(X), and thus the restriction
of #% to N is unitarily equivalent to A. Also, for Fel2(8%), (T*F)(x) =
-2 >, F(e),andsoker(T*)=V,. Hence N=V,*, and so [2(8)) =V,®N.

eecsi(e)=x
The first statement in the lemma has now been proved, and the second one fol-

lows from Lemma 3.6, since y '=y. =

Recall that o' is a vertex adjacent to 0. Notice that 7¢ is the representation
obtained by inducing to A the trivial character on K({0,0'}) = {ge Q:go=0
and go’ = o'}. This is because @ acts transitively on X and K, acts transitively
on the set of neighbours of o, so that @ acts transitively on &°.

If we take o' =[g,Ly] for ¢g,= ((1) g), then the preimage in G of
K({o,0'}) is ZK', where K' is the set of all matrices

(e )

we d)’

where a, de O™ and b, ce ©. Since G also acts transitively on X and K acts
transitively on the set of neighbours of o, the restriction of 7% to H, regarded
as a representation of G, is Ind%x 1.

There is a special representation of Gy = GL(2, IF,) corresponding to each

X

character y of I,

obtained by inducing the character (g Z) —y(ad) of P,

from P, to Gy, and taking a g-dimensional subrepresentation. For this to be
trivial on the centre Z; of G,, we need %% to be trivial. When q is even, this
forces y to be trivial, but when ¢ is odd, there is a unique character y, of I, of
order 2. Let 7, and 7, be the special representations of PGL(2, IV,) corre-
sponding to the trivial character and to y,, respectively. We can lift y; to a
character y; of /™ by first lifting to £ using the surjection © — O/ =T,
then to F'* by mapping @ to 1.

ProposITION 3.8. — Let 1, and v, be the special representations of
PGL(2, Iy), as above (the latter existing only when q is odd). Lift these to ZK
using (3.2). Then Ind$xt,, regarded as a representation of H, is unitarily
equivalent to the direct sum of the restrictions to H of y ® A, sp. and sp,. For q
odd, Indfxt, is equivalent to the product of Ind§gxt, by the character
g 71 (det (g)).
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Proor. — We have Indggl =1&®71,, where the 1’s on the left and right de-
note the trivial characters of P, and G, respectively.

Next observe that when we lift Ind§’1 to ZK using (3.2), we get IndZ% 1,
where K' is defined above. This is because K’ is the preimage of P, in G, un-
der the natural map K— GL(2, IF,). Hence

IndZ6.1 = 1@,

regarding the representations on the right as defined on ZK. Hence by transi-
tivity of induction, we have

Indx1 @ IndSx 7, = Indfx 1.

Now Ind%x1 regarded as a representation of H, is the restriction to H of A, as
we saw in the proof of Proposition 3.5. Also, Indg 1 regarded as a representa-
tion of H, is the restriction to H of 7%, as we saw above. So by Lemma 3.7 and
parts (i) and (iii) of Lemma 3.6 we have

A@Indg]{fo =10 (X ®A)®Spe@spo’

with the 1 on the left and the representations on the right restricted to G.
Since the representations on both sides are all finite in the sense of [10] (see
pp. 33, 45 and 120-122 there), we can cancel A from both sides, obtaining the
stated decomposition of Ind§xz,. Starting from

21 @7 =Indfy, =y ®Ind31,

where yi(g) =yx:(det(g)), it is easy to prove the statement about
IndZK'L'l. ]

4. — The case when 7 is principal series.

There is a principal series representation B(y 1, x2) of Gy = GL(2, I;) cor-
responding to each pair (xi, 2) of distinct characters of '), obtained by in-
ducing the character (g Z) —=y1(a) xo(d) of P, from P, to G, [14, § 8], [1,
§ 4.1]. Its dimension is ¢ + 1. The representations B(y 1, x2) and B(y 2, x1) are
equivalent. For B(yi, x2) to be trivial on the centre Z, of G,, we need
x2=x1"

So we start with a character y, of I, such that y§ is non-trivial. We define a
character X(’):(g 3) —xo(a/d) of Py, then form 7o= B(xo, z0") = Ind% y ;.

This lifts to a ¢ + 1-dimensional representation 7 of ZK in the usual way: for
AeF ™ and ke K, set 1(Ak) = t,(k), where k denotes the image of k in Gj.
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LEMMA 4.1. — The above representation t of ZK 18 unitarily equivalent to
IndZE. %', where y' is the character Ak—y{(k) of ZK'. Hence Indfgt =
IndgKr X '

PRroOF. — Let V, and V be the representation spaces of 7 and IndZ% ', re-
spectively. If fyeV,, then f;: Go—C is a function such that fy(pg) =
xo(p) fo(g) for all pe Py and g e Gy. We then define fe V by f(1k) = f, (k). Tt is
routine to check that f, —f gives a unitary equivalence. The last statement fol-
lows by transitivity of induction. =

Of course Ind¥x. y ' is trivial on Z, and it will be convenient to work with the
corresponding representation Ind#.y", where K" is the image of K' in H =
PGL(2, F), and y" is the character kZ—y' (k) of K".

Studying Ind%. 5" leads us to consider the set flxu of equivalence classes of
irreducible continuous unitary representations 7 of H for which 3¢, ,» = {£e
Iy (k) E=yx"(k) & for all ke K"} is non-zero. We also need to consider the
space (" = I((H//K", ") consisting of compactly supported functions f on H
for which

4.1) Jkyhkz) = 3" (kv kz) f(h)

for all heH and ki, koe K". It is easy to see that if f;, foe H", then f; * f€ H”
and f* € 9", where fi* (k) =f(h ~!). The algebra I(” is an example of a 7-spher-
ical Hecke algebra, described in [7, Appendix 1], for example.

To study 9", it is convenient to work with the space (' of continuous func-
tions f: G— C of compact support such that

4.2) Skt gks) = 5" (k{ k2) f(g)

for all ge G and ki, k; e K'. It is also an example of a 7-spherical Hecke
algebra.
Define A :C.(G)— C,(H) by

0\\ dx
(A7) = [ fige) s = ff(g (6 )
7 Jhe 0 = |gc|
where dz refers to Haar measure on Z. Then A is a linear surjection [1, Propo-
sition 4.3.4]. It is clear that A maps (" into I(". In fact, A(IC") = ", for if
fe X" and if fye C.(G) satisfies A(fy) =f, then setting

43) A = [ [ i k) fokaghs) df ans,
K'K'

where dk’ refers to normalized Haar measure on K', we have f; e (' and

A(f;) =1 too.
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It is easy to see that A is a * -algebra homomorphism.
Define matrices

o™ 0 0 1
Im,n = ( 0 mn) (m, W/EZ), and Wy = (1 O) .

LEMMA 4.2. — Let P be the group of upper-triangular matrices in G. Then
we may write G as a disjoint union of double cosets in the following two
ways: G=PK'UPuw,K', and

4.3) G= U K'g,,K'U U K'wyg, .K'.

m,ne’z m,ne’z

PrROOF. — Suppose that g = (i Z) € G has determinant D. If ord(c) >

ord (d), then
(a b) _ (D/d b)( 1 0)
¢c d) \o d)\ed 1

exhibits ¢ as an element of PK'. If ord(c) < ord(d), then

(a b) _ (—D/c a) (0 1) (1 d/c)

c d 0 c/\1 0/\0 1

exhibits g as an element of Pw,K'. Hence G = PK' U Pwy,K'. To see that
these double cosets are disjoint, we must check that wy,¢ PK'. But if

lcz(a b)eK’, then

wc  d
0 INfa b we d
k= = P.
o (1 0) (wc d) ( a b) ¢
To show (4.3), it is enough to show that if p = (g 2) € P, then both p and pw,

are in the union on the right in (4.3), which is easily seen to be disjoint. There
are several cases:

(i) If either ord(b) = ord (a) or ord(b) = ord(d), let m = ord(a) and n =
ord(d). Then peK'g,, ,K' because

(a b)z(a/w’" 0 )(wm O)(l b/a)
0 d 0 dw"/\ 0 @"/\0 1

(a b)_(l b/d)(wm 0)(a/wm 0)
0 d/ \o 1 0 o 0 d/w")] "

(ii) If ord (b) < ord(a), ord (d), let m = ord (a) + ord (d) — ord (b) and n =

and
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ord (b). Then

(a b) =( 1 O) (0 1) (wm 0 )(—ad/bwm 0 )
0 d b 1/\1 0 0 w" a/w" b/w"
shows that pe K' wyg,, .K'.

(iii) If ord(b) > ord(a), let m = ord(d) and n = ord (a). Then

(a b)(O 1):(a/w” 0 )(0 1)(w’” 0)(1 0)
0 d/\1 0 0 d/w™/\1 0 0 o/ \bla 1
shows that pwye K' wy gy, K'.
(iv) If ord(b) = ord(d), then again let m =ord(d) and = = ord(a).

Then
(a b)(O 1):(1 b/ol)(O 1)(@"’” 0)(d/w’” 0)
0 d/\1 0 0 1/\1 o/\0 a@" 0 a/o"
shows that pwye K’ wyg,,, . K'.

(v) If ord(b) <ord(a) and ord(b) <ord(d), let m =ord(b) and n =
ord(a) + ord (d) — ord (b). Then

(a b) (0 1) _ ( 1 0) (w’”’ 0 ) (b/wm a/w™ )
0 d/\1 o0 db 1 0 o 0 —ad/bw”
shows that pw,eK'g,, ,K'. ™

LEMMA 4.3. — Any function f satisfying (4.2) must satisfy f(wo g, ») = 0 for
all m, ne”.

PRrROOF. — Let ae ™, let a denote its image in I, and evaluate f at

(a 0) (0 1) (wm 0 ) _ (0 1) (w 0 )(1 0)
o 1/\1 o/\o o~ 1 o/J\o a/\0o a)
Then we must have y¢(0)f(wo Gy, ») =FWoGm, ») %0(@ ). Since y§ =1, we

can choose a so that yo(@) # xo(@~'). Hence f(wyg,, ,) =0. =

Thus 9" is spanned by the functions F,, , defined by

X’(kllkz’) 1f g:klrgm,nkZ,EK’gm,nK,’

F, ., =
m,n(9) {0 if geK'g,, .K'.

It is convenient to normalize these functions as follows:

(4.5) G, =qmntimmE, . for m,neZ.
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It is also convenient to work below with Haar measure on G normalized
so that K’ has measure 1.

PROPOSITION 4.4. — For all m,n, r, se”Z,
(46) Gm,n *Gr,sz Gm+r,n+s-

Hence the convolution algebras ' and C.(7?) are isomorphic, as are IC' and
C(Z).

Proor. — We first derive the formula
(4.7) (Fo,n *Fy )(9) =¢q "'_S'IFm,n,(gk’gr,_sl) x' (k') dk',
%

where dk' refers to normalized Haar measure on K'. By the unimodularity of
G,

Fpp o 5Fo ) = [ Fop (g D F, (@ de= | Foo(gz )F, ) de.
G

K,gr,sK,

Now K'g, (K' is the union of N cosets g,K', where N is the index of K' N

g, K'g lin K'. It is easy to see that N =q!"~*|. Writing g, =k{ g, ks,

[ Fptge O F, @y do= [F, (g0 g ) Py (gux) da
J

9o K’

= me,n(gk,_1k2,_1gr,_slk1,_1)Fr,s(kl’gr,skék,) dk/
K

= [P, .(gkg, Dy’ () dk,
.

using (4.2) and setting k =k’ ks ~!. As the integral is independent of a, (4.7)
follows.
We can write F,, , = F, ; as a linear combination

Fm,n *Fr,s = Z ,ca,ﬁFa:ﬁ
a,feZ
of F, 4's, and the coefficient ¢, s equals (¥, , * F, ;)(g., ), which we calculate

using the integral on the right in (4.7), with g =g, 4.
To evaluate this integral, we write a typical k'€ K' as the product

k’z(l 0)(151 0)(1 1))
ouw' 1/\0 &/\0 1)’

where u', ve O and t;, t, € O . According to [1, p. 466], the normalized Haar
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measure on K' is then du'dvdt;dt;, where du’ and dv are the normalized
Haar measures on the compact additive group £, and dt; and dt, are the nor-
malized Haar measures on the compact multiplicative group . Hence

g ﬂk'gil:( @ @Y )

o " hu @ (b hu vw)

_ (tl 0 )( w* " w“fsv)
0 tLd+wo))\a’ "0 wfs)
where u=t,t; *u’ and % = u/(1 + wvw). So

R , N T " T4 S
F’m,n(ga,ﬁk gr,s)x (k )_Fm‘n((wﬁ*T*l&/ w[g,s ))

On making the change of variable u' —u, as the integrand is then indepen-
dent of ¢; and %,, we have

o o , o o )
4.8) K/me,n(ga,ﬁk 0Dy e dk :ffpm,n((wﬂ_MN ))dudv.

o0 o

Notice that ord (#) = ord (u) for all u e . We now break the integral in (4.8)
into integrals over six (non-disjoint) subsets A, ..., A, the first four covering
the cases C,=max {ord(u)+s—r,ord(u)+p—-a}=0 and C,=
max {ord (v) +r—s, ord(v) + a — f} =0, and the last two sets covering the
cases C, <0 and C,<0. In each case we express

a—s

w* " w v)
wﬂ*?%la wﬂfs

as an element in a double K’ coset. In the first four cases, (4.2) shows that the
integrand in (4.8) is 1 or 0 according as (a, §) = (m + 7, n +s) or not.
A ord(w)+7r—s=0 and ord(u) + f —a=0. Then

M=( 1 0)(@'“77‘ 0 )(1 11777781))
wl-etly 1 0 @75 \0 1-wiuv)’

Ay ord(v)+7r—s=0 and ord(u) +s—r=0. Then

w* " 0 1 oS
M= .
( 0 wﬂ—s)(ws—rﬂa 1 )

As: ord(u) +s—+=0 and ord(v) + a —=0. Then

M:(l w“‘ﬁv)(w“"" 0 ) l—wiv 0
0 1 0 o’ ) \o 1 1)’

M=M(u,v)=(
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Ay ord(u)+p—a=0 and ord(v) + o — =0. Then

1 o P\ (we " 0
M_(w,ﬂfaJrl,l’/"L 1 )( 0 wﬁ*s)'

In the remaining two cases, (4.2) show that the integrand in (4.8) is 0.
As: ord(u)+s—r<0 and ord(u) + 8 —a <0. Let ¢ = ord («). Then

M:( @' w“‘ﬂ‘i‘l)(o 1)(wﬁ-"” 0 )(1 w’r-s—la—l)
0 o w 0 0 o N0 1-ouv |

Ag: ord(v)+r—s<0 and ord(v) + a — 5 <0. Let j = ord (v). Then

( 1 0 )(0 1)(wﬂ”'1 0 )(—w-fvl 0 )
M= 5 o . o).
o’ v ! 1-wiv/\o 0 0 w/tes o " w e

Now A; # ¢ if and only if s <7 and § < a, while Ag # 0 if and only if »<s
and a <f3. So at least one of the sets A; and A; is empty.

Also, the integrand on the right in (4.8) is 1 for all u, ve O\(4; U A4g) if
(a, B)=(m+7r,n+s), and 0 for all u,veO for any other (a, 3). Hence
Fon*F.;=cF, .. .+s, Where c=gq I"=s1(1 — m(A45) — m(Ag)).

The Haar measure of the set of u e O such that ord (u) =71is (¢ —1)/g
and hence the measure of {ue O :ord(u) <l} equals 1—1/g' for all l>0.

To complete the proof of Proposition 4.4, we again we need to consider
cases. Firstly, if r=s, then A;=A;=0, and so ¢=1. Also, in this case,
min {m +7r, n+s} =min {m, n} + min {r, s}, and (4.6) follows. We now
consider the case r#s. Write a=m +r and f=n +s.

1. If r>sand m>n,then n+s<m+rand a —f=m—n+r—s>r—s.
So m(A;)=1-1/q"*, m(Ag) =0 and ¢c=1. Thus G, , * G, ;=q""°F,, , = F, ;=
qw+qu+r,n+s Gm+r,n+s

2(a). If r>s, m<mn and n+s<m+r, then 0<a—pf=(r—-s)—(n—m)<
r—s. So m(A5)=1-1/g*" m(As) =0 and c=q" */q* P=¢q" ™. Thus
Gm,n * Gr,s:qm*—SFm,n * Frs qm_an mFmH",nJrs:qn+sFm+7’,n+s:Gm+r,n+s-

2(). If r>s, m<n and m+r<n+s, then a—5<0. So m(4;) =
m(Ag) =0 and c=q" "%, Thus Gun*G.s=q"°F,, , *F, ;=
qm+8qrisFm+r,n+s = qm+TFm+T,n+s = Gm+r,n+s

3. Ifr<sand m<mn,thenm+r<n+sandf—-—a=n—-m+s—r>s—
r. So m(A;) =0, m(As)=1-1/¢° " and c¢=1. Thus G, , *G, =

m+,Fm7l *F1 s m+1Fm+r n+s Gm+r,n+s-

4(a). If r<s, m=n and m+r<n+s, then 0<f—a=E—r)—(m—n)<s—r.
So  mAy)=0, mA)=1-1/¢* and c=q¢* gP *=q¢™ "  Thus
Gmw * GT s anﬂ‘an * FT s qn+7‘qm nFm-H ynts T qurTFm+1 n+9_Gm+1 s

L+1
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4(b). If r<s, m=mn and n+s<m+r, then f—a<0. So m(4;) =
m(Ag) =0 and c=q°"". Thus Gun*G,s=q"" "F, , *F, ;=
qn+rqS_TFm+r,n+s:qn+SFm+r,n+s:Gm+r,n+s- u

COROLLARY 4.5. — For any we H, the space I, - 1s at most one-dimen-
stonal.

ProOF. — If fe (", then it is easy to see that 7(f) maps IC, ,- into itself.
Hence we obtain a representation of the commutative algebra (" on IC, .. If
I(,, ,» had dimension greater than 1, there would be a non-zero proper sub-
space W of I(, ,» invariant under z(f) for all fe H(". Choose 5 e I, ,» of
norm 1 such that e W+. If fe C.(H), define f;: H—C by

= [ [tk £ his) dieydis,
K" K"

where dk; and dk, refer to normalized Haar measure on K". Then f; € I(", and
for any £e W we have

(@), &) = (al(fi)n, &) = (n, a(fi*) &) = 0.

Hence {n(f) n: fe C.(H)} is a subset of W+, and so its closure is a non-zero
proper H-invariant subspace of J(,, contradicting the irreducibility of =. =

For each ze T, we get a character y, of F'* by setting

y.(an”) =yo(@z” for aeO* and reZ,

where @ is as usual the image of a in IF,. Define a character y. of P by

setting
(e DO _
xz((o d)) =y.(a/d).

Let o, be the unitary representation of G obtained by unitarily inducing
x 2 from P to G. Thus the representation space IC, of o, consists of the comple-
tion of the space I of locally constant functions f:G—C such that
fpg) =6(p)1/2;g;(pl)2f(g) for all peP and geG with respect to the norm
I7l= (] 1) dk) —, and (o.(9) f)g") =flg"g) for fe IC [1, pp. 469, 50T].

Here 6 is the modular quasi-character of P, defined by

ff(gp) dg=(5(p)ff(g) dg for any fe C(P) and peP,
P P

where dg refers to left Haar measure on P. So 8(p) = ¢4 if p = (g 2) (1,
p- 426]. Note that 6(p) is denoted 1/A4(p) in [5, p. 46].
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PRrROPOSITION 4.6. - The Veprese@t\ations o, are iwegucible, and trivial on
Z. Regarding o,e H, we have o,e€ H,., and every e H, is equivalent to ex-
actly one of the o,.

PROOF. — On the uncompleted space (0, o, is B(y,, x: 1), and so is (alge-
braically) irreducible [1, Theorem 4.5.1] and unitarizable [1, Proposi-
tion 4.6.11]. It follows that o, is irreducible on the completed space IC,. For if
T is a continuous linear operator which commutes with each o,(g), then for
each compact open subgroup K, of G, T commutes with Q, =Kf o.(k) dk,

0

which is the orthogonal projection of the space I, (Kj) of right K-invariant
elements of IC,. So T maps each IC,(K,) into itself, and hence their union, 3(?,
into itself. By algebraic irreducibility, 7’ must be a multiple of the identity op-
erator. So o, is irreducible.

By the first part of Lemma 4.2, and since d(p) =1 and y ' (p) = x.(p) for all
pePNK’,

Flg) =)o@y k) i g =pk'ePK”,

=10 if gePw,K'.

well-defines a function f, e JC, such that o.(k') f,=x' (k") f, for all k' e K’
and such that f(1) = 1. It follows that the representation of H corresponding
to o, is in H,.

Any fe IC, such that o, (k") f=y' (k") ffor all k' € K' must be a multiple
of f,. This is immediate from Corollary 4.5, but can easily be seen directly as
1
0
pwo=wyp’, 6(p) =1 and y.(p) = x'(p). Thus

x' (p) flwy) = f(pwy) =flwep') =x" (") flw),

which means that y (@) f(w,) =y (@) f(w,). Since x% # 1, there is an a € O*
such that y,(a™1) # x((a). Hence f(w,) = 0. Since f is determined by f(1) and
flwy), we must have f= cf, for ¢ =f(1).

For any Fe (', f=a(F)(f,) satisfies o, (k") f=y'(k") ffor all k' e K,
and so f=cf, for ¢=f(1). We next show that if FF=F, ,, then c=
g!m=m2gm=n_Since Fr . =F_, _,, we may assume that m <n. Now

follows: taking p= (g (1)) and p’ =( 2), where ae O*, we have pePNK’,

6= @:(F) XD = [ Foi@) £ do= (a4 [ [, i) £o0) k) ap
G P K

by [1, Proposition 2.1.5(ii)]. Here dk denotes normalized Haar measure my on
K and dp denotes left Haar measure on P, normalized so that P N K has mea-
sure 1. The factor ¢ + 1 is to normalize the Haar measure dx on G so that K’
has measure 1.
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Now K is the union of the cosets wy,K' and g,K', where aeA and
Jo = ( (1)) Notice that

_(—1/a 1/a\ {0 1\(fa 1 ,

for all aeA\{0}, so that f.(pk) =0 for peP and ke K\K'. If keK’,
then

Fo, n(pk) f.(pk) = Fy 0 (p) " (RB)x" (k) f.(p) = Fy,u(p) f2(P).

Since mgx(K') =1/(q + 1),
S Fo o) 1.0 dli = [ B, (k) £P) dl = F (P £ (0D +1).
K K’

Hence ¢ = [F,,.(p) f.(p) dp.

Now P is the product of the two closed groups D and U, where D consists
of the diagonal matrices (al 0), where a,, a;e F'* and U consists of the
matrices (é glc), where x e F. So by [1, Proposition 2.1.5(ii)] again, for any
¢ e C(P),

4.9) fcp(p)dp ¢f ff ((1 W)) do, 4oz

FX FX* |CL1| |a’2|

for some C > 0, where da,, da, and dx refer to additive Haar measure mz on F',
normalized so that © has measure 1. The number C is determined by the
condition that P N K has measure 1. Taking ¢ to be the indicator function of
P N K, and using the fact that (%1 alx) e PN K if and only if a,, a, e O and

(]

xe &, the right hand side of (4.9) is
cf f f (( 1 “I”)) da, dayde = C(q — 1)/q2.
Thus C=q?/(q—1)*.

Recall that we are assuming that m <n. For a;, a,e /¥ and xeF,

(C(L)1 “{;x) €K'g,, ,K' if and only if a,/@™"e O, ay/w"eO* and wve D,
2
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as is clear from the cases (i) and (i) considered in the proof of Lemma 4.2.
Hence

(4.10) c—Cfff(anfz ((1 Wc)) doy daz ;.

FX FX Qs lai| |az|

_Cf f f(Fm nfz ((w = @ ;zalx)) dal da2 dﬁ'/'
FX FX @ |a;| |az]

= o"a, oo
C(\‘[o‘[ ~f(ﬁwm n.f:z (( ZDJ as ))daldazd:)(;

If a1, ;e O and xe O, then p = (“1 W”)ePﬂK’, and so

0 as,

,w_m al wm a/l xr
0 " ay

(F, o fs) (( ))  Fpp s ) G D) = Frp s ) )

since (g, nP) = 2" (p) and f.(g,nP) = 2" (P)f.(g, ). This equals

f,:z(gm,n) — 6(977,,77,,)1/2)(;(97,,,,77/) — q(nfm)/zxz(wmfn) — q(nfm)/zszn.
Hence the integrand in (4.10) equals the constant ¢™~"/22™~" so that
c= CWLF(DX )ZmF(Q)q(nf’m)/szfn — q(nf’m)/zsz’n'

Let me ﬁx Since I(;, - is 1-dimensional, if fe I(", then 7 (f)(§) is a multi-
ple 1 ,(f) & of £&. Then A,: H"—C is a * -algebra homomorphism. It does not
depend on the choice of &, nor on the equivalence class of 7. The map w41, is
injective from the set ITIZn into the set of * -algebra homomorphisms on (" [7,
Appendix 1].

Let f,, = A(Fy ) € )" for ne Z. Thus f,(gZ) = x' (ki ks) if gZ = k1 g0, w2 Z
for some ki, koe K', and (" is spanned by the f,’s. Then f* = A(F¢*,) =
A(Fy, ) =f_,, and by Proposition4.4, f, is the n-th convolution power
of fi for all n=1. Also, fy *f,=/fy, and f; *fi*=/f *f_1=qfy, since
Fo 1 #Fgy=Fo1 % Fo _1=Go,1 *qGo, -1 =9Go,0=qF¢,0. Let 1 be a = -alge-
bra homomorphism on H”. Then 4 is determined by A(f;), and we have A(f;) =
1,and |A(f;) |? = q. It follows that A = 1, for some z e T'. Hence if 7 e I/-?xn then
A=A, for some z, and so 7 must be equivalent to this o,. =

PROPOSITION 4.7. — The representation Indi. x" is unitarily equivalent to

o
the direct integral [o.dz of the representations o, |z| = 1.
T

Proor. — Let & be an irreducible unitary representation of H, and let
IHS(I,) denote the space of Hilbert-Schmidt operators on the representation
space I, of . It is a Hilbert space with inner product (S, T) = Trace (T'*S),
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and s gives a unitary representatlon a' on IHSIC,) by 7' (g)(T) = 7( g) T. If
feLY(H)NL*(H), let f(n) denote the operator ff(x) a(x 1) de. Let H de-

note the set of equivalence classes of 1rreduc1ble representations of H. The
Elancherel Theorem [5, p. 2?14], [2, p. 327] states that there is a measure u on
H so that the map f—>(f()) extends to an isometry of LZ(H) onto
®

1?f IHS(IC,) du(sr) which intertwines the right regular representation o of H and

the direct integral of the representations x'.

Let f, e (" be as defined at the end of the last proof. It is easy to see that if
e H, then fo(n) is the orthogonal projection P, ,» of JC, onto I,

Let V denote the representation space of Ind% x". Then V={ fo * f fe
LAH)}. If fe L'"(H)NL%(H) is in V, then f=f; *f, and SOf(JT) f(n) fo(n)—

fo P, .- Hence, considering the above unitary map L*( H)—>f‘)(8(36 D du (),

the image in f IHS(IC,) du(m) of Ve L2(H) is the space of ﬁelds (S,) of opera-
tors such that S,=S,P, , for all 7. Hence S, =0 unless J(, ,»= {0}. For
each yteH ., pick &,e€IC, ,» of norm1. An operator S, on J(, such that
S,=8,P, , is completely determined by u,=S,(&,). In fact, S,(t&,+n)=tu,
if ye{&,}"*. Hence S, is a Hilbert-Schmidt operator. If S,=S,P, , and
T.=T.P, ,, let u,=S,(&,) and v,=T,(§,). Then Trace(T}S,)= (u,, vy).
Hence S,+S8.(§,) defines an isometry of {S,e £((‘)€,1):S,,=S,EPH, '+ onto
f)(’ Hence fi—>(n(f)(&,)) is an isometry from the subspace V of L2(H) onto

f 9C, du(r) which intertwines the right translation on V, i.e., Ind¥ y", with

f 7 du(r).

By Proposition 4.6, any 7 e H is equivalent to one of the representations
0., |2| =1, and we can take E,T f. it m=0,. Because q!"15,, .= (f, )
equals

J(Fut00 £.F (00 £) duton) = [0 1) £, (00(F-0) £) duto.)
T T
— f<q |m|/22mfz, q |n\/2znfz> dﬂ(Gz)
T

_ q(|m| + |n|)/2fz7%*”dlu(02),
T

the Plancherel measure induces the Haar measure on T via the embedding
Z—>0,. N
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