Bollettino

Unione Matematica Italiana

Marc Briane

Non-Markovian quadratic forms obtained by homogenization

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 6-B (2003), n.2, p. 323-337.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2003_8_6B_2_323_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Non-Markovian Quadratic Forms Obtained by Homogenization.

Marc Briane

Sunto. - Questo articolo riguarda il comportamento asintotico delle forme quadratiche definite in L^{2}. Più precisamente consideriamo la Γ-convergenza di questi funzionali per la topologia debole di L^{2}. Noi diamo un esempio in cui certe forme limite non sono Markoviane e quindi la formula di Beurling-Deny non si applica. Questo esempio è ottenuto tramite l'omogeneizzazione di un materiale stratificato composto da strati sottili isolanti.

Summary. - This paper is devoted to the asymptotic behaviour of quadratic forms defined on L^{2}. More precisely we consider the Γ-convergence of these functionals for the L^{2}-weak topology. We give an example in which some limit forms are not Markovian and hence the Beurling-Deny representation formula does not hold. This example is obtained by the homogenization of a stratified medium composed of insulating thin-layers.

1. - Introduction.

In this paper we study the asymptotic behaviour of some quadratic forms on $L^{2}(\Omega)$ (where Ω is a bounded open subset of \mathbb{R}^{2}) of type

$$
\begin{cases}F_{\varepsilon}(u):=\int_{\Omega} a_{\varepsilon}|\nabla u|^{2} & \text { if } u \in H_{0}^{1}(\Omega) \tag{1.1}\\ F_{\varepsilon}(u):=+\infty & \text { if } u \in L^{2}(\Omega) \backslash H_{0}^{1}(\Omega)\end{cases}
$$

in particular when a_{ε} is a sequence of positive measurable functions, which is uniformly bounded from above but not from below. This kind of homogenization problem has been already studied and leads to non-classical limit problems: the double porosity effect in [1] and more generally coupled systems in [11], [8], [6] and [3].

An important question is to know if there exists a general (integral) representation of the asymptotic quadratic forms of the sequences (1.1). In fact that strongly depends on the topology which defines the limit process.

Thanks to the theory of the Dirichlet forms introduced by Beurling, Deny [4], [5] and extended in [9], [12], Mosco [13] proved that such a representation is available by considering the Γ-convergence of the forms for the $L^{2}(\Omega)$ strong topology - recall that the sequence of functionals $F_{\varepsilon} \Gamma$-converges to F for the $L^{2}(\Omega)$-strong topology if

$$
\begin{cases}F(u) \leqslant \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) & \text { for any } \quad u_{\varepsilon} \rightarrow u \text { strongly in } L^{2}(\Omega) \tag{1.2}\\ F(u)=\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(\bar{u}_{\varepsilon}\right) & \text { for some } \bar{u}_{\varepsilon} \rightarrow u \text { strongly in } L^{2}(\Omega)\end{cases}
$$

More precisely in the particular case of quadratic forms of type (1.1) the Mosco result is the following. Let F_{ε} be a sequence of forms (1.1) which is asymptotically regular, $i . e$. for any $u \in C_{0}^{1}(\Omega)$,
(1.3) $\quad \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)<+\infty \quad$ for some $u_{\varepsilon} \rightarrow u$ strongly in $L^{2}(\Omega)$.

Then $F_{\varepsilon} \Gamma$-converges for the $L^{2}(\Omega)$-strong topology, up to a subsequence, to a densily defined Dirichlet form F. This means that F is a quadratic form on $L^{2}(\Omega)$ which satisfies the three properties:

- F is densely defined, i.e. the domain of F

$$
\begin{equation*}
D_{F}:=\left\{u \in L^{2}(\Omega) / F(u)<+\infty\right\} \text { is dense into } L^{2}(\Omega) ; \tag{1.4}
\end{equation*}
$$

- F is closed, i.e.
(1.5) $\quad D_{F}$ is complete provided with the norm $\|u\|_{F}:=\left(F(u)+\|u\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}$;
- F is Markovian, i.e. for any contraction $T: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
T(0)=0 \quad \text { and } \quad \forall x, y \in \mathbb{R}, \quad|T(x)-T(y)| \leqslant|x-y|,
$$

one has

$$
\begin{equation*}
\forall u \in D_{F}, \quad T(u) \in D_{F} \quad \text { and } \quad F(T(u)) \leqslant F(u) . \tag{1.6}
\end{equation*}
$$

In fact the Markovian property is less restrictive than (1.6) but it is equivalent to (1.6) in the case of a densely form (see [9]). Such a Dirichlet form F then satisfies the Beurling-Deny representation formula, i. e. for any $u \in C_{0}^{1}(\Omega)$,

$$
\begin{equation*}
F(u)=\int_{\Omega} A(d x) \nabla u \cdot \nabla u+\int_{\Omega} u^{2} k(d x)+\int_{\Omega \times \Omega \backslash \text { diag }}(u(x)-u(y))^{2} j(d x, d y), \tag{1.7}
\end{equation*}
$$

where A is a symmetric positive matrix-valued measure on Ω, k a positive mesure on Ω and j a positive measure on $\Omega \times \Omega \backslash \operatorname{diag}$. Moreover the Dirichlet form F is said to be regular if

$$
\begin{equation*}
C_{0}^{1}(\Omega) \text { is dense into }\left(D_{F},\|\cdot\|\right) . \tag{1.8}
\end{equation*}
$$

The natural question is now to know if the Beurling-Deny representation (1.7) still holds true if we replace the $L^{2}(\Omega)$-strong topology by the $L^{2}(\Omega)$ weak topology in the Γ-convergence of the forms. Note that the weak topology is the most adapted for studying the degenerate problems, in particular for the forms (1.1) in which the sequence a_{ε} is not uniformly elliptic. Indeed the loss of ellipticity implies a loss of compactness in $L^{2}(\Omega)$. In this framework Bellieud and Bouchitté [3] gave examples of limit forms which satisfy the representation formula (1.7) with explicit measures $j \neq 0$.

However it seems difficult to obtain the same general representation for the weak topology of the forms. Indeed contrary to the strong topology the weak topology does not commute with the contractions. So the Markovian property (1.6) is not clearly satisfied by any limit form obtained by weak convergence. In this paper we prove that in general there is no Beurling-Deny representation of the Γ-limits of Dirichlet forms for the $L^{2}(\Omega)$-weak topology. We give an example of a sequence of forms (1.1) which Γ-converges for the $L^{2}(\Omega)$-weak topology to a closed (1.5), densely defined (1.4) and regular (1.8) quadratic form, but this form is not Markovian (1.6).

First we prove a homogenization result for an insulating thin-layered medium. Then we prove that some of the limit forms are not Markovian.

2. - A homogenization result.

2.1. Statement of the result.

We consider a two-dimensional stratified medium composed of layers of constant conductivity separated by thinner insulating layers.

More precisely let $Y_{1, \varepsilon} \cup Y_{2, \varepsilon} \cup Q_{\varepsilon}$ be the partition of the torus Y (identified to $\left[0,1\left[^{2}\right.\right.$) defined by

$$
\left\{\begin{align*}
& Y_{1, \varepsilon}:=\left[0,1[\times] r_{\varepsilon}, \frac{1-r_{\varepsilon}}{2}[\right. \tag{2.1}\\
& Y_{2, \varepsilon}:=\left[0,1[\times] \frac{1+r_{\varepsilon}}{2}, 1[\right. 0<r_{\varepsilon} \ll 1 \\
& Q_{\varepsilon}:=\left[0,1\left[\times\left(\left[0, r_{\varepsilon}\right] \cup\left[\frac{1-r_{\varepsilon}}{2}, \frac{1+r_{\varepsilon}}{2}\right]\right)\right.\right.
\end{align*}\right.
$$

Let $A_{\varepsilon}(x, y)$ be the positive function which is periodic Y-periodic with respect to y and defined, for any $x \in \Omega$ and $y \in Y$, by

$$
\begin{equation*}
A_{\varepsilon}(x, y):=a_{1}(x) \mathbf{1}_{Y_{1, \varepsilon}}(y)+a_{2}(x) \mathbf{1}_{Y_{2, \varepsilon}}(y)+\alpha_{\varepsilon} \mathbf{1}_{Q_{\varepsilon}}(y) \tag{2.2}
\end{equation*}
$$

where a_{1}, a_{2} are two positive functions from $C^{0}(\bar{\Omega})$ and $0<\alpha_{\varepsilon} \ll 1$. The conductivity of the stratified medium is defined by rescaling A_{ε}

$$
\begin{equation*}
a_{\varepsilon}(x):=A_{\varepsilon}\left(x, \frac{x}{\varepsilon}\right), \quad x \in \Omega . \tag{2.3}
\end{equation*}
$$

Let $\Omega:=] 0,1\left[{ }^{2}\right.$, we study the asymptotic behaviour of the conduction problem

$$
\left\{\begin{align*}
-\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon}\right)=f & \text { in } \Omega \tag{2.4}\\
u_{\varepsilon}=0 & \text { on } \partial \Omega,
\end{align*}\right.
$$

where $f \in L^{2}(\Omega)$. The asymptotic behaviour of problem (2.4) is given by the following homogenization result.

Theorem 2.1. - Assume that the parameters of the insulating thin-layers medium satisfy the condition

$$
\begin{equation*}
\frac{4 \alpha_{\varepsilon}}{\varepsilon^{2} r_{\varepsilon}} \underset{\varepsilon \rightarrow 0}{\longrightarrow} \delta \in \mathbb{R}_{+}^{*} \tag{2.5}
\end{equation*}
$$

Then the quadratic form defined by (1.1) and (2.3) is equicoercive in $L^{2}(\Omega)$, i.e. there exists a non-negative constant C_{δ} such that

$$
\begin{equation*}
\forall u \in H_{0}^{1}(\Omega), \quad \int_{\Omega} a_{\varepsilon}|\nabla u|^{2} \geqslant C_{\delta}\|u\|_{L^{2}(\Omega)}^{2} . \tag{2.6}
\end{equation*}
$$

Moreover, let H be the Hilbert space defined by

$$
\begin{equation*}
H:=L^{2}(] 0,1\left[_{x_{2}} ; H_{0}^{1}(] 0,1\left[_{x_{1}}\right)\right) \tag{2.7}
\end{equation*}
$$

$$
\text { provided with the norm }\|u\|_{H}:=\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{2}(\Omega)} .
$$

Then the solution u_{ε} of the Dirichlet problem (2.4) weakly converges in $L^{2}(\Omega)$ to the function $u_{1}+u_{2}$ where u_{1}, u_{2} are the solutions from H of the coupled system

$$
\left\{\begin{array}{l}
-\frac{\partial}{\partial x_{1}}\left(a_{1} \frac{\partial u_{1}}{\partial x_{1}}\right)+\delta\left(u_{1}-u_{2}\right)=\frac{1}{2} f \quad \text { in } \Omega \tag{2.8}\\
-\frac{\partial}{\partial x_{1}}\left(a_{2} \frac{\partial u_{2}}{\partial x_{1}}\right)+\delta\left(u_{2}-u_{1}\right)=\frac{1}{2} f \quad \text { in } \Omega
\end{array}\right.
$$

In terms of Γ-convergence the previous result implies the following one.

Corollary 2.2. - Under assumption (2.5) the Dirichlet form F_{ε} defined by (1.1) and (2.3) Γ-converges for the $L^{2}(\Omega)$-weak topology to the quadratic form
(2.9) $\begin{cases}F(u):=+\infty & \text { if } u \in L^{2}(\Omega) \backslash H \\ F(u):=2 \int_{\Omega} a_{1}\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2}+a_{2}\left(\frac{\partial u_{2}}{\partial x_{1}}\right)^{2}+\delta\left(u_{1}-u_{2}\right)^{2} & \text { if } u \in H,\end{cases}$
where $u_{1}, u_{2} \in H$ are uniquely determined by the system

$$
\left\{\begin{array}{l}
u=u_{1}+u_{2} \tag{2.10}\\
-\frac{\partial}{\partial x_{1}}\left(a_{1} \frac{\partial u_{1}}{\partial x_{1}}\right)+\delta\left(u_{1}-u_{2}\right)=-\frac{\partial}{\partial x_{1}}\left(a_{2} \frac{\partial u_{2}}{\partial x_{1}}\right)+\delta\left(u_{2}-u_{1}\right) .
\end{array}\right.
$$

2.2. Proof of the homogenization result.

Proof of (2.6). - Let $\Omega_{i, \varepsilon}, i=1,2$, be the open subset of Ω obtained by εY-repetition in Ω of $\varepsilon Y_{i, \varepsilon}$ and let ω_{ε} be the subset of Ω obtained by εY-repetition in Ω of $\varepsilon Q_{\varepsilon}$; note that $\left|\omega_{\varepsilon}\right| \rightarrow 0$. Let $u \in H_{0}^{1}(\Omega)$, we have for any $u \in C_{0}^{1}(\bar{\Omega})$,

$$
u\left(x_{1}, x_{2}\right)=\int_{0}^{x_{1}} \frac{\partial u}{\partial x_{1}}\left(t, x_{2}\right) d t, \quad x \in \Omega_{1, \varepsilon} \cup \Omega_{2, \varepsilon},
$$

which yields by density the following L^{2}-estimate

$$
\begin{equation*}
\|u\|_{L^{2}\left(\Omega_{1, e} \cup \Omega_{2, e}\right)} \leqslant\|\nabla u\|_{L^{2}\left(\Omega_{1, e} \cup \Omega_{2, e}\right)} . \tag{2.11}
\end{equation*}
$$

On the other side we have for any function $V \in C^{1}(\bar{Y})$,

$$
V\left(y_{1}, y_{2}\right)=V\left(y_{1}, y_{2, \varepsilon}\right)+\int_{y_{2, \varepsilon}}^{y_{2}} \frac{\partial v}{\partial x_{2}}\left(y_{1}, t\right) d t, \quad y \in Q_{\varepsilon} \text { and } y_{2, \varepsilon} \in\left\{r_{\varepsilon}, \frac{1 \pm r_{\varepsilon}}{2}\right\},
$$

whence, since $\left|y_{2}-y_{2, \varepsilon}\right| \leqslant r_{\varepsilon}$,

$$
\|V\|_{L^{2}\left(Q_{e}\right)} \leqslant c\|V\|_{L^{2}\left(\partial Q_{e}\right)}+c \sqrt{r_{\varepsilon}}\|\nabla V\|_{L^{2}\left(Q_{e}\right)} .
$$

By using a density argument and the imbedding from $H^{1}\left(Y_{1, \varepsilon} \cup Y_{2, \varepsilon}\right)$ into $L^{2}\left(\partial Q_{\varepsilon}\right)$, we obtain

$$
\left.\|V\|_{L^{2}\left(Q_{e}\right)} \leqslant c\|V\|_{H^{1}\left(Y_{1, e},\right.} \cup Y_{2, e}\right)+c \sqrt{r_{\varepsilon}}\|\nabla V\|_{L^{2}\left(Q_{e}\right)},
$$

where c is a constant. Then by ε-rescaling in Ω the previous estimate we obtain

$$
\begin{aligned}
\|u\|_{L^{2}\left(\omega_{\varepsilon}\right)} & \leqslant c\|u\|_{H^{1}\left(\Omega_{1, \varepsilon} \cup \Omega_{2, \varepsilon}\right)}+c \varepsilon \sqrt{r_{\varepsilon}}\|\nabla u\|_{L^{2}\left(\omega_{\varepsilon}\right)} \\
& \leqslant c\|u\|_{H^{1}\left(\Omega_{1, \varepsilon} \cup \Omega_{2, \varepsilon}\right)}+c_{\delta}\left\|\sqrt{\alpha_{\varepsilon}} \nabla u\right\|_{L^{2}\left(\omega_{\varepsilon}\right)} \text { by }(2.5),
\end{aligned}
$$

which combined to (2.11) yields

$$
\|u\|_{L^{2}(\Omega)} \leqslant(1+2 c)\|\nabla u\|_{L^{2}\left(\Omega_{1, \varepsilon} \cup \Omega_{2, \varepsilon}\right)}+c_{\delta}\left\|\sqrt{\alpha_{\varepsilon}} \nabla u\right\|_{L^{2}\left(\omega_{\varepsilon}\right)} .
$$

By the definition (2.3) of a_{ε} the previous estimate implies that

$$
\|u\|_{L^{2}(\Omega)} \leqslant C_{\delta}\left\|\sqrt{a_{\varepsilon}} \nabla u\right\|_{L^{2}(\Omega)}
$$

where C_{δ} is a constant, which yields (2.6).

Proof of the homogenization result. - The proof is an adaptation of [6] by replacing thin bridges by insulating thin-layers. We thus give the main steps of the proof without details.

Let u_{ε} be the solution of the Dirichlet problem (2.4). Thanks to estimate (2.6) it is easy to check that u_{ε} is bounded in $L^{2}(\Omega)$ and ∇u_{ε} is bounded in $L^{2}\left(\Omega_{1, \varepsilon} \cup \Omega_{2, \varepsilon}\right)$. Then, since the characteristic function $\mathbf{1}_{\Omega_{i, \varepsilon}}, i=1,2$, does not depend on the variable x_{1}, we have up to a subsequence

$$
\begin{equation*}
\mathbf{1}_{\Omega_{i, \varepsilon}} u_{\varepsilon} \rightharpoonup \xi_{i} \quad \text { weakly in } H, \tag{2.12}
\end{equation*}
$$

where H is defined by (2.7) and

$$
\begin{equation*}
\mathbf{1}_{\Omega_{i, \varepsilon}} a_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup \xi_{i} \quad \text { weakly in } L^{2}(\Omega)^{2} . \tag{2.13}
\end{equation*}
$$

Moreover both limits (2.12) and $\left|\omega_{\varepsilon}\right| \rightarrow 0$ imply that

$$
\begin{equation*}
u_{\varepsilon} \rightharpoonup u_{1}+u_{2} \in H \quad \text { weakly in } L^{2}(\Omega), \tag{2.14}
\end{equation*}
$$

which also holds up to a subsequence.
Now we have to determine the functions u_{i} and $\xi_{i}, i=1,2$.

First step: construction of two test functions.
On the first side let us introduce a smooth function which allows us to se-
parate both sets $\Omega_{1, \varepsilon}$ and $\Omega_{2, \varepsilon}$. Let $\widehat{V}_{\varepsilon}$ be the function of $H_{\#}^{1}(Y)$ defined by (see (2.1))

$$
\begin{cases}\widehat{V}_{\varepsilon}(y):=\frac{y_{2}}{r_{\varepsilon}} & \text { if } y \in\left[0,1\left[\times\left[0, r_{\varepsilon}\right]\right.\right. \tag{2.15}\\ \widehat{V}_{\varepsilon}(y):=1 & \text { if } y \in Y_{1, \varepsilon} \\ \widehat{V}_{\varepsilon}(y):=\frac{1+r_{\varepsilon}-2 y_{2}}{2 r_{\varepsilon}} & \text { if } y \in\left[0,1\left[\times\left[\frac{1-r_{\varepsilon}}{2}, \frac{1+r_{\varepsilon}}{2}\right]\right.\right. \\ \widehat{V}_{\varepsilon}(y):=0 & \text { otherwise } .\end{cases}
$$

Let $V \in H^{1}(Y)$. By integrating by parts the integral

$$
\int_{Y} \nabla \widehat{V}_{\varepsilon} \cdot \nabla\left(V-\bar{V}^{Y_{1, \varepsilon}} \widehat{V}_{\varepsilon}-\bar{V}^{Y_{2, \varepsilon}}\left(1-\widehat{V}_{\varepsilon}\right)\right), \quad \text { where } \quad \bar{V}^{Y_{i, \varepsilon}}:={\underset{Y}{Y_{i, \varepsilon}}} V
$$

and by using the Poincaré-Wirtinger inequalities

$$
\left\|V-\bar{V}^{Y_{i, k}}\right\|_{L^{2}\left(Y_{i, k}\right)} \leqslant c_{i}\|\nabla V\|_{L^{2}\left(Y_{i, \varepsilon}\right)}, \quad i=1,2
$$

we obtain the following estimate

$$
\left|\int_{Y} A_{\varepsilon} \nabla \widehat{V}_{\varepsilon} \cdot \nabla V-\widehat{\delta}(\varepsilon)\left(\bar{V}^{Y_{1, \varepsilon}}-\bar{V}^{Y_{2, \varepsilon}}\right)\right| \leqslant c \widehat{\delta}(\varepsilon)\|\nabla V\|_{L^{2}\left(Y_{1, \varepsilon} \cup Y_{2, \varepsilon}\right)}, \quad \text { where } \widehat{\delta}(\varepsilon):=\frac{2 \alpha_{\varepsilon}}{r_{\varepsilon}}
$$

and c a constant. Then by rescaling the previous estimate and by using limit (2.5) we obtain, for any $\varphi \in \mathcal{O}(\Omega)$, the limit

$$
\begin{equation*}
\int_{\Omega} a_{\varepsilon} \nabla \widehat{v}_{\varepsilon} \cdot \nabla\left(\varphi u_{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \int_{\Omega} \delta \varphi\left(u_{1}-u_{2}\right), \quad \text { where } \quad \widehat{v}_{\varepsilon}(x):=\widehat{V}_{\varepsilon}\left(\frac{x}{\varepsilon}\right) \tag{2.16}
\end{equation*}
$$

and u_{1}, u_{2} are defined by (2.10).
On the other side, for any $\lambda \in \mathbb{R}^{2}$, let $w_{\varepsilon}^{\lambda}$ be the function defined by

$$
\begin{align*}
& w_{\varepsilon}^{\lambda}(x):=\lambda \cdot x-\varepsilon\left(\widehat{V}_{\varepsilon} X^{\lambda}\right)\left(\frac{x}{\varepsilon}\right) \tag{2.17}\\
& X^{\lambda}(y):=\lambda_{2}\left(y_{2}-k_{2}\right), \quad y \in(k+Y), \quad k \in \mathbb{Z}^{2}
\end{align*}
$$

Thanks to the periodicity of $\widehat{V}_{\varepsilon} X^{\lambda}$ and to limit (2.5) the function $w_{\varepsilon}^{\lambda}$ satisfies

$$
\left\{\begin{array} { l l }
{ w _ { \varepsilon } ^ { \lambda } \rightarrow \lambda \cdot x } & { \text { strongly in } L ^ { \infty } (\Omega) } \tag{2.18}\\
{ \mathbf { 1 } _ { \omega _ { \varepsilon } } a _ { \varepsilon } | \nabla w _ { \varepsilon } ^ { \lambda } | ^ { 2 } \rightarrow 0 } & { \text { strongly in } L ^ { 1 } (\Omega) }
\end{array} \text { and } \left\{\begin{array}{ll}
\nabla w_{\varepsilon}^{\lambda}=\lambda_{1} e_{1} & \text { in } \Omega_{1, \varepsilon} \\
\nabla w_{\varepsilon}^{\lambda}=\lambda & \text { in } \Omega_{2, \varepsilon}
\end{array}\right.\right.
$$

SECOND STEP: determination of u_{1}, u_{2}.
Let $\varphi \in \mathscr{O}(\Omega)$, putting the function $\varphi \widehat{v}_{\varepsilon} w_{\varepsilon}^{\lambda}$ (defined by (2.15) and (2.17)) in equation (2.4) and passing to the limit thanks to (2.13), (2.16) and (2.18) yields

$$
\int_{\Omega} \xi_{1} \cdot \nabla \varphi(\lambda \cdot x)+\int_{\Omega} \xi_{1} \cdot \lambda_{1} e_{1} \varphi+\int_{\Omega} \delta\left(u_{1}-u_{2}\right) \varphi(\lambda \cdot x)=\int_{\Omega} \frac{1}{2} f \varphi(\lambda \cdot x)
$$

Similarly with the test function $\varphi \widehat{v}_{\varepsilon}(\lambda \cdot x)$ we have

$$
\int_{\Omega} \xi_{1} \cdot \nabla(\varphi(\lambda \cdot x))+\int_{\Omega} \delta\left(u_{1}-u_{2}\right) \varphi(\lambda \cdot x)=\int_{\Omega} \frac{1}{2} f \varphi(\lambda \cdot x) .
$$

Then by substracting both previous equalities we obtain

$$
\int_{\Omega} \xi_{1} \cdot\left(\lambda-\lambda_{1} e_{1}\right) \varphi=0 \quad \text { for any } \varphi \in \mathcal{O}(\Omega)
$$

which implies $\xi_{1} \cdot e_{2}=0$. Moreover by the definition (2.12) of u_{1} and since $\mathbf{1}_{\Omega_{1, \varepsilon}}$ does not depend on x_{1}, we have

$$
a_{1} \mathbf{1}_{\Omega_{1, \varepsilon}} \nabla u_{\varepsilon} \cdot e_{1}=a_{1} \frac{\partial}{\partial x_{1}}\left(\mathbf{1}_{\Omega_{1, \varepsilon}} u_{\varepsilon}\right) \rightharpoonup a_{1} \frac{\partial u_{1}}{\partial x_{1}} \quad \text { weakly in } L^{2}(\Omega)
$$

Therefore

$$
\xi_{1}=a_{1} \frac{\partial u_{1}}{\partial x_{1}} \quad \text { and similarly } \quad \xi_{2}=a_{2} \frac{\partial u_{2}}{\partial x_{1}}
$$

Finally, for any $\varphi \in \mathcal{O}(\Omega)$, putting the function $\varphi \widehat{v}_{\varepsilon}$ in equation (2.4) and passing to the limit yields

$$
\int_{\Omega} \xi_{1} \cdot \nabla \varphi+\delta\left(u_{1}-u_{2}\right) \varphi=\int_{\Omega} a_{1} \frac{\partial u_{1}}{\partial x_{1}} \frac{\partial \varphi}{\partial x_{1}}+\delta\left(u_{1}-u_{2}\right) \varphi=\int_{\Omega} \frac{1}{2} f \varphi
$$

and similarly for the index 2

$$
\int_{\Omega} a_{2} \frac{\partial u_{2}}{\partial x_{1}} \frac{\partial \varphi}{\partial x_{1}}+\delta\left(u_{1}-u_{2}\right) \varphi=\int_{\Omega} \frac{1}{2} f \varphi
$$

Since $\mathscr{O}(\Omega)$ is dense into H (2.7), both previous equations also hold for any $\varphi \in H$, which gives system (2.8). By the Lax-Milgram Theorem system (2.8) has a unique solution $\left(u_{1}, u_{2}\right)$ in $H \times H$. Therefore by (2.14) the whole sequence u_{ε} weakly converges to $u_{1}+u_{2}$ in $L^{2}(\Omega)$. Theorem 2.1 is proved.

2.3. Proof of the Γ-convergence result.

Let us start by the following remark concerning Theorem 2.1.
Remark 2.3. - Theorem 2.1 can be extended without restriction to the case where the right hand side $f \in L^{2}(\Omega)$ of the Dirichlet problem (2.4) is replaced by any sequence

$$
f_{\varepsilon}:=\mathbf{1}_{\Omega_{1, e}} f_{1}+\mathbf{1}_{\Omega_{2, e}} f_{2}-\frac{\partial}{\partial x_{1}}\left(\mathbf{1}_{\Omega_{1, \varepsilon}} g_{1}\right)-\frac{\partial}{\partial x_{1}}\left(\mathbf{1}_{\Omega_{2, k}} g_{2}\right), \quad f_{i}, g_{i} \in L^{2}(\Omega) .
$$

Therefore the solution u_{ε} of the problem

$$
\left\{\begin{align*}
-\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon}\right)=f_{\varepsilon} & \text { in } \Omega \tag{2.19}\\
u_{\varepsilon}=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

weakly converges in $L^{2}(\Omega)$ to $u_{1}+u_{2}$ where $u_{1}, u_{2} \in H$ are the solutions of the coupled system

$$
\begin{cases}-\frac{\partial}{\partial x_{1}}\left(a_{1} \frac{\partial u_{1}}{\partial x_{1}}\right)+\delta\left(u_{1}-u_{2}\right)=\frac{1}{2}\left(f_{1}-\frac{\partial g_{1}}{\partial x_{1}}\right) & \text { in } \Omega \tag{2.20}\\ -\frac{\partial}{\partial x_{1}}\left(a_{2} \frac{\partial u_{2}}{\partial x_{1}}\right)+\delta\left(u_{2}-u_{1}\right)=\frac{1}{2}\left(f_{2}-\frac{\partial g_{2}}{\partial x_{1}}\right) \quad \text { in } \Omega\end{cases}
$$

By (2.6) the quadratic form F_{ε} defined by (1.1) and (2.3) is equicoercive with respect to the $L^{2}(\Omega)$-norm. Then by a classical result of Γ-convergence (see Corollary 8.12 p. 95 from [7]), $F_{\varepsilon} \Gamma$-converges for the $L^{2}(\Omega)$-weak topology, up to a subsequence, to a functional $F: L^{2}(\Omega) \rightarrow[0,+\infty]$. We have to determine $F(u)$ for any $u \in L^{2}(\Omega)$.

Let $u \in L^{2}(\Omega) \backslash H$ and let u_{ε} be a sequence of $L^{2}(\Omega)$ which weakly converges to u in $L^{2}(\Omega)$. Assume that

$$
\varliminf_{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)<+\infty
$$

Then the function u_{ε} belongs to $H_{0}^{1}(\Omega)$ and ∇u_{ε} is bounded in $L^{2}\left(\Omega_{1, \varepsilon} \cup \Omega_{2, \varepsilon}\right)$. Therefore the weak limits (2.12) and (2.14) hold for the sequence u_{ε}, which contradicts $u \notin H$. We thus have

$$
F(u)=\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)=\varlimsup_{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)=+\infty .
$$

Let us now consider a function $u \in H$ and let $u_{1} \in H$ be the unique solution of the equation

$$
-\frac{\partial}{\partial x_{1}}\left(\left(a_{1}+a_{2}\right) \frac{\partial u_{1}}{\partial x_{1}}\right)+4 \delta u_{1}=-\frac{\partial}{\partial x_{1}}\left(a_{2} \frac{\partial u}{\partial x_{1}}\right)+2 \delta u .
$$

Then u_{1} and $u_{2}:=u-u_{1}$ are the solutions of system (2.10). Let f_{ε} be the sequence from H^{\prime} (the dual of H) defined by

$$
f_{\varepsilon}:=-2 \frac{\partial}{\partial x_{1}}\left(\mathbf{1}_{\Omega_{1, \varepsilon}} a_{1} \frac{\partial u_{1}}{\partial x_{1}}\right)-2 \frac{\partial}{\partial x_{1}}\left(\mathbf{1}_{\Omega_{2, \varepsilon}} a_{2} \frac{\partial u_{2}}{\partial x_{1}}\right)+2 \delta\left(u_{1}-u_{2}\right)\left(\mathbf{1}_{\Omega_{1, \varepsilon}}-\mathbf{1}_{\Omega_{2, \varepsilon}}\right)
$$

and let u_{ε} be the solution of problem (2.19). By Theorem 2.1 and Remark 2.3 the sequences $\mathbf{1}_{\Omega_{i, \varepsilon}} u_{\varepsilon}$ weakly converge in H to the functions v_{i} solutions of the system (2.20) with the right hand sides

$$
-\frac{\partial}{\partial x_{1}}\left(a_{1} \frac{\partial u_{1}}{\partial x_{1}}\right)+\delta\left(u_{1}-u_{2}\right) \quad \text { and } \quad \frac{\partial}{\partial x_{1}}\left(a_{2} \frac{\partial u_{2}}{\partial x_{1}}\right)+\delta\left(u_{2}-u_{1}\right)
$$

whence $v_{i}=u_{i}$ for $i=1,2$. In particular we have the following convergences

$$
u_{\varepsilon} \rightharpoonup u_{1}+u_{2} \quad \text { weakly in } L^{2}(\Omega) \text { and }
$$

$$
\mathbf{1}_{\Omega_{i, \varepsilon}} a_{i} \frac{\partial u_{\varepsilon}}{\partial x_{1}}=a_{i} \frac{\partial}{\partial x_{1}}\left(\mathbf{1}_{\Omega_{i, \varepsilon}} u_{\varepsilon}\right) \rightharpoonup a_{i} \frac{\partial u_{i}}{\partial x_{1}} \quad \text { weakly in } L^{2}(\Omega), \quad i=1,2 .
$$

Then, denoting by \langle,$\rangle the duality H^{\prime}-H$, we have by the definition of u_{ε}

$$
\begin{equation*}
F_{\varepsilon}\left(u_{\varepsilon}\right)=\left\langle f_{\varepsilon}, u_{\varepsilon}\right\rangle \underset{\varepsilon \rightarrow 0}{\longrightarrow} \bar{F}(u):=2 \int_{\Omega} a_{1}\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2}+a_{2}\left(\frac{\partial u_{2}}{\partial x_{1}}\right)^{2}+\delta\left(u_{1}-u_{2}\right)^{2}, \tag{2.21}
\end{equation*}
$$

whence by the definition of the Γ-convergence

$$
\begin{equation*}
F(u) \leqslant \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)=\bar{F}(u)<+\infty \tag{2.22}
\end{equation*}
$$

On the other side there exists a sequence \bar{u}_{ε} from $H_{0}^{1}(\Omega)$ such that

$$
\bar{u}_{\varepsilon} \rightharpoonup u \text { weakly in } L^{2}(\Omega) \quad \text { and } \quad F(u)=\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(\bar{u}_{\varepsilon}\right)<+\infty .
$$

Similarly to u_{ε} the sequence \bar{u}_{ε} satisfies, up to a subsequence, the convergences $1_{\Omega_{i, \varepsilon}} u_{\varepsilon} \rightharpoonup \bar{u}_{i}$ weakly in $H, i=1,2$, whence

$$
\begin{equation*}
\left\langle f_{\varepsilon}, \bar{u}_{\varepsilon}\right\rangle \underset{\varepsilon \rightarrow 0}{\longrightarrow} 2 \int_{\Omega} a_{1} \frac{\partial u_{1}}{\partial x_{1}} \frac{\partial \bar{u}_{1}}{\partial x_{1}}+a_{2} \frac{\partial u_{2}}{\partial x_{1}} \frac{\partial \bar{u}_{2}}{\partial x_{1}}+\delta\left(u_{1}-u_{2}\right)\left(\bar{u}_{1}-\bar{u}_{2}\right)=\bar{F}(u) \tag{2.23}
\end{equation*}
$$

by the definition (2.21) of \bar{F} combined with $u=\bar{u}_{1}+\bar{u}_{2}=u_{1}+u_{2}$ and the sys-
tem (2.10) satisfied by u_{1}, u_{2}. Moreover u_{ε} being a minimizer of the functional $F_{\varepsilon}-2\left\langle f_{\varepsilon}, \cdot\right\rangle$ on $H_{0}^{1}(\Omega)$, we have

$$
F_{\varepsilon}\left(u_{\varepsilon}\right) \leqslant F_{\varepsilon}\left(\bar{u}_{\varepsilon}\right)+2\left\langle f_{\varepsilon}, u_{\varepsilon}-\bar{u}_{\varepsilon}\right\rangle .
$$

Then passing to the limit in the previous inequality thanks to limits (2.21) and (2.23) yields

$$
\bar{F}(u)=\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) \leqslant F(u)
$$

which combined with inequality (2.22) implies $F(u)=\bar{F}(u)$. The functional F thus satisfies formula (2.9), which concludes the proof of Corollary 2.2.

3. - A counter-example.

The main result of the paper is the following.
Theorem 3.1. - The quadratic forms defined by (2.9) are densely defined, closed and regular. However there exists at least one of these forms which is not Markovian.

Proof. - Let F be a form defined by (2.9). The domain of F is the Hilbert space H defined by (2.7) and F is densely defined (1.4) since H is clearly dense into $L^{2}(\Omega)$.

The form F is closed. Indeed on the first side we have for any $u \in H$,

$$
F(u) \leqslant c_{\delta}\left(\left\|\frac{\partial u_{1}}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2}+\left\|\frac{\partial u_{2}}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2}\right) \leqslant c_{\delta}^{\prime}\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2} ;
$$

the last estimate holds since by (2.10) $u_{1,2}$ are solutions of the equations

$$
\begin{equation*}
-\frac{\partial}{\partial x_{1}}\left(\left(a_{1}+a_{2}\right) \frac{\partial u_{1,2}}{\partial x_{1}}\right)+4 \delta u_{1,2}=-\frac{\partial}{\partial x_{1}}\left(a_{2,1} \frac{\partial u}{\partial x_{1}}\right)+2 \delta u \tag{3.1}
\end{equation*}
$$

On the other side since $u=u_{1}+u_{2}$, we also have

$$
F(u) \geqslant 2 c\left(\left\|\frac{\partial u_{1}}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2}+\left\|\frac{\partial u_{2}}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2}\right) \geqslant c\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2}=c\|u\|_{H}^{2}
$$

Therefore \sqrt{F} defines a norm which is equivalent to $\|\cdot\|_{H}$ in H, whence the closedness (1.5).

The form H is regular since $C_{0}^{1}(\Omega)$ is dense into H.
For the last part of Theorem 3.1 we proceed by contradiction. We assume that the quadratic forms defined by (2.9) are Markovian (1.6) for any choice of δ and a_{1}, a_{2}. We will obtain a contradiction by making $\delta \rightarrow 0$ and by passing to a one-dimensional form whose domain is $H_{0}^{1}(] 0,1[)$.

First step: reduction to $\delta=0$.
Let $u \in H$, by choosing $a_{1}^{\delta}(x):=x_{1}+\delta$ and $a_{2}^{\delta}(x):=1-x_{1}+\delta$ the form (2.9) (multiplied by $1 / 2$) can be written

$$
\begin{equation*}
F_{\delta}(u):=\int_{\Omega} a_{1}^{\delta}\left(\frac{\partial u_{1}^{\delta}}{\partial x_{1}}\right)^{2}+a_{2}^{\delta}\left(\frac{\partial u_{2}^{\delta}}{\partial x_{1}}\right)^{2}+\delta\left(u_{1}^{\delta}-u_{2}^{\delta}\right)^{2}, \tag{3.2}
\end{equation*}
$$

where by (3.1) $u_{1,2}^{\delta}$ are solutions of the equations $u=u_{1}^{\delta}+u_{2}^{\delta}$ and

$$
-\frac{\partial}{\partial x_{1}}\left((1+2 \delta) \frac{\partial u_{1,2}^{\delta}}{\partial x_{1}}\right)+4 \delta u_{1,2}^{\delta}=f_{1,2}^{\delta}:=-\frac{\partial}{\partial x_{1}}\left(a_{2,1}^{\delta} \frac{\partial u}{\partial x_{1}}\right)+2 \delta u .
$$

The distributions $f_{i}^{\delta}, i=1,2$, are clearly compact in H^{\prime} since u is fixed. Then $u_{i}^{\delta}, i=1,2$, strongly converge in H to the functions u_{i} solutions of the equations

$$
u_{1}+u_{2}=u \quad \text { and } \quad \begin{cases}\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}=\frac{\partial}{\partial x_{1}}\left(\left(1-x_{1}\right) \frac{\partial u}{\partial x_{1}}\right) & \text { in } \Omega \tag{3.3}\\ \frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}=\frac{\partial}{\partial x_{1}}\left(x_{1} \frac{\partial u}{\partial x_{1}}\right) & \text { in } \Omega .\end{cases}
$$

Therefore the sequence $F_{\delta}(u)$ converges to

$$
\begin{equation*}
F(u):=\int_{\Omega} x_{1}\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2}+\left(1-x_{1}\right)\left(\frac{\partial u_{2}}{\partial x_{1}}\right)^{2} \tag{3.4}
\end{equation*}
$$

where u_{1}, u_{2} are defined by (3.3). Formula (3.4) defines a quadratic form on H which is Markovian since any F_{δ} is assumed to be so. In particular we have
(3.5) $\quad \forall u \in H, \quad F\left(u^{+}\right) \leqslant F(u), \quad$ where $u^{+}:=\max (0, u)$.

SECOND STEP: reduction to a one-dimensional form.
Let w be a function from $L^{2}(] 0,1\left[x_{2}\right), w=w\left(x_{2}\right)$, such that $w>0$ and $\|w\|_{L^{2}(0,1 \mathrm{D})}=1$. For any $v \in H^{1}(] 0,1\left[_{x_{1}}\right), v=v\left(x_{1}\right)$, let $v_{1}, v_{2} \in H^{1}(] 0,1\left[{ }_{1}\right)$ be the solutions of the equations

$$
\text { (3.6) } v_{1}+v_{2}=v \quad \text { and } \begin{cases}\frac{\mathrm{d}^{2} v_{1}}{\mathrm{~d} x_{1}^{2}}=\frac{\mathrm{d}}{\mathrm{~d} x_{1}}\left(\left(1-x_{1}\right) \frac{\mathrm{d} v}{\mathrm{~d} x_{1}}\right) & \text { in }] 0,1[\\ \frac{\mathrm{d}^{2} v_{2}}{\mathrm{~d} x_{1}^{2}}=\frac{\mathrm{d}}{\mathrm{~d} x_{1}}\left(x_{1} \frac{\mathrm{~d} v}{\mathrm{~d} x_{1}}\right) & \text { in }] 0,1[\end{cases}
$$

Then the functions $u(x):=v\left(x_{1}\right) w\left(x_{2}\right)$ and $u_{i}(x):=v_{i}\left(x_{1}\right) w\left(x_{2}\right)$ are solutions of (3.3) and by definition (3.4) we have

$$
\begin{equation*}
F(u)=G(v):=\int_{0}^{1} x_{1}\left(\frac{\mathrm{~d} v_{1}}{\mathrm{~d} x_{1}}\right)^{2}+\left(1-x_{1}\right)\left(\frac{\mathrm{d} v_{2}}{\mathrm{~d} x_{1}}\right)^{2}, \tag{3.7}
\end{equation*}
$$

where v_{1}, v_{2} are solutions of (3.6).
Moreover the quadratic form G defined by (3.7) also satisfies the inequality

$$
\begin{equation*}
\forall v \in H_{0}^{1}(] 0,1[), \quad G\left(v^{+}\right) \leqslant G(v) . \tag{3.8}
\end{equation*}
$$

Indeed let $v \in H_{0}^{1}(] 0,1[)$ and $u:=\left(v_{1}+v_{2}\right) w$ where v_{1}, v_{2} are the solutions of (3.6). Since $w>0$, we have $u^{+}=\left(v_{1}+v_{2}\right)^{+} w=\left(v_{1}^{\prime}+v_{2}^{\prime}\right) w$ where v_{1}^{\prime}, v_{2}^{\prime} are the solutions of (3.6) for the function v^{+}. Then, since w does not depend on x_{1}, the functions $u_{i}:=v_{i} w$ and $u_{i}^{\prime}=v_{i}^{\prime} w, i=1,2$, are solutions of (3.3) respectively with u and u^{+}. Therefore by inequality (3.5) we obtain

$$
G\left(v^{+}\right)=F\left(u^{+}\right) \leqslant F(u)=G(v),
$$

whence (3.8).
We can also simplify the expression (3.7) of the quadratic form G defined by (3.7). Let $v \in H_{0}^{1}(] 0,1[)$, by (3.6) there exists a constant c_{v} such that

$$
\frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=\left(1-x_{1}\right) \frac{\mathrm{d} v}{\mathrm{~d} x_{1}}+c_{v}
$$

and by an integration by parts we obtain

$$
c_{v}=-\int_{0}^{1} v \quad \text { and } \quad \frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=\left(1-x_{1}\right) \frac{\mathrm{d} v}{\mathrm{~d} x_{1}}-\int_{0}^{1} v .
$$

Similarly for v_{2} we have

$$
\frac{\mathrm{d} v_{2}}{\mathrm{~d} x_{1}}=\left(1-x_{1}\right) \frac{\mathrm{d} v}{\mathrm{~d} x_{1}}+\int_{0}^{1} v .
$$

Then replacing the derivatives of v_{1}, v_{2} by both previous expressions in the definition (3.7) of G yields

$$
\begin{equation*}
G(v)=\left(\int_{0}^{1} v\right)^{2}+\int_{0}^{1} x_{1}\left(1-x_{1}\right)\left(\frac{\mathrm{d} v}{\mathrm{~d} x_{1}}\right)^{2} . \tag{3.9}
\end{equation*}
$$

Third step: the contradiction.
Let v be a positive function from $H_{0}^{1}(I)$ where I is an interval such that $\bar{I} \subset] 0,1\left[\right.$. We extend the function $-v$ by $\tilde{v} \in H_{0}^{1}(] 0,1[)$ such that

$$
\left.\tilde{v}_{\mid I}=-v, \quad \tilde{v} \geqslant 0 \text { in }\right] 0,1\left[\backslash \bar{I} \quad \text { and } \quad \int_{0}^{1} \tilde{v}=0\right.
$$

whence

$$
\tilde{v}^{-}=v \quad \text { and } \quad \int_{0}^{1} \tilde{v}^{+}=\int_{0}^{1} v
$$

Therefore by putting the functions \tilde{v}, \tilde{v}^{+}in inequality (3.8) with formula (3.9) of G we obtain the equality

$$
\left(\int_{0}^{1} v\right)^{2} \leqslant \int_{0}^{1} x_{1}\left(1-x_{1}\right)\left(\frac{\mathrm{d} v}{\mathrm{~d} x_{1}}\right)^{2}
$$

which holds for any positive function $v \in H_{0}^{1}(I)$. In particular, for the sequence $v_{n}, n \in \mathbb{N}^{*}$, defined by

$$
\begin{cases}v_{n}\left(x_{1}\right):=0 & \text { if } x_{1} \in\left[0, \frac{1}{n^{n}}\right] \\ v_{n}\left(x_{1}\right):=x_{1}^{1 / n}-\frac{1}{n} & \text { if } x_{1} \in\left[\frac{1}{n^{n}}, \frac{1}{2}\right] \\ v_{n}\left(x_{1}\right):=v_{n}\left(1-x_{1}\right) & \text { if } x_{1} \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

the previous inequality implies that

$$
1=\lim _{n \rightarrow+\infty}\left(\int_{0}^{1} v_{n}\right)^{2} \leqslant \lim _{n \rightarrow+\infty} \int_{0}^{1} x_{1}\left(1-x_{1}\right)\left(\frac{\mathrm{d} v_{n}}{\mathrm{~d} x_{1}}\right)^{2}=0
$$

which yields the contradiction.
Acknowledgment. The author wishes to thank G. Dal Maso for a remark which has motivated this work.

REFERENCES

[1] T. Arbogast - J. Douglas - U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, S.I.A.M. J. Math. Anal., 21 (1990), 823-836.
[2] M. Bellieud - G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Annali della Scuola Normale Superiore di Pisa, 26, (4) (1998), 407-436.
[3] M. Bellieud - G. Bouchitté, Homogenization of degenerate elliptic equations in a fiber structure, preprint 98/09 ANLA, Univ. Toulon.
[4] A. Beurling - J. Deny, Espaces de Dirichlet, Acta Matematica, 99 (1958), 203-224.
[5] A. Beurling - J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 208-215.
[6] M. Briane, Homogenization in some weakly connected domains, Ricerche di Matematica, XLVII, no. 1 (1998), 51-94.
[7] G. Dal Maso, An introduction to Γ-convergence, Birkhaüser, Boston (1993).
[8] V. N. Fenchenko - E. Ya. Khruslov, Asymptotic of solution of differential equations with strongly oscillating and degenerating matrix of coefficients, Dokl. AN Ukr. SSR, 4 (1980).
[9] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland Math. Library, 23, North-Holland and Kodansha, Amsterdam (1980).
[10] E. Ya. Khruslov, The asymptotic behavior of solutions of the second boundary value problems under fragmentation of the boundary of the domain, Maths. USSR Sbornik, 35, no. 2 (1979).
[11] E. Ya. Khruslov, Homogenized models of composite media, Composite Media and Homogenization Theory, G. Dal Maso and G. F. Dell'Antonio editors, in Progress in Nonlinear Differential Equations and Their Applications, Birkhaüser (1991), 159-182.
[12] Y. Le Jean, Mesures associées à une forme de Dirichlet. Applications, Bull. Soc. Math. de France, 106 (1978), 61-112.
[13] U. Mosco, Composite media and asymptotic Dirichlet forms, Journal of Functional Analysis, 123, no. 2 (1994), 368-421.

Centre de Mathématiques I.N.S.A. de Rennes \& I.R.M.A.R. 20 avenue des buttes de Coësmes, CS 14315, 35043 Rennes Cedex France
e-mail: mbriane@insa-rennes.fr

Pervenuta in Redazione

l'8 maggio 2001

