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Adaptive Convex Optimization in Banach Spaces:
a Multilevel Approach (*)(**).

CLAUDIO CANUTO

Sunto. – In questo articolo, a prevalente carattere di rassegna, si considerano varie ap-
plicazioni del concetto di Approssimazione Nonlineare alla minimizzazione con-
vessa adattativa. Dapprima, si ricordano alcuni concetti di base e si confrontano
l’approssimazione lineare e quella nonlineare nel caso di tre basi funzionali note-
voli: la base di Fourier, le basi degli elementi finiti e le basi di ondine. Successiva-
mente, indichiamo come l’approssimazione nonlineare possa essere usata nella de-
finizione di metodi adattativi per la risoluzione di problemi di minimizzazione
astratta in spazi di Banach. Gli algoritmi risultanti, che impiegano sia basi di on-
dine sia basi di elementi finiti, risultano rigorosamente giustificabili e con pro-
prietà di ottimalità dal punto di vista dell’efficienza. In questo ambito, si descrive
con un qualche dettaglio un algoritmo di «steepest-descent» per discretizzazioni in
ondine.

Summary. – This is mainly a review paper, concerned with some applications of the
concept of Nonlinear Approximation to adaptive convex minimization. At first, we
recall the basic ideas and we compare linear to nonlinear approximation for three
relevant families of bases used in practice: Fourier bases, finite element bases,
wavelet bases. Next, we show how nonlinear approximation can be used to design
rigorously justified and optimally efficient adaptive methods to solve abstract mini-
mization problems in Banach spaces, using either wavelet or finite element bases.
In particular, a wavelet adaptive steepest-descent algorithm is presented and
investigated.

1. – Introduction.

The purpose of this paper is to illustrate some of the ideas around the re-
cently introduced concept of «Nonlinear Approximation» [29], as well as their
application to the adaptive numerical discretization of certain variational prob-
lems. Nonlinear approximation means that the procedure which leads to ap-

(*) Il testo è una versione ampliata della conferenza tenuta a Pisa il 16 giugno 2002
in occasione del «First AMS-UMI Joint Meeting».

(**) Il lavoro è stato parzialmente finanziato dal Progetto di ricerca MURST Cofin
2000 «Calcolo scientifico: modelli e metodi numerici innovativi.
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proximate a given function is intrinsically nonlinear, as it is adapted to the
particular structure of the function. This process contrasts with the usual ap-
proach of linear approximation, based on the linear projection of the given
function upon a linear manifold. Both kinds of approximation, when applied to
the numerical treatment of variational problems, suffer from the difficulty
that the function to be approximated is not directly accessible as, e.g., a signal
or an image, but it is defined only implicitly by the problem.

The application we have in mind concerns the numerical discretization of
an abstract minimization problem in a Banach space V. Given a functional
J : VKRN ]1Q(, the problem consists of finding an element u�V such
that

J(u) 4 min
v�V

J(v).(1.1)

It is well known that this formulation includes several situations of interest.
Obviously, many problems in the Calculus of Variations have the form (1.1). In
particular, the solution of an operator equation of the form

A(u) 4 f in V 8(1.2)

can be reduced to (1.1) if A : VKV 8 is such that A(v)2 f4J 8 (v), the Frèchet
(or Gateaux) derivative at v of a convex functional J : VKR. The perhaps most
classical example is the homogeneous Dirichlet problem for the Laplace
operator,

2Du4 f in V , u40 on ¯V(1.3)

(where V is a bounded domain in Rn with sufficiently smooth boundary ¯V and
f�L 2 (V)), which corresponds to the minimization of the energy functional

J : H 1
0 (V) KR , J(v) 4

1

2
s

V

N˜vN2 2s
V

f v .(1.4)

Even if the equation of interest is not the Euler equation of a natural func-
tional, it can be formulated variationally: it is enough to resort to a generalized
least-square formulation, in which the functional to be minimized is defined as

J(v) 4VA(v)2 f VV 8 .

We also mention that a constrained minimization problem for a functional
J0 : VKR

J0 (u) 4 min
v�K

J0 (v)

(such as a variational inequality) can be reduced to (1.1) by introducing the
functional J(v) 4J0 (v)1IK (v), where IK denotes the indicator of the closed
set K’V , defined as IK (v) 40 if v�V , IK (v) 41Q otherwise.
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From now on, we will assume that Problem (1.1) has a unique solution (at
least locally). This is certainly true if V is reflexive and J is strictly convex,
lower-semicontinuous and unbounded as VvVKQ (see, e.g., [13]).

A quite ambitious goal of any adaptive approximation strategy for Problem
(1.1) is as follows.

GOAL 1. – Given tolerances e 1 D0, e 2 D0, compute an approximation ue�
V of u satisfying

Vu2ue VV Ee 1 and J(ue ) EJ(u)1e 2 ,

with the minimal computational complexity (memory occupancy, floating-
point operations).

Unfortunately, often the complexity of the problem at hand is so huge, that
such a goal cannot be achieved in practice, unless the specified tolerances are
fairly large. This is due to memory and/or CPU time limitations. In these ca-
ses, a more realistic goal consists of optimizing the use of the available re-
sources. For instance, if the most severe restrictions come from memory occu-
pancy, one can set the following goal.

GOAL 2. – Given N memory locations, compute an approximation uN �V
of u identified by the value of N real parameters (we will write uN Au�RN ),
so that

Vu2uN VV and J(uN )2J(u)

are as small as possible, at a cost at most proportional to N.

A similar goal can be set if CPU time is the dominant constraint. In the fol-
lowing, we will be mainly interested in satisfying Goal 2. The N parameters on
which the approximation uN depends are often called the degrees of freedom of
the approximation.

Given this goal, the following central question in Approximation Theory
arises: how an element v�V can be accurately approximated by some
vN Av�RN ? The classical answer is based on a linear process, namely defin-
ing vN as a linear function of v , and leads to a linear approximation theory.
However, as we will see, this is not the most appropriate strategy to reach our
goal: the best (or near-best) approximation depends nonlinearly on v , and a
nonlinear approximation theory has to be developed. In the two coming sec-
tions, we will discuss linear and nonlinear approximations.

Throughout the paper, we will use the notation A � B to indicate AGcB for
a suitable constant c independent of the relevant parameters in the formula.
The notation A s B will mean A � B and B � A.
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2. – Linear approximation.

The classical approach consists of choosing a linear subspace Vd%V of fi-
nite dimension N , and defining a linear projection Pd : VKVd such that

Vv2Pd vVV s inf
vd�Vd

Vv2vd VV .

The question of approximation theory posed above takes here the following
form: how the quantity

Vv2Pd vVV(2.1)

depends on the dimension N of Vd ? The question is relevant to our problem:
indeed, if we define ud�Vd by

J(ud ) 4 min
vd�Vd

J(vd ),

in many situations one has

Vu2ud VV s inf
vd�Vd

Vu2vd VV .(2.2)

A result of this type, sometimes referred to as Céa’s Lemma [14], is often ob-
tained by exploiting the stability of the numerical approximation, i.e., the fact
that the norm of ud in V is bounded in terms of the data of the problem, uni-
formly in Vd. Stability and consistency, i.e., the fact that (2.1) tends to 0 as Vd

saturates V , imply the convergence of the approximation, according to the
well-known Lax-Richtmyer Theorem. Furthermore, (2.2) yields a so-called a
priori error estimate for the approximation.

We will study the quantity (2.1) for three relevant approximation methods
used in the numerical discretization of boundary value problems. We assume
that V is a bounded domain in Rd with Lipschitz boundary, and we denote by
H s (V) 4W s , 2 (V) 4B s

22 (V) the Sobolev space of order s based on L 2 (V) and
equipped with the natural norm and seminorm. V will be a closed subspace of
some H s0 (V), defined by some boundary conditions.

2.1. Fourier approximation.

Set V4 (0 , 2p)d and, for a given s0 F0, let V4H s0
per (V) be the closure in

H s0 (V) of the 2p-periodic functions of C Q (V). For any MD0, let us
define

VM 4span ]e ik Qx : VkVQGM(, PM v4 !
VkVQGM

v×k eik Qx .
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Then, if v�H s
per (V) for some sFs0 , one has the Jackson inequality (see, e.g.,

[9])

Vv2PM vVH s0 (V) � M s02s NvNH s (V) .

Let us set N4dim VM . Observing that N s M d , one obtains

Vv2PM vVH s0 (V) � N 2Ds/d NvNH s (V) , where Ds4s2s0 .

Note that the projection PM v yields a uniform approximation of v , i.e., all
Fourier modes satisfying the cut-off condition VkVQGM are equally repre-
sented, independently of which are the most significant for v. Also note that
the only obstruction to the rate of decay of the error comes from the smooth-
ness of v.

2.2. Finite element approximation.

Let V be a polygonal or polyhedral domain, decomposed into non-overlap-
ping «elements» E (such as triangles, tetrahedrons, ...) of diameter s h. For
any integer mF0, let us denote by Pm (E) the space of polynomials of degree
Gm on E. Let V4H s0

b (V) be the closed subspace of some H s0 (V) defined by
some boundary conditions. We set

Vh , m 4 ]v�V : vNE � Pm (E), (E(

and we denote by Ph , m v an approximation of v in Vh , m , as defined e.g. by an
orthogonal projection upon Vh , m , or by a suitable interpolation procedure.
The typical approximation result is as follows: if v�H s (V) for some sFs0 ,
then

Vv2Ph , m vVH s0 (V) �
h min (s , m11)2s0

(m11)s2s0
NvNH s (V)

(see, e.g., [14, 9, 2, 35]).
In order to express the result in terms of N4dim Vh , m , we note that

card ]E( s h 2d , whereas dim Pm (E) s (m11)d. Thus, we obtain

N s g m11

h
hd

, i.e., if m11 Fs ,

Vv2Ph , m vVH s0 (V) � N 2Ds/d NvNH s (V) .

We have again a uniform approximation, since V is partitioned into elements
of comparable size, each one carring a space of polynomials of the same de-
gree. We now have two obstructions to the rate of decay of the error, one com-
ing as above from the smoothness of v , the other one from the bound
sGm11.
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2.3. Wavelet approximation.

Wavelets have emerged in the last decade as a powerful tool in signal and
image processing, and their importance is increasing also in the numerical
treatment of various operator equations, such as partial differential and inte-
gral equations; we refer to [28, 15] for a comprehensive presentation.

In view of the applications we have in mind, we will consider compactly
supported, biorthogonal wavelet bases in L 2 (V). Precisely, we assume that we
are given two bases in L 2 (V), ]c l(l� M and ]c

A
l(l� M . The notation l stands

for ( j , k), where j is the scale index and k is the position index: the wavelets c l

and c
A

l have a support of diameter s 22j located around a point in V which de-
pends on k. The index set has the structure M 4 ]l4 ( j , k)NjF j0 , k� Kj (,
where Kj are suitable index sets, which satisfy card Kj s 2dj. It is convenient
to set NlN4 j.

The bases satisfy the biorthogonality conditions

(c l , c
A

m )L 2 (V) 4d l , m , (l , m� M,

as well as the representation property

VvV

2
L 2 (V) s !

l� M

Nv×lN
2 for all v4 !

l� M

v×l c l�L 2 (V).(2.3)

Furthermore, we assume that the wavelets form a Riesz basis in a scale of
Sobolev spaces; precisely, we assume that the condition

VvV

2
H s (V) s !

l� M

22NlNs Nv×lN
2 iff v�H s (V)(2.4)

holds for all s in an interval (2s*, s *) depending on the smoothness and the
number of vanishing moments of the generating wavelets.

The prototype of the wavelets of interest is the Haar wavelet [33]. On the
real line, the most popular families are the Daubechies orthogonal wavelets
[28] and the Cohen, Daubechies and Feauveau biorthogonal spline wavelets
[19]. These bases can be restricted to the unit interval and suitably adapted to
form biorthogonal bases in L 2 (0 , 1 ) [20, 25, 32], with the possibility of enforc-
ing vanishing conditions at the endpoints of the interval (clearly in view of
their use for the solution of boundary value problems). Wavelets on cartesian
products of intervals are built in an obvious manner by tensor products. Sev-
eral wavelet families have been constructed on less trivial domains, using do-
main decomposition and patching [10, 26] or domain decomposition and pro-
longation [27]. In particular, we highlight the Wavelet Element Method [10,
11], which provides an explicit construction of matched wavelets across subdo-
mains. The corresponding software WemLib is available at PoliTo [3].

A natural way to define a wavelet-based linear approximation method is to
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introduce, for any integer JF j0 , the linear subspace of L 2 (0 , 1 )

VJ 4span ]c l : NlNGJ(

and the biorthogonal projection operator PJ : L 2 (0 , 1 ) KVJ defined by

PJ v4 !
NlNGJ

v×l c l .

Then, for any s0 and s satisfying 2s*Es0 GsEs *, (2.4) yields the Jackson
inequality

Vv2PJ vVH s0 (V) � 2J(s02s) NvNH s (V) .

If V%Rd is bounded, then N s 2Jd , whence again

Vv2PJ vVH s0 (V) � N 2Ds/d NvNH s (V) .(2.5)

As for the finite element approximation, the obstructions to the rate of decay
of the error come from the smoothness of v and the range of validity of (2.4).
The basis functions used in this approximation are again uniformly distribut-
ed in V , independently of where the function to be approximated has stronger
or weaker gradients or singularities. It may happen that some (or perhaps
many) of the basis functions bring a very small or even a null contribution to
the quality of the approximation, since their support is located in a portion of
the domain where v is very smooth. The aim of Nonlinear Approximation is to
select only the most relevant contributions to the approximation.

3. – Nonlinear approximation.

In this section, we present the basic concepts of Nonlinear Approximation
Theory. We follow the beautiful presentations by Ron DeVore [29] and Albert
Cohen [15], to which we address the reader for further material. For the sake
of definiteness, we confine ourselves to wavelet approximations, as introduced
above. Similar concepts can be elaborated for, e.g., free-partition splines or fi-
nite elements, although at a less developed stage.

Let us introduce the following notation. Given any finite index set
L% M, we define the subspace of V

VL4span ]c l Nl�L(

and the (biorthogonal) projection upon VL

PL v4 !
l�L

v×l c l .

If L4 ]l� M : NlNGJ(, we obtain the linear approximation discussed
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above. On the other hand, if L depends on v , we obtain a nonlinear
operator. We focus on three possible choices for L.

[i] (Near) best N-term approximation. Let us order the wavelet coeffi-
cients of v in decreasing order of modulus

Nv×l 1
NFRFNv×l n

NFNv×l n11
NFR

For any given integer ND0, set L B (N , v) 4 ]l n : 1 GnGN( and define

PN (v) 4PL B (N , v) v4 !
n41

N

v×l n
c l n

.

The approximation PN (v) is defined via the so-called Pure Greedy Algorithm,
which picks the N largest in absolute value wavelet coefficients of the function
v. Another way to look at PN is as follows. Let us define the manifold

SN 4 m !
l�L

v×l c l : card LGNn
of the linear combinations of wavelets having at most N terms. Obviously, such
a set is not a linear space, since SN 1SN + SN ; however, we note that the fol-
lowing properties hold:

SN 1SN ’S2N and aSN 4SN , (a�R0]0(.

A best N-term approximation of v is any element vN �SN satisfying

Vv2vN VL 2 (V) 4 inf
sN�SN

Vv2sN VL 2 (V) 4: s N (v)

(note that there might be several elements vN satisfying this property). Recall-
ing (2.3), we immediately have

Vv2PN (v)VL 2 (V) s s N (v),

which justifies the term «near best N-term approximation».

[ii] (Absolute) Thresholding. For any given eD0, set L T (e , v) 4 ]l�

M : Nv×lNFe( and define the thresholding operator

Pe (v) 4PL T (e , v) v4 !
Nv×lNFe

v×l c l .

[iii] Target Accuracy Approximation. For any given hD0, denote by
L h any subset of L such that

!
l�L h

Nv×lN
2 Gh 2

and let L A (h , v) be any L h of minimal cardinality. Let us define the target ac-
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curacy operator

Ph (v) 4PL A (h , v) v ,

for which we have

Vv2Ph (v)VL 2 (V) � h .

The three nonlinear operators defined above are intimately related to each
other, as we shall see below. Their theoretical properties have been intensively
studied by R. DeVore and his collaborators (see [29] and the references therein).
The rest of this section will be mostly devoted to investigate the behaviour of the
approximation error in the L 2-norm, expressed in terms of one of the approxima-
tion parameters N , e or h and of a suitable «norm» of the function v.

3.1. Best N-term approximation.

Let us denote by v4 ]v×l(l� M the sequence of wavelet coefficients of v; it
belongs to l 2 (M). We are going to define subspaces of l 2 (M) by looking at the
decay rate of the sequence components. To this end, let us denote by ]vn 4

v×l n
(n�N the decreasing rearrangement of the sequence v , already introduced

above, and let us observe that

v� l 2 (M) ¨ n 1/2 NvnNGVvVl 2 (M) , (n�N .

Thus, for any real t such that 0 EtE2, it is natural to consider the subspace
l t
w (M) of the sequences such that

NvNl t
w (M) »4 sup

n�N
n 1/t NvnNE1Q .(3.1)

The decreasing rearrangement of a sequence v� l t
w (M) decays faster and

faster as t approaches 0; this means that v can be described by a smaller and
smaller number of significant components. Thus, we can consider NvNl t

w (M) as a
measure of the sparsity of v. We define

VvVl t
w (M) »4VvVl 2 (M) 1NvNl t

w (M) ,

which is a (quasi-) norm for l t
w (M). It is easy to derive an estimate of the best

N-term approximation error for a function v such that v� l t
w (M). Indeed,

!
nDN

NvnN2 4 !
nDN

n 22/t n 2/t NvnN2 4 g !
nDN

n 22/th NvN2
l t
w (M) � N 122/t NvN2

l t
w (M) .

Introducing the quantity sD0 by the relation

s

d
4

1

t
2

1

2
(3.2)
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(such a definition will be justified below), we conclude that

s N (v) s Vv2PN (v)VL 2 (V) � N 2s/d NvNl t
w (M) .(3.3)

It is remarkable that the rate of decay N 2s/d of the best N-term approximation
error of v is equivalent to the condition v� l t

w(M). Indeed, for all N , we have

NNv2NN2 G !
NEnG2N

NvnN2 Gs N (v)2 GCN 22s/d ,

which implies

Nv2NNGCN
2( s

d
1

1

2
)
4CN

2
1

t ,

from which it is easily derived v� l t
w (M). Summarizing, we have

PROPOSITION 1. – Let s and t be related by (3.2). Then, s N (v) 4O(N 2s/d ) if
and only if v� l t

w (M), and

s N (v) � N 2s/d NvNl t
w (M) .

In other words, the family of the so-called Lorentz spaces l t
w (M) 4 l t , Q (M) is

the natural scale in which to study the convergence of the best N-term approx-
imation of a function v. We now investigate in more detail the nature of these
spaces, and how they are related to standard function spaces for v. At first,
note that

VvV

t
l t (M) F !

nGN
NvnNtFNNvnNt ,

which implies l t (M) % l t
w (M). On the other hand, if t 8Dt

!
n

NvnNt 84!
n

n 2t 8 /t(n 1/t NvnN)t 8
�NvNt 8

l t
w (M)

which implies l t
w (M) % l t 8 (M). It is easily seen that all these inclusions are

strict.
Next, we relate the condition v� l t (M) to the smoothness of v. To this end,

we observe that, since L 2 (V) %L t (V), the wavelet system ]c l(l� M allows the
characterization of the family of Besov spaces B s

tt (V) constructed on L t (V).
Precisely, there exists s *t D0 depending on the smoothness of the generating
wavelets in the scale B s

tt (V) and on the number of their vanishing moments,
such that one has

VvVB s
tt (V) s g !

l� M

2stNlN Nv×(t)
l Nth1/t

, (v�B s
tt (V), 0 GsEs *t .

Here, the wavelet coefficients are computed with respect to the basis norma-
lized in L t (V), i.e.,

v×(t)
l 4s

V

v(x) c
A(t)

l (x) dx
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with

c
A(t)

l (x) 42
2

d

t
NlN

c
A(2NlN x2k) 42

d( 1

2
2

1

t
)NlN

c
A

l (x).

Hence, v×(t)
l 42

d( 1

2
2

1

t
)NlN

v×l so that VvVB s
tt (V) s g !

l� M

2
(st1

td

2
2d)NlN

Nv×lN
th1/t

. Choos-
ing s as in (3.2), we obtain

VvVB s
tt (V) s g !

l� M

Nv×lN
th1/t

4VvVl t (M) .

The present result, combined with Proposition 1, yields the following Jack-
son estimate for a function v�B s

tt (V):

Vv2PN (v)VL 2 (V) � N 2s/d
VvVB s

tt (V) .(3.4)

Actually, one can prove the following analogue of Proposition 1: a function v�
L 2 (V) belongs to B s

tt (V) if and only if

!
N

(N s/d s N (v))t
N 21 E1Q .

In order to grasp the intimate difference between linear and nonlinear ap-
proximation, one should compare the Jackson inequalities (2.5) (with s0 40)
and (3.4). The rate of decay of the approximation error is the same in both esti-
mates, but the required smoothness of the function to be approximated is not.
The function spaces B s

pp (V) involved in the estimates can be pictorially repre-
sented as points (1 /p , s) in the plane (see Figure 1); moving right means de-
creasing summability, moving up means increasing differentiability. The fami-

Figure 1. – DeVore diagram.
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ly H s (V) 4B s
22 (V) which naturally comes into play in linear approximation

lies on the vertical line issueing from the point g 1

2
, 0h , whereas the family

B s
tt (V) which comes into play in nonlinear approximation lies on the oblique

line, issueing from the same point with slope d. Note that this line corresponds
to the critical exponent of the embedding of a Besov space B s

pp (V) into L 2 (V):
spaces represented by points above this line are compactly embedded into
L 2 (V), spaces represented by points below this line are not contained in
L 2 (V). Also note that the spaces B s

tt (V) are not contained in any Sobolev
space H s (V) for sD0. The pictorial representation of the families H s (V) and
B s

tt (V) in the (1 /p , s)-plane is known as the DeVore diagram.
For a fixed sD0, the space B s

tt (V) is larger than the space H s (V) 4

B s
22 (V); indeed, when we move on the oblique line, we require less and less

summability to the «derivatives» of the functions. In terms of approximation,
this means that the same rate of decay of the error can be achieved by nonlin-
ear approximation for a wider set of functions than by linear approximation.
Equivalently, for a fixed function to be approximated, it is likely that the rate
of decay of the error will be higher with nonlinear approximation than with
linear approximation, since the upper bound for the smoothness index s of the
function will be higher along the oblique line than along the vertical line. In
particular, no convergence rate can be expected for the linear approximation
of functions which do not belong to a better space than B s

tt (V).
As an example, set V4 (21, 1 ) and define

va (x) 4
.
/
´

0

x a

xG0,

xD0,
a�R .

Then

va�B s
pp (V) iff

.
`
/
`
´

1

p
D max (2a , 0 ),

sEa1
1

p
.

Thus, va�L 2 (V) iff aD2
1

2
; in this case, we have va�H s (V) for all sEa1

1

2
, whereas va�B s

tt (V) for all sD0. Thus, the rate of decay of the best N-term

approximation error of such a function is solely determined by the number of
vanishing moments of the generating wavelets used in the approximation.

For a general domain in Rd , the spaces B s
tt (V) contain discontinuos func-

tions for arbitrarily large values of s , whereas functions in H s (V) are neces-

sarily continuous for sD
d

2
.
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Finally, it is of interest to relate the number N of retained wavelets to the
threshold given by the minimal value e4e N of the absolute value of the re-
tained wavelet coefficients, as well as to the accuracy h4h N guaranteed by
the near best N-term approximation. To this end, we observe that by definition
e N 4NvNN , whence N 1/t e N 4N 1/t NvNNGNvNl t

w (M) , so that

e N GN 21/t NvNl t
w (M) .

On the other hand, estimate (3.3) yields

h N � N 2s/d NvNl t
w (M) .

3.2. Thresholding.

The Lorentz space l t
w (M), defined by (3.1) in terms of the decreasing rear-

rangement of a sequence, can be equivalently defined from the point of view of
thresholding. Indeed, the following result holds.

PROPOSITION 2. – A sequence v� l 2 (M) belongs to l t
w (M) if and only if, for

all eD0,

card ]l : Nv×lNFe( GCe2t .(3.5)

Moreover, the smallest value of C for which the previous estimate holds coin-
cides with NvNl t

w (M)
t .

PROOF. – Assume that v belongs to l t
w (M) and set Ne4card ]l : Nv×lNFe(.

We have NvNe
NFe , so that

Ne
1/t eGNe

1/t NvNe
NGNvNl t

w (M) ,

from which we obtain NeGNvNl t
w (M)

t e2t . Conversely, assume that (3.5) hold.
For any fixed n�N , set e»4NvnN and define ne4card ]l: Nv×lNFe(. We
have

nGneGCe2t ,

which yields n 1/t NvnNGC 1/t , i.e., v belongs to l t
w (M).

Let us go back to the thresholding operator Pe (v) defined above. Denote
again by Ne4card L T (e , v) the number of retained wavelet components of v.
Then, Proposition 2 tells us that

NeGe2t NvNt
l t
w (M) .
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Concerning the approximation error, we have

Vv2Pe (v)V

2
L 2 (V)� !

k40

Q

!
22k21 eENv×lNG22k e

Nv×lN
2

G !
k40

Q

(22k e)2 (22k21 e)2t NvNt
l t
w (M) � e 22t NvNt

l t
w (M) ,

which yields

Vv2Pe (v)VL 2 (V) � e 12t/2 NvNt/2
l t
w (M) .(3.6)

Equivalently, if h e denotes the accuracy guaranteed by the thresholding ap-
proximation, we have

h e � e 12t/2 NvNt/2
l t
w (M) .

3.3. Target accuracy.

Finally, we consider the target accuracy operator Ph (v) which yields an ap-
proximation error of order h with the minimal number of wavelet components,
say Nh . This means that Ph (v) 4PNh

(v). According to the definition, we
have

!
nDNh

NvnN2 Gh 2 , whereas !
nDNh21

NvnN2 Dh 2 .

Thus, using (3.3), we get

h � Vv2PNh21 (v)V

2
L 2 (V) � (Nh21)2s/d NvNl t

w (M)

whence we obtain

Nh � h2d/s NvNl t
w (M)

d/s .

Let us now denote by e h the minimal value of the absolute value of the re-
tained wavelet coefficients of v. We have

h 2 E !
nFNh

NvnN2 4 !
nFNh

NvnNt NvnN22tG !
nFNh

NvnNt e h
22tGVvVl t (M)

t e h
22t ,

whence we obtain

e hFh
2

22t
VvVl t (M)

2
t

22t .(3.7)

The last result means that an approximation error below a fixed accuracy h is
guaranteed if we apply a thresholding procedure with a threshold given by the
right-hand side of (3.7).
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3.4. Extensions.

So far, we have investigated the nonlinear approximation error measured
in the L 2 (V)-norm. In the applications to data compression or to the numeri-
cal discretization of operator equations (boundary value problems for partial
differential equations, integral equations, and so on), one may be interested in
measuring the approximation error in some other norms, e.g., varying either
the smoothness index or the summability index.

Suppose that we want to measure the approximation error in some Sobolev
space W s0, p(V), where either p42 and s0D0 is arbitrary, or p�(1,1Q)0]2(

and s0 �N. In these cases, the space W s0 , p (V) coincides with the Besov space
B s0

pp (V). If we assume that our wavelet system allows the characterization of
such a space, we have

VvV

p
W s0, p (V) s !

l
2

(s0 p1
pd

2
2d)NlN

Nv×lN
p .

If we set vAl »42
(s01

d

2
2

d

p
)NlN

v×l and vA 4 ]vAl(l� M , we have the norm equiva-
lence

VvVW s0, p (V) s VvA Vl p (M) ,

so that we are back to the situation discussed above, i.e., we apply the nonlin-
ear operators to the sequence vA. For instance, if we denote by PAN (v) the near
best N-term approximation operator in the W s0 , p (V)-norm, we have as in (3.3)

inf
sN�SN

Vv2sN VW s0, p (V) s Vv2PAN (v)VW s0, p (V) � N 2Ds/d NvANl t
w (M) ,(3.8)

where now the quantity Ds is defined as

Ds

d
4

1

t
2

1

p
.(3.9)

Thus, setting s4s0 1Ds , we obtain

Vv2PAN (v)VW s0, p (V) � N 2Ds/d
VvVB s

tt (V) .(3.10)

In other words, the rate of decay of the error 2
Ds

d
is achieved if we move the

Besov space B s
tt (V) along the oblique line issueing from the point g 1

p
, s0h with

slope d. Similar results hold for the other nonlinear operators considered in
the previous sections.

Finally, we consider the case in which we want to measure the approxima-
tion error in L p (V) or in some Sobolev space W m , p (V) with m�N , which for
pc2 is known not to coincide with B m

pp (V). In this case, the analysis is by far
more complex than above, since one cannot exploit any norm equivalence simi-
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lar to (2.4). One has to resort to the Littlewood-Payley theory, using the so-
called square function Sv defined as

Sv(x) 4 g !
l� M

Nv×lN
2 Nc l (x)N2h1/2

,

for which the result VvVL p (V) s VSvVL p (V) holds. However, the conclusions of the
analysis are remarkably the same as before. Indeed, a result by Temlyakov
[36] states that a near best N-term approximation in L p (V) can be achieved by
a simple thresholding procedure: precisely, let L(N , v) denote any set of in-
dices l such that Vv×l c l VL p (V) take the N largest values, and set PN (v) 4

PL(N , v) v. Then, one has

inf
sn�SN

Vv2sN VL p (V) s Vv2PN (v)VL p (V) ,

from which an estimate like (3.10) can be obtained.

4. – Adaptivity.

In the two previous sections, we have discussed the problem of approximat-
ing a given function in a domain V. We have assumed that the function is ex-
plicitly accessible, in the sense that the complete knowledge of, e.g., the set of
its values in V , or the sequence of its Fourier or wavelet coefficients, is avail-
able. Now, let us consider the more difficult situation, in which the function u
to be approximated by a N-term expansion is only implicitly accessible, since
it is defined as the solution of the minimization problem (1.1), or the operator
equation (1.2). In this case, very often we can only generate approximations of
u , by some discrete mechanism which mimics (1.1) or (1.2) in finite dimension.
Adaptivity is accomplished by means of an iterative procedure, which incorpo-
rates best N-term approximation ideas as described in the previous section.

Let us denote by uN
discr the computed N-term approximation of u produced

by some discrete mechanism. We call the discretization procedure asymptoti-
cally optimal if, for NKQ , the function uN

discr behaves as the best N-term ap-
proximation of u in the same basis, i.e.,

Vu2uN
discr

VV s s N (u) , NKQ ,

and the computational cost to obtain uN
discr is at most proportional to N. If we

use a wavelet basis, then by (3.3) such a behaviour of the error is equivalent to
the bound

Vu2uN
discr

VV � N 2Ds/d NuNl t
w (M) ,

provided V is a space of smoothness index s0 . In particular, optimality is
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achieved if the error behaviour is described by the estimate (see (3.4))

Vu2uN
discr

VV � N 2Ds/d
VuVB s

tt (V) .

The key ingredients of the design of an optimal adaptive algorithm in-
clude:

1. The knowledge of regularity results for the solution of minimization
problems or operator equations in the diagonal scale of Besov spaces B s

tt (V).
Existing results concern conservation laws [30], elliptic equations in Lipschitz
and polygonal domains [24, 21], the Stokes equations [23].

2. The a posteriori error control, based on explicit relations between the
current error Vu2ud VV and some dual norm of the residual, such as VJ 8 (ud )VV 8

in smooth minimization problems, or inf
s�¯J(ud )

VsVV 8 (where ¯J(ud ) denotes the

subdifferential of J at ud) in convex, non-differentiable minimization problems.
We note that dual norms are difficult to compute in practice, unless one uses
multilevel or hierarchical bases; the difficulty may be circumvented by resort-
ing to equivalent expressions, based on weighted local L 2-norms.

3. A judiciously designed adaptation strategy, which incorporates in the
iterative minimization process (or in the iterative solution of linear/nonlinear
algebraic systems) some actions of mesh refinement/coarsening or Riesz basis
enrichment/thresholding, which are grounded on and controlled by the under-
lying theoretical analysis.

4.1. Wavelet approximations.

Starting from the pioneering works [4, 22] (we also mention [8] for an early
implementation of wavelet-based adaptivity for elliptic problems), theoretical-
ly sound adaptive wavelet strategies have been developed in the last few years
for a wide class of differential and integral operators, including elliptic opera-
tors, mixed variational formulations, Calderon-Zygmund operators, and cer-
tain nonlinear operators. We mention the results by A. Cohen, W. Dahmen, R.
DeVore and collaborators [16, 17, 23, 18] and those by S. Bertoluzza and col-
laborators [5, 6]. For the study of a class of convex minimization problems, see
[12]. The analysis contained in these and other contributions proves the
asymptotical optimality of the adaptive wavelet discretizations considered
therein (possibly up to an extra logarithmic term in the computational com-
plexity, and assuming an O(1)-cost in the computation of each entry of the
stiffness and mass matrices). Numerical results which provide a quantitative
support to the theory can be found, e.g., in [1].

In order to illustrate the methodology, let us consider the minimization
problem (1.1) for the Dirichlet functional (1.4). Following [12] and using the
approach of [17], we study an adaptive steepest-descent algorithm. We assume
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that the wavelet basis ]c l(l� M is a Riesz basis in V4H 1
0 (V); consequently,

the biorthogonal basis ]c
A

l(l� M is a Riesz basis in V 84H 21 (V). This means
that (2.4) holds with s41 and H s (V) replaced by H 1

0 (V), whereas the dual
space H 21 (V) is characterized as follows:

VFV

2
H 21 (V) s !

l� M

222NlNs NF×lN
2 iff F�H 21 (V),

with F×l4 aF , c l b, the duality pairing between F and c l in H 1
0 (V). In the

present situation, it is customary to normalize primal wavelets in the H 1
0 (V)-

norm and dual wavelets in the H 21 (V)-norm, i.e., replace each c l by 22NlN c l

and each c
A

l by 2NlNc
A

l . If we still denote the wavelet coefficients of a function
v�H 1

0 (V) in the normalized basis by ]v×l(, and those of a form F�H 21 (V)
by ]F×l(, then we can identify v to the vector v4 ]v×l( � l 2 (M), and F to the
vector F4 ]F×l( � l 2 (M). Furthermore, we have VvVH 1

0 (V) s VvVl 2 (M) and
VFVH 21 (V) s VFVl 2 (M) . From now on, we set (u , v) 4 (u , v)l 2 (M) and VvV4

VvVl 2 (M).
Using these representations, the minimization problem (1.1) and (1.4) can

be formulated as an infinite dimensional problem in l 2 (M). Indeed, we have

J(u) 4 min
v�H 1

0 (V)
J(v) equivalent to J(u) 4 min

v� l 2 (M)
J(v),(4.1)

where

J(v) 4J g !
l� M

v×l c lh4
1

2
(Av , v)2 ( f , v)

with

A4 ]alm(l , m� M , alm4s
V

˜c m Q˜c l , and f4 ] f×l(l� M , f×l4s
V

fc l .

We have J8 (v) 4Av2 f and J9 (v) 4A , for all v� l 2 (M). Furthermore, let ud

be any approximation of u in H 1
0 (V), and let ud be the vector of its coefficients.

The associated residual is 2J 8 (ud ) 4Dud1 f�H 21 (V) and one has the error
representation

Vu2ud V

2
H 1

0 (V) s VJ 8 (ud )V

2
H 21 (V) s VJ8 (ud )V

2 4VAud2 f V

2 .

It will be important for the sequel to observe that the previous equiva-
lences between the H 1

0 (V)-norm of a function and the l 2 (M)-norm of the vec-
tor of its coefficients can be rephrased as

C1 VvV

2 G (Av , v) GC2 VvV

2 , (v� l 2 (M);(4.2)

in other words, the condition number k 2 (A) of the infinite matrix A in the Eu-
clidean norm is bounded by C2 /C1 . We will set VvVA 4 (Av , v)1/2.
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The infinite dimensional steepest-descent algorithm to solve (4.1) is as fol-
lows. Let u(0) � l 2 (M) be arbitrary; then, for kF0, given u(k) , define

s(k) 42J8 (u(k) ),

b (k) 4arg min
bF0

J(u(k) 1bs(k) ) 4
(s(k) , s(k) )

(As(k) , s(k) )
,

u(k11) 4u(k) 1b (k) s(k) .

It is well known that the sequence ]u(k) ( converges to u. Precisely, one
has

Vu(k11) 2uVA Gr E Vu(k) 2uVA with r E 4g k 2 (A)21

k 2 (A)11
h1/2

.

Let us now introduce a finite dimensional, adaptive version of this algo-
rithm. We assume that the best N-term approximation of u in the wavelet ba-
sis has, for some sD1, the decay rate

inf
sN�SN

Vu2vN VH 1
0 (V) � N 2s * NuNl t

w (M) , with s *4
s21

d
,

1

t
4

s21

d
1

1

2
,

and we recall some fact from [17], which are crucial in the design of the algo-
rithm. From now on, the symbol vL will denote a vector of finite support, i.e.,
with finitely many non-zero components v×l . We will set card (vL ) 4card ]l�
M : v×lc0(; the symbol cost (vL ) will indicate the computational cost (floating
point operations and/or sorting) to get vL .

PROPERTY 1. – Given hD0 and vL , a vector zL4A(vL , h) can be computed,
such that VAvL2zL VGh , VzL Vl t

w (M) � VvL Vl t
w (M) , card (zL ) �h21/s * NvLNl t

w (M)
1 /s * and

cost (zL ) s card (vL )1h21/s * NvLNl t
w (M)

1 /s * .

PROPERTY 2. – Given hD0 and the vector f4Au , a vector fL4 f ( f , h) can
be computed by thresholding, such that V f2 fL VGh , V fL Vl t

w (M) � VuVl t
w (M) and

card ( fL ) s cost ( fL ) � h21/s * NuNl t
w (M)

1 /s * .

PROPERTY 3. – Given hD0 and a vector vL such that VvL2uVGh , a vector
wL4T(vL , h) can be computed by thresholding, which satisfies VwL2uVG5h,
VwL Vl t

w (M) � VuVl t
w (M) , card (wL ) � h21/s * NuNl t

w (M)
1 /s * and cost (wL ) scard (vL ).

We are now in a position to define the single descent step of our adaptive
algorithm.
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PROPOSITION 3. – Let r� (r E , 1 ) be fixed. Given hD0 and a vector vL such
that VvL2uVA Gh and card (vL ) � h21/s * NuNl t

w (M)
1 /s * , let us set, for some w�

(0 , 1 ),

sL42A(vL , wh)1 f ( f , wh),

zL4A(sL , wVsL V),

b
A

4
(sL , sL )

(zL , sL )

and finally

wL4vL1b
A sL4: D(vL , h).

Then, there exists w such that

VwL2uVA Grh , card (wL ) s cost (wL ) � (rh)21/s * NuNl t
w (M)

1 /s * .

The constant involved in the last symbol � is independent of h and vL .

PROOF. – At first, we check that b
A is well defined. We have (zL , sL ) 4

(AsL , sL )1 (mz , sL ) for some mz satisfying Vmz VGwVsL V. Thus, recalling (4.2),
we get N(mz , sL )NGwVsL V

2 GwC1
21 (AsL , sL ). Choosing wEC1 and setting

b 4
(sL , sL )

(AsL , sL )
, we obtain b

A
4 b1wO(1).

Now, let us set e0 4vL2u and en 4wL2u , so that en 4e0 1b
A sL and

(Aen , en ) 4 (Ae0 , e0 )12 b
A(Ae0 , sL )1b

A2 (AsL , sL ). Set s42J8 (vL ) 42

AvL1 f and note that, by construction, we have Vs2sL V4wO(h). Next, ob-
serve that Ae0 42s; thus, keeping into account (4.2) again, we have
(Ae0 , e0 ) 4 (s , A21 s) 4 (sL , A21 sL )1wO(h 2 ) as well as (Ae0 , sL ) 42

(s , sL ) 42(sL , sL )1wO(h 2 ). Consequently, after some algebra, we obtain

(Aen , en ) 4 y12
(sL , sL )2

(AsL , sL )(sL , A21 sL )
z (sL , A21 sL )1wO(h 2 ).

By the Kronecker inequality 1 G (Ax , x)(A21 x , x) /VxV

4 G (k 2 (A)1/2 1

k 2 (A)21/2 )2 /4 , which holds for all x� l 2 (M), the term in square brackets is
bounded by r E

2 . Thus,

(Aen , en )Gr E
2 (sL , A21 sL )1wO(h 2 )4r E

2 (Ae0 , e0 )1wO(h 2 )G(r E
2 1wO(1) ) h 2 .

Choosing w so that r E
2 1wO(1) Gr 2 , we obtain the estimate VwL2uVA Grh.

The remaining statements follow from Properties 1 and 2. r
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A fixed number of descent steps guarantees a prescribed error reduc-
tion.

PROPOSITION 4. – Let a� (0 , 1 ) be fixed. Given hD0 and a vector vL such
that VvL2uVGh and card (vL ) � h21/s * NuNl t

w (M)
1 /s * , set w(0)

L 4vL and, for kF0,
w(k11)

L 4D(w(k)
L , r k h). Then, there exists an integer K depending only on a

and r such that the vector wL »4w(K)
L 4: D(vL , h , a) satisfies

VwL2uVGah , card (wL ) s cost (wL ) � (ah)21/s * NuNl t
w (M)

1 /s * .

The constant involved in the symbol � depends on K but is independent of h
and vL .

PROOF. – Recalling (4.2), we have VwL2uVGC1
21/2 r K C2

1/2 h. Thus, it is
enough to choose K such that C1

21/2 r K C2
1/2 Ga. r

The complete adaptive algorithm is as follows. Let g� (0 , 1 ) be fixed. For
m40, set u(0)

L 40. For mF0, given u(m)
L , define

uA(m11)
L 4D(u(m)

L , g m , g/5 ),(4.3)

u(m11)
L 4T(uA(m11)

L , g m11 /5 ),(4.4)

where the operators D and T are defined in Proposition 4 and Property 3, re-
spectively. Collecting all previous estimates, one has the following final
result.

THEOREM 3. – The sequence ]u(m)
L ( defined above satisfies, for all

mF0,

Vu(m)
L 2uVGh m »4g m , card (u(m)

L ) s cost (u(m)
L ) � h m

21/s * NuNl t
w (M)

1 /s * . r

Obviously, the result can be rephrased in terms of the quantity Nm »4

card (u(m)
L ). Setting uNm

4 !
l� M

u×l
(m) c l , we obtain

Vu2uNm
VH 1

0 (V) � Nm
2s * NuNl t

w (M) , mKQ .

We conclude that the adaptive minimization algorithm (4.3)-(4.4) is asymptoti-
cally optimal.

4.2. Finite element approximations.

Adaptive finite element methods are by now widely and successfully used
in practice. Mesh adaptation is based on the inspection of local error indica-
tors, derived by a careful a posteriori error analysis (see, e.g., [37]).

As an example, consider again the model problem (1.3). Denote by R4 ]E(

a geometrically conforming «triangulation» of V by elements E of diameter
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hE , having «sides» e%¯E of diameter he . Let Vh be a subspace of H 1
0 (V) made

of piecewise polynomial functions on R. If uh denotes the Galerkin approxima-
tion of u in Vh , i.e., the solution of the problem

s
V

˜uh Q˜vh dx4s
V

fv dx , (vh �Vh ,

which corresponds to minimizing the energy functional J over Vh , then one can
prove that

Vu2uh V

2
H 1

0 (V) s VJ 8 (uh )V

2
H 21 (V) 4VDuh 1 f V

2
H 21 (V) s !

E�R
h E

2 ,

where the local error indicators h E are given by

h E
2 4hE

2
VDuh 1 f V

2
L 2 (E) 1 !

e%¯E
heNNk ¯uh

¯n
lNN

2

L 2 (e)

([Q] being the jump across e). Popular mesh adaptation strategies mark each
element E for refinement or coarsening depending on the relative size of the
indicators h E .

Despite the easiness of implementation of this and similar strategies, as
well as the extremely good performances observed in practice, the theoretical
foundations of adaptive finite element methods are still in their infancy. The
first convergence proof of an adaptive algorithm (in the multidimensional
case) was given in [31] and refined in [34]. It is only recently [7] that the rate
of decay of the error, in terms of the dimension N of the subspace Vh and the
Besov regularity of the solution, has been established for Problem (1.3). The
analysis is based on concepts of nonlinear approximation theory, as described
in Section 3, originally developed for wavelets. The conclusions are similar to
those reported in Section 4.1. Precisely, a mesh adaptation algorithm is de-
vised, which is shown to have the following properties: given an integer N , the
algorithm generates an admissible mesh with s N elements, such that the
piecewise linear Galerkin approximation built on that mesh approximates the
exact solution to an error, in the energy norm, which behaves as the best ap-
proximation error among all the piecewise linear functions defined on admissi-
ble meshes with N elements; furthermore, the computational cost is at most
proportional to N.

Remarkably, a simple refinement strategy, which starts from a coarse grid
and recursively attempts to equidistribute the local error, often works well in
practice, producing asymptotically optimal results. For instance, let us consid-
er the Dirichlet problem for the Laplace equation

Du40 in V4 (0 , 1 )2 , u4g on ¯V ,(4.5)

which can be easily reduced to Problem (1.3). Let us choose g to be identically
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Figure 2. – Finite element meshes for Problem (4.5): initial mesh (left), uniformly refi-
ned mesh (center), adapted mesh (right).

0 on ¯V , except for a neighborhood of the midpoint (0.5, 0) of the bottom side,
where it behaves like Nx20.5N1/2 and then decays smoothly to 0. The corre-

sponding solution u belongs to H s (V) for all sE
3

2
, whereas it belongs to

B s
tt (V) for all sF0. Then, one observes that the error Vu2uN

discr
VH 1

0 (V) behaves
like O(N 21/4 ) if uN

discr is the piecewise linear Galerkin solution defined on a uni-
formly refined mesh with N triangles, whereas it behaves like O(N 21/2 ) if
uN

discr is the solution defined on a grid, again with N triangles, which is adap-
tively refined around the singularity point (see Figures 2). These results
match the theoretical predictions, based on the linear and nonlinear approxi-
mation theories.
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