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Remarks on Interpolation of Bilinear Operators
by Methods Associated to Polygons.

P. FERNÁNDEZ-MARTÍNEZ (*)

Sunto. – Studiamo l’interpolazione di operatori bilineari secondo il metodo dei poligo-
ni. Dimostriamo un teorema per operatori che agiscono da due K-spazi su un’altro
K-spazio, e proviamo l’ottimalità di alcuni risultati precedenti.

Summary. – We study interpolation of bilinear operators by the polygons methods. We
prove an interpolation theorem of type K3K into K spaces, and show the optimali-
ty of the precedings results.

Interpolation of multilinear operators has been studied by different au-
thors and it shows to have a variety of interesting applications in analysis. See
the book by Bergh and Löfström [3], or the papers by Lions Peetre [16], Pee-
tre [17], Zafran [19], Favini [13] Janson [15] Astashkin [2], and the more re-
cent work by Cobos, Cordeiro and Martínez [4].

These methods, introduced by Cobos and Peetre in [9], deal with N-tuples
of normed spaces and present a strong geometrical component, as we can see
in [9] or in [6]. There are others methods interpolating several (more than
two) spaces. Among those, the methods described by Sparr in 1974, see [18],
and the methods introduced by Fernandez in 1979, see [14]. The polygons
methods coincide with Sparr spaces (when the associated polygon is the sim-
plex) and with Fernandez Spaces (when the unit square is the associated poly-
gon), so they can be consider as a link between these other methods.

The above mentioned paper by Cobos, Cordeiro and Martinez is devoted to
the study of bilinear interpolation in the context of the polygons methods.
Three N-tuples are involved, A 4 ]A1 , R , AN (, B 4 ]B1 , R , BN (, E 4

]E1 , R , EN (, and they work with bounded linear operators T : S(A)3

S(B) KS(E) whose restrictions T : Aj 3Bj KEj , 1 G, jGN are bounded. It is

(*) The author has been partially supported by DGES (PB97-0254).
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shown that, under the appropiate hypothesis,

T : A(a , b), p ; J 3B(a , b), q ; K KE(a , b), r ; K(1)

T : A(a , b), p ; J 3B(a , b), q ; J KE(a , b), r ; J .(2)

Remained to know if the range of the first operator could be reduced to a J-
space, or if the domain of the latter operator could be enlarged to a J3K-
space. In this note we give counterexamples showing none of these options are
possible, and in this sense establishing the optimality of the results in [4].

Despite of the fact that under the usual hypothesis we cannot have a gen-
eral bilinear interpolation theorem of the type

T : A(a , b), p ; K 3B(a , b), q ; K K E(a , b), r ; K ,(3)

i.e. we cannot enlarge the domain of the interpolated operator in (1), we estab-
lish a theorem of this type under new and necessary conditions in § 2.

1. – Interpolation methods associated to polygons.

Subsequently A 4 ]A1 , R , AN ( will stand for a N-tuple of normed vector
spaces continuously embedded in a common Hausdorff topological vector
space U. Under these conditions we can consider the sum S(A) 4A1 1R1AN

and endowed it with the norm

VaVS(A) 4 inf m !
1 G jGN

Vaj VAj
, where a4 !

1 G jGN
ajn .

Similarly we consider the intersection D(A) 4A1 OROAn with the norm

VaVD(A) 4 max
1 G jGN

]VaVAj
( .

Assume P4 P1 , R , PN with vertices Pj 4 (xj , yj ). Given any two positive
parameters t , sD0, and aided by the polygon, we renorm the space Aj with
the norm t xj s yj

V QVAj
. Now the norm in the sum is given by the K-functional

K(t , s , a ; A) 4 inf m !
1 G jGN

t xj s yj
Vaj VAj

, where a4 !
1 G jGN

ajn .

Similarly, the norm in the intersection is given by the J-functional

J(t , s , a ; A) 4 max
1 G jGN

]t xj s yj
VaVAj

( .

Let (a , b) �Int P and 1 GpGQ . We define the space A(a , b), p ; K as the set
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of all those a�S(A) for which the norm

VaV(a , b), p ; K 4 g !
m , n�Z

(22am2bn K(2m , 2n , a) )ph1/p

is finite (usual modifications for p4Q).
We can also define a space by means of the norms on the intersection. Pre-

cisely, the space A(a , b), p ; J consists of all those a�S(A) for which there exist
representations a4 !

m , n�Z
um , n , convergence in S(A) and (um , n ) �D(A), veri-

fying that

VaV(a , b), p ; J 4 inf
a4 !

m , n�Z
um , n

mg !
m , n�Z

(22am2bn J(2m , 2n , um , n ) )ph1/pn
is finite (usual modifications for p4Q).

A(a , b), p : K and A(a , b), p : J are interpolation spaces for the N-tuple A. The fol-
lowing (strict) inclusions hold

D(A) %KA(a , b), p : J %KA(a , b), p : K
%KS(A) .

For examples and more information about these methods see [5], [6], [7],
[9] and [12].

2. – Bilinear interpolation.

We start by fixing some notation. The following hypothesis will be refered
as (H).

(H) Let P4 P1 , R , PN be a convex polygon, (a , b) �Int P an interior point.
Let A 4 ]A1 , R , AN (, B 4 ]B1 , R , BN ( and E 4 ]E1 , R , EN ( be Ba-

nach N-tuples. We shall asssume that 1 Gp , q , rGQ verify 1

p
1

1

q
4

11
1

r
. T : S(A)3S(B) KS(E) will stand for a bilinear bounded operator

whose restrictions T : Aj 3Bj KEj , 1 G jGN , are bounded.

Cobos, Cordeiro and Martínez proved in [4] that under these conditions
the following are bounded bilinear operators

T : A(a , b), p ; J 3B(a , b), q ; K KE(a , b), r ; K(4)

T : A(a , b), p ; J 3B(a , b), q ; J KE(a , b), r ; J .(5)

They also showed, by means of a counterexample, that we cannot expect a gen-
eral bilinear interpolation theorem of the type

T : A(a , b), p ; K 3B(a , b), q ; K K E(a , b), r ; K .(6)

These results are, in some sense, the best possible. Next counterexample
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shows that we cannot improve result (4) by reducing the range of the interpo-
lated operator to a J-space (despite of the fact that D(B) is dense in S(B)). In
other words, we cannot improve (5) by enlarging the domain to a J3K-
space.

COUNTEREXAMPLE 2.1. – Let P4 (0 , 0 ), (1 , 0 ), (0 , 1 ), (1 , 1 ) be the unit
square, and choose the tuples A 4 ]l1 , l1 , l1 , l1 (, B 4 ]l1 , c0 , c0 , l1 ( and E 4

]l1 , lQ , lQ , l1 (. Clearly, S(A) 4 l1 , S(B) 4c0 and S(E) 4 lQ .
The convolution operator, f(a , b)(n) 4 (a * b)(n) 4 !

m�Z
a(n2m) b(m),

f : l1 3c0 K lQ , is a bilinear bounded operator, and its restrictions to the
spaces of the tuples are

f : l1 3 l1 K l1(7)

f : l1 3c0 K lQ ,(8)

both bounded. Now it makes sense to interpolate, and so we obtain A( 1
2 , 1

2 ) , 1 ; J 4

l1 , B( 1
2, 1

2 ) , Q ; K 4c0 , and

(9) E( 1
2, 1

2 ) , Q ; J 4 (l1 , lQ , lQ , l1 )( 1
2, 1

2 ) , Q ; J
%K(l1 , lQ , lQ , l1 )S

( 1
4, 1

4, 1
4, 1

4 ) , Q ; J 4

(l1 , l1 , lQ , lQ )S
( 1

4, 1
4, 1

4, 1
4 ) , Q ; J 4 (l1 , lQ )1

2, Q ; J 4 l2, Q .

In case that under the hypothesis (H) a theorem of type

T : A(a , b), p ; J 3A(a , b), q ; K K E(a , b), r ; J(10)

held, we would have that the operator

f : l1 3c0 K E( 1
2, 1

2 ) , Q ; J
%K l2, Q

is bounded. However it is easy to check that c0 %f(l1 3c0 ) which makes impos-
sible for the range of f to be contained in l2, Q .

The following theorem shows that we may only expect general results of
type (4)

THEOREM 2.2. – Let E be a Banach N-tuple. Assume that, for all A, B and T
satisfying (H), E verifies that

T : A(a , b); p ; J 3B(a , b), q ; K K E(a , b), r ; J

is a bounded operator. Then J and K-methods coincide on E.

PROOF. – The choice A 4 ]R , R , R(, B 4 E and the operator T : R3

S(E) KS(E) defined by T(l , x) 4lx for some l�R verifies (H). So, using the
hypothesis, the operator T : R3B(a , b), q ; K K E(a , b), r ; J is bounded. In particu-
lar, for p41, q4r , and 1 GqGQ this shows that

E(a , b), q ; K %KE(a , b), q ; J . r
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It must be said, and it is easy to prove by means of the Closed Graph Theo-
rem, that if T maps A(a , b), p ; J 3B(a , b), q ; K into E(a , b), r ; J , then

T : A(a , b), p ; J 3B(a , b), q ; K KE(a , b), r ; J

is a bilinear bounded operator.
Now we turn to the result of type (6). Cobos, Cordeiro and Martínez

showed by means of a counterexample that we cannot have a general result of
this type. However, if our polygon is the simplex, and one of the initial tuples,
say B, is a functional lattice tuple (see [7]), then we obtain results of type (6)
since J and K-methods coincide on B, see [1]. This suggests that under addi-
tional hypothesis one may have a type (6) bilinear interpolation theorem. In
order to have an idea of what type of hypothesis, additional to those of (H), are
needed we study the following simple case:

EXAMPLE 2.3. – Let (B0 , B1 ) a compatible couple of functional Banach lat-
tices (see [7]), such that B0 OB1 is dense in each Bi , i40, 1 . Let P be the unit
square and choose B 4 ]B0 , B1 , B1 , B0 (. If a bilinear interpolation theorem of
type (6) holds for B and for all tuples A and E, then Theorem 2.4 shows
that

B( 1
2, 1

2 ) , 1 ; K 4 B( 1
2, 1

2 ) , 1 ; J .

Use now Example 1.25 of [10] to prove that the norms V QVB0
and V QVB1

are equiv-
alent on B0 OB1 4D(B). Since D(B) is dense in B0 and B1 we have to conclude
that B0 and B1 are the same space, and so B is a degenerated 4-tuple. In partic-
ular, the crossed restrictions

T : Ai 3Bj KEi , (i , j

are bounded.
Next result shows that, despite of what happens when we deal with the

simplex (Sparr spaces), working with functional Banach lattices does not im-
prove the result, in the following sense: whenever we have a type (6) bilinear
interpolation theorem, for all tuples A and E, what we really have is a type (4)
bilinear interpolation theorem.

THEOREM 2.4. – Let P be a convex polygon and (a , b) �Int P . Assume
that B is a functional Banach lattice N-tuple, such that D(B) is dense

in Bj , 1 G jGN , and that 1 Gp , rGQ , 1 GqEQ with 1

p
1

1

q
4

1

r
11.

If for any tuples A, E such that T : S(A)3D(B) KS(E) is a bilinear
bounded operator verifying that the restrictions T : Aj 3 (D(B), V QVBj

) KEj ,
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1 G jGN , are bounded, T can be extended to a bounded bilinear op-
erator

T : A(a , b), p ; K 3B(a , b), q ; K K E(a , b), q ; K ,

then B(a , b), q ; K 4 B(a , b), q ; J .

PROOF. – Consider the N-tuple B 8 4 ]B 81 , R , B 8N ( and recall the equalities
S(B 8) 4D(B)84D(B)* , see [11]. Choose E 4 ]R , R , R( a degenerated N-tu-
ple, and consider the operator defined by T(W , b) 4 ab , Wb. By hypothesis we
can extend T to

T : B 8(a , b), p ; K 3B(a , b), q ; K K E(a , b), r ; K

bilinear and bounded operator. By choosing 1

p
1

1

q
41, r4Q , the fact that T

is bounded shows that

B8(a , b), p ; K
%K(B(a , b), q ; K )8 .

Now use that B is a Banach lattice tuple and the chain of inclusions

(B(a , b), q ; J )84 B8(a , b), p ; K %K(B(a , b), q ; K )8 %K(B(a , b), q ; J )8

to obtain the equality (B(a , b), q ; K )84 (B(a , b), q ; J )8 . This shows that the norms V Q
V(a , b), q ; K and V QV(a , b), q ; J are equivalent on D(B). Now, since D(B) is dense in
both spaces B(a , b), q ; K and B(a , b), q ; J , and the latter are functions spaces, we
conclude that

B(a , b), q ; J 4 B(a , b), q ; K

with equivalence of norms. r

Now we prove that under weaker hypothesis than those just mentioned
(bounded crossed restrictions) a bilinear interpolation theorem of type (6)
holds, see also [15]. We will work with mappings of type (P) which are affine
mappings, associated to the polygon P , defined as

Rgu
v
h4Q1Ugu

v
h ,

for (u , v) �R2 . Here Q�R2 , U is an isomorphism of R2 and R verifies that for
each 1 G jGN , RPj �Int P or RPj 4Pk , for some 1 GkGN . These mappings
transform the polygon P into another convex polygon, R(P) 4 Q1 , R , QN,
contained in P . Moreover R( Int P) 4Int R(P), in particular if (a , b) �Int P
then Q4R(a , b) �Int R(P). Let R be such a mapping, then the reiteration
theorem in [5] and the fact that J and K-methods coincide on the tuple lQ 4

(lQ (22mx12ny1 ), R , lQ (22mxN2nyN ) ) yield that

](lQ)Q1 , q1 ; K , R , (lQ)QN , qN ; K ((a , b), q ; K 4 (lQ)Q , q ; K .(11)
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Recall the K-method associated to polygons can be described as a maximal
interpolation functor. Namely, for any Banach N-tuple A

A(a , b), q ; K 4H[lQ, lq (22am2bn ) ](A) ,(12)

the maximal Banach space, A , such that A and lq (22am2bn ) are interpolation
spaces with respect to A and lQ, see [8]. Now, from (11) and (12), we conclude
that for any Banach N-tuple A

(AR(P1 ), q1 ; K , R , AR(PN ), qN ; K )(a , b), q ; K %KAR(a , b), q ; K(13)

with norm G1.

THEOREM 2.5. – Let P , A, B and T as in (H). Let R be a mapping of type
(P) and let T verify that for Qi 4R(Pi ) and 1 G iGn the restrictions T : Ai 3

Bj K EQi , pi
are bounded. Then

T : A(a , b), q ; K 3B(a , b), p ; K KE(a , b), r ; K

for 1

r
G maxm 1

p
, 1

q
n , and (a , b) �R( Int P).

The proof follows the ideas of Janson in [15].

PROOF. – For some fixed b�Bj , 1 G jGN , consider the operator Tb : Ai K

EQi , pi
defined by Tb (a) 4T(a , b), linear and bounded with norm VTVAi , EQi , pi

G

VTVi , j VbVj . Interpolating with parameters (a , b) �Int P , 1 GqGQ , and using
the inclusion of equation (13), we obtain

Tb : A(a , b), q ; K K ER(a , b), q ; K

is bounded with norm VTb VG max
1 G i , jGN

VTVi , j VbVBj
.

Now fix a� A(a , b), q ; K and consider the operator Ta : S(B) K ER(a , b), q ; K . Ta

is a bounded linear operator whose restrictions to each Bj remains bounded.
Hence by interpolating with parameters (a 1 , b 1 ) �Int P , 1 GpGQ we con-
clude that

VTa VB(a 1, b 1), p ; K , ER(a , b), q ; K
GCVTVVaV(a , b), q ; K .

Now it is easy to show that for each pair (a , b) � A(a , b), q ; K 3B(a 1 , b 1 ), p ; K ,

VT(a , b)VCR(a , b), q ; K
GVTa bVCR(a , b), q ; K

GCVTVVaV(a , b), q ; K VbV(a 1 , b 1 ), p ; K

which shows that

T : A(a , b), q ; K 3B(a 1 , b 1 ), p ; K K ER(a , b), q ; K .

By reversing the order of interpolation and using the inclusion relationship
between the interpolated spaces we obtain the statement of the theo-
rem. r
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