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L%*"-Regularity for Minima of Variational Integrals.

JOSEF DANECEK - EUGEN VISzUS (¥)

Sunto. — In questo lavoro si studia la L% * - vegolarita del gradiente dei minimi locali
per funzionali non-lineart.

Summary. — The L*-regularity of the gradient of local minima for nonlinear func-
tionals is shown.

1. — Introduction.

In this paper we shall consider the problem of the regularity of the deriva-
tives of functions minimizing the variational integral

1 F(u; Q) = ff(ac, w, Du) dw ,
Q

where QcR", n > 2 is an bounded open set, x = (x;, ..., x,) € 2, u: Q—>RY,
N>1,u(x) = (u' (), ..., u" @), Du={D,u'},D,=8/x,a=1,..,m,i=
1,...,Nand f: Q2 xRV x R"N —R will be stated below. A local minimum for
the functional F is a function ue Wi}2(2, RY) such that for every ¢e
W2(Q, RY) with supp ¢ cc 2 we have

F(u; supp @) < F(u+ @; supp @).

For more information see [2], [4], [7].

The aim of this paper is to investigate the L**-regularity (for a definition
see below) of the gradient of minima, directly working with the functional F’
instead of working with its Euler equation. In fact we shall not suppose any
differentiability. In the following we shall suppose

2) f(, w, Du) = A (x) Dyw'Dyu’+ g(x, w, Du),

where a, =1, ...,n,%,5=1,..., N,A= (Agﬂ) is a matrix of functions with
A{;ﬁ eL>(2)N L£,(L2) (for a definition of £,(£2) see the next paragraph) and

(*) J. Danécek was partially supported by the grant MSM no. 261100006.
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the following condition of strong ellipticity
3) AP (x) ELEL=v|E|?, ae. veQ, VEER™; v>0

holds. Here and in the following summation over repeated indices is
understood.

About the function g = g(x, u, Du) we suppose that g is Carathéodory
function; i.e. measurable in x for each (u, z) e RY x R™ and continuous in
(u, z) for almost every x e 2. Moreover for almost x € 2 and all (u, z) e RN x
R™ the following condition hold

4 lg(x, u, 2) | < f(x) + L|z|7,

where fe LP(Q2), 2<p< o, f=0ae on 2, L=0and 0 <y <2

From these assumptions it follows, that our functionals (1), (2) are, in gen-
eral, non differentiable and therefore that u ¢ WZ2(2, RY).

The L?*-regularity of the gradient of minima of the functional (1), (2) we
have stated in [3] too. In [3] it was supposed that the coefficients A{,-‘ﬁ are con-
tinuous. In this paper the coefficients Aijﬁ are discontinuous in general. From
such point of view the result of this paper may be seen as a generalization of
that from [3] and [5]. The below stated result may be seen as one from first
steps to proving BMO-regularity of the gradient of minima for class of func-
tionals defined by (1), (2).

If we want discuss our method of proof, we have to say that its crucial
points are assumptions on A{,-‘ﬂ and higher integrability of gradient Du (see
[10], [6]). Using these two facts we obtain L% - regularity of the gradient.

2. — Preliminary results and definitions.

In this part we shall formulate some definitions and results needed for
proving of main result.

For the sake of simplicity we denote by |-| the norm in R" as well
as in RY and in R™. If xeR" and r is a positive real number, we set
B(x,r)={yeR" |y —x| <r}, ie. the open ball in R" and Q(x,r)=2nN
B(x, ). In our next considerations we shall denote B(x, ) by B,(x) too.
Denote by

ua:,r

L [ wpay= f away

| .Q(.’)C, T) | nQ(x,r) Q(x,r)

the mean value over the set Q(x, ) of the function uweL'(Q2, RY), where
|2(x, r) |, is the n-dimensional Lebesgue measure of £(x, r). Beside the
usually used spaces C;° (2, RY), Holder spaces C%*(2,RY), spaces
L?(2, RY) and Sobolev spaces W (R, RY), WP (Q, RY), WEP (2, RY) (for
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details see e.g. [7], [9], [11]) we shall use the spaces, stated in the following
definitions.

DEFINITION 1. — Let e [0, n], ge[1, ®). A function u e LY(2, RY) is said
to belong to L**(2, RY) if

Qx, 7)

1
Hu||%w<g,RN>=5up{—i [ |u<y>|wwe9,r>o]<oo.

For more details see [1], [4], [9], [11].

DEFINITION 2. — A function e L*(£2, RY) is said to belong to £,(2, R") if

1 12
[ulyo = sup[m( f |u(y)—ux,r|2dy) rxef, re(0, dz'amQ]]< 00
r

Q(x,r)

and by [,(2, RY) we denote subspace of all ue £,(£2, RY) such that

1/2
[uly, 0, n = sup{ ( J[ |u(y)—um|2dy) IQCEQ,’I"E(O,TO]] =0(1)

Q(x, )

Y(r)

as 1o N0 and y(r) =1/(1 + |In7r|).

REMARK 1. — In full generality the spaces £,(£2, RY) may be defined for a
function w :[0, d]—[0, ), which is continuous, non-decreasing and such
that t —(t)/t is almost decreasing, i.e. there exists a constant K, =1 such
that K, y(t)/t = y(s)/s, 0 <t <s <d. The £, classes, introduced in [12] gener-
alize Campanato’s .£”* spaces [1].

In the next proposition the properties of above mentioned spaces are for-
mulated. For the proofs see [1], [7], [9], [12].

PROPOSITION 1. — For domain QcR" of the class C™! (i.e. Lipschitz class)
we have

G L*"(R2, RY) is isomorphic to the L~ (2, RY).
Gi) If ueWL2(Q,RY) and DueLZ* (2, R™), n—2<i<n, then
ueCOM*”*zW(Q, RN)
(iii) £,(2, RY) is a Banach space with norm |ule, o, xv) = llull20, vv) +
[u]w,Q-
iv) C°(Q, RN)\ﬁw(Q, RY) and {L*(Q,RM)N l,(82, RMINC(@Q, RY)
are not empty.
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(v) Forpe[l, ), Q'cc R, rye (0, dist(Q', 622)) and ue £,(2, RY)

1/p
( f |u(y)_ux,r|pdy) OCE.Q’,/}"E(O,TO]].

Qa, 7)

set

N, (u; yp, 2, 1)) =su
sy ’ p[w(r)

Then we have for each ue £,(£, RM)
Nl(u5 7/}, ‘Q,’ TO) sz(u’ U)v 9’5 7‘0) S C(p’ n)[u]¢,ﬂ,ro-

The considerations which will used in the next paragraph we may formu-
lated by

LEMMA 1 (see [1]). — Let ue W 2(B(x,, R), RY) be a weak solution to the
system

D, (A Dyu?) =0
with constant coefficients A;ﬁ and (3) be satisfied. Then for each tel0, 1]
f | Du|?da < ct” f | Du | di
By, tR) B, R)

holds.
LEMMA 2 (see [10], [6]). — Let we Wh2(Q2, RY) be a minimum of the func-
tronal (1), (2), where A;ﬂc—:L‘”(Q) NL,(2) and (3), (4) be satisfied. Then

DueL. (2, R™) for some r>2 and there exist constants ¢ =c(v, L, ||Al|.)
and R >0 such that for all balls B(x, R)cQ, R<R

( f |Du|”dy)w$c{( f|Du|2dy)1/2+( f|f(x)|”2dy)%}

B(x, R/2) B(x, R) B(x, R)

holds.

REMARK 2. — Here stated Lemma 2 has a form useful for our situation. It is
a special case to that from [10].

LEMMA 3 (see [7]). — Let ue W2(B(x,, R), RY) be a solution of Dirichlet
problem

D (A’ Dgu’) =D b, uw=0 on 3B(x,, R)

with constant coefficients A%, (3) be satisfied and hieL"(B(xy, R)), > 2.

/A
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Then DueL"(B(xy, R), R"N) and
1D, < cl|nd],

hold, where the constant ¢ has no dependence on R.

LEMMA 4 (see [8]). — Let @ = ®(R), Re (0, d], d > 0 be a nonnegative func-
tion and let A, B, C, a, b be nonnegative constants. Suppose that for all te
(0, 1] and all Re (0, d]

®(tR) < (At* + B) &(R) + CR?
holds. Further let Ke (0, 1) be such that e = AK* *+ BK < 1. Then
P(R) SCRb, VRe(0,d],

where ¢ = max {C/K(1 —¢), sup D(R)/R°}.
RelKd,d)

3. — Main result.
Now we may state the following

THEOREM. — Let ue Wh2(Q, RY) be a minimum of the functional (1), (2).
Let AgﬁeL “(2)N L,(L2) and (3), (4) be satisfied. Then

P R I if2<p<w
€
L% (Q, R™) with arbitrary A<mn if p= .

Therefore,

CO,I—n/p(Q7RN) l:f’i’b<p
€
C*"(Q, RYN) with arbitrary 9<1 if p= .

REMARK 3. — The Holder-continuity of u stated in previous Theorem imme-
diately follows from Proposition 1(ii).

4. — Proof of Theorem.

We shall prove the Theorem only in situation when 2 <p < «. For p = o
the proof is analogous with some small modification.
Let Br(xy) cc Q and v be a minimum of the functional

5) FO(; Bpo(a) = | (A2, peDuv' Dyvi da

Brya(wg)
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among all the functions in W 2(Bgp(2,), RY) taking the values % on By (x).
From Euler equation for v and from Lemma 1 we have

(6) f |Dv|2declt”f |Dv|*dx, te(0,1].

Bigyz () Brpz ()

Put w=u —v. We have we Wi 2(Bgp (1), RY).
By standard arguments we obtain, using (6),

(M f |Du|2d.ocSc2{t" f | Du|*dx + f |Dw|2doc}.
Bipy(wo) Bz () Bpya(wo)

In the following we shall estimate the last integral on the right hand side of (7).
From [5] (see Lemma 2.1) we have

® v f |Dw|2dxsc3(F0(u§BR/2(900))—F0(7);BR/z(%o)))=

Bpya (1)

63{ f (A, me — AL (@) D,u' Dy dee +

Bpyz(w)

f(A“ﬁ(ac) (A")z m2) Dov' Dyl dac +

Bpya (o)

f(—g(ac,u,Du))dach fg(oc,v,Dv)dx+

Bpya(w9) Bpyz ()

F(u; Bgp(xy)) — F(v; BR/z(oco))} =

63{I+II+III+IV+ F(u; BR/Z(-’)C())) _F(’U; BR/2(.')C(]))} <
¢ {1+ 11+ IIT + IV}

Notice that F(u; Bpp(xy)) — F(v; Bre(xy)) <0, since « is a minimizer.
Now we shall estimate the terms I, II, ITI and IV from (8). In the following
we shall denote (A{;ﬁ ) =: A - matrix of coefficients.

1< [ 1A me— AP @) Dt || Dy |da

Bpyz ()

<¢y f | Ay, re — A() | | Du | dee .

Bryz(wo)

Taking into account Lemma 2, Holder inequality (»' =7/(r —2), »>2) and
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Proposition 1(v), we obtain

1/r’ 2/r
) ISC4( f |A(m)—AxO‘R/2|”'dx) ( f |Du|rdx)

Brya (o) Bz (1)

Rn/r’ ’ 1/
[(1+|lnR|)( J{ |A(x) — A, re|” d,ac) }

Sy —mm——
1+ |lnR| Brya(wp)

2/r
x( f|Dmmﬂ

Bpya (1)

Rn/r’ 2/r
<c;N, (A, v, Brp(xy), B/2) —( f |Du|’“dm)
1+ |lnR| Brye ()

Rn/r’ 2/r
<cs(n, 7, [Alle, @ r?¥?) —( f |Du|rdac) .
Y ! 1+ |lnR| B (o)

Using the inequality from Lemma 2 we may estimate the last integral in (9) by
the following manner

2/r 4/r
(10) ( f |Du|"dx) SC7R2”/’"{ f|Du|2dac+( f|f(x)|"/2dac) }

Bpya(o) Br(xo) Br(xo)

Taking into account the fact that fe L?(£2), p > 2 and » > 2 may be choose by
such a way that /2 <p (ie. 2p/r > 1), we obtain from Holder inequality

4/r
(11) ( f |f(‘%.) |7'/2 d.’)ﬁ) < Cg(’n, ||f||L7’(Q)) R2n(2p—r)/pr.

Bp(xg)

Now from (9), (10), (11) we have

1

Seg—— f | Du|?de + ¢y g R™ 2P,
1+ |InR|p,

(@)

(12)

where the constants ¢y and ¢, depend only on parameters of the functional (1), (2).
By the same way as in estimating of I we have

(13) s [ |A@ - A po||Do|2de.

Bpya (o)

From Euler equation for v and from the fact that v = u on 9Bp,s(x,) we have
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for w:
D (A, e Dsw’) = D, (AJ),, reDsu’) and w=0 on 6By ().

Lemma 3 implies that Dw e L" (Bgp(xy)), » > 2 and because v = u — w, we have
ve L"(Bgp(xy)) and from the inequality in Lemma 3 we obtain

1/r 1/r
(14) ( f |Dv|”dx) Scn( f |Du|"dm) ,
Brye () Brya(wg)

where c¢;; not depends on R.
Now (13), (14) using Hélder inequality (»>2, ' =#/(r —2)) give

1/r 2/r

]I$Clg( f |A(x)_A.7co,R/2 |T d%) ( f |D’M/|rdx) .
Brya (%) Brpa(xo)

From the last estimate by way analogous to that in estimating of I we

obtain

1
(15) Ilsclg— f |Du|2dx+cl4Rn(l—2/p).
1+ |InR|g,0,)

From (4) and Young inequality (we may suppose R < 1) we have

=< g, u, Du) |dr<c; Ly o TPt w|"adx
16 III ( Du) |d Aoy R™ 1P+ L Dul|”d

Bpp(29) Bpyz(29)
Ly
(1-1 2 .
= 015(||f||L1”(52))R”( P4 ¢ | Du|*dx + ci¢(n, €, y, L) R"
Bpya (o)

L
< e |Du|?dx + ¢y R™ VP Ve>0.

2 Brp(x)

By the analogous way as in obtaining of (16) we have:

(A7) IVsc R VP + L f | Dv|” dx

Bpya (o)

ScmR“(ll/”)—i—Lye( [ \pupde+ [ |Dw|2dac)
Bpyp (o) Bpp(xo)

+616(1’L, E, Y, L)Rn

< 2 2 (1 - 1/p)
\Lye( f | Du | da + f | Dw | dm)+cl7R

B (o) Bpya (1)
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for each &> 0. The estimates (8), (12), (15), (16), (17) imply

(18 v f |Dw|?de < ¢ ————— f | Du|*dx + & f | Du|* dx
Bra(zo) L+ [InR| g G, Bra(ao)

+019(Rn(1_2/p)+R”(1_1/p))+(33]/L8 f |Dw|2doc.

Brpz(w)

Now we can choose ¢,>0, Ry=min {1, R}, (R is from Lemma 2) such that
v —c3yLe >0 for all € < ¢,. And thus we have for all R < R, ¢ < ¢ the follow-
ing estimate

1
(19) f |Dw|2deczo(— +8) f | Du|?dx + ¢y R*,
Brps(ay) 1+ [InR| B ()
where 1 =n(1—2/p).
Now from (7) and (19) we obtain for te [0, 1]

1
(20) f |Du|2dx$022(t”+e+—) f | Du|?da + cs R*.
1+ |InR| /3,

Bigp(ag) ()

For te[1, 2] the above inequality is trivial and we have for each te
[0, 1]

f | Du|?da + co5 R,

(o)

(21) f |Du|2dacScz4(t”+e+

Big (1)

1+ |InR| )BR

where the constants ¢y, and cy; depend only on above mentioned parame-
ters.

Now from Lemma 4 we get the result by the following manner. If we put
&R)= [ |Du|*dx, a=n, b=21, A=cy, B=cy(c¢+1/(1+ |InR|)) and

Bp(xg)

C = ¢y; we can choose 0 < K <1 such that AK" *<1/2.

It is obvious that the constants £,> 0 and R, > 0 exist such that BK ~* <
1/2, for all e < ¢y, R < R and then for all e (0, 1), R < R, the assumptions of
Lemma 4 are satisfied and therefore

f |Du|?dx < cyR*,  A=n(1-2/p).
Br(w)
This estimate implies that Du e LZ*(2, R™). The proof is finished. =
REMARK 4. — Taking into account Definition 2 and Remark 1 following this

definition, we see that for y(f) =1, £,(2) = BMO(L) (bouded mean oscilla-
tion) and [,,(£2) = VMO(L) (vanishing mean oscillation).
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It is a trivial fact that £,(2) cVMO(L) if y(f) vanishes as ¢ approaches
zero. And thus one may prove the above mentioned Theorem (using the same
considerations as in above proof) in situation when A{;"S eL*(2)NVMO(R2)
too.

REFERENCES

[1] S. CampaNATO, Sistemi ellittict in forma divergenza. Regolarita all’interno,
Quaderni, Pisa, 1980.

[2] B. DACOROGNA, Dirict methods in the calculus of variations, Springer-Verlag,
Berlin, 1989.

[3] J. DANECEK - E. Viszus, Regqularity of minima of variational integrals, Math. Slo-
vaca, 49, 3 (1999), 345-356.

[4] M. GIAQUINTA, Multiple integrals in the calculus of variations and nonlinear el-
liptic systems, Annals of Mathematies Studied N. 105, Princenton university press,
Princeton, 1983.

[6] M. GIAQUINTA - E. Grusti, Differentiability of minima non-differentiable func-
tionals, Invent. math., 72 (1983), 285-298.

[6] M. GiaQuINTA - E. GIusti, Quasiminima, Ann. Inst. Henri Poincaré, 1 (1984),
79-107.

[7]1 E. Grusrti, Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana,
Officine Grafiche Tecnoprint, Bologna, 1994.

[8] J. KADLEC - J. NECAS, Sulla regularita delle soluzioni di equazioni ellittiche negli
spazi H** Ann. Sc. Norm. Sup. Pisa, 21 (1967), 527-545.

[9] A. KUFNER - O. JoHN - S. FUCIK, Function spaces, Academia, Prague, 1977.
[10] G. Mobpica, Qusiminimi di alcuni funzionali degeneri, preprint no. 9 (1984).
[11] J. NECAS, Les methodes directes en theorie des equationes elliptiques, Academia,

Prague, 1967.
[12] S. SPANNE, Some function spaces defined using the mean oscillation over cubes,
Ann. Se. Norm. Sup. Pisa, 19 (1965), 593-608.

Josef Danééek: Department of Math., FAST VUT, Zizkova 17
60200 Brno, Czech Republic. E-mail: danecek.j@fce.vutbr.cz

Eugen Viszus: Department of Math., MFF UK, Mlynska dolina
84248 Bratislava, Slovak Republic. E-mail: eugen.viszus@fmph.uniba.sk

Pervenuta in Redazione
il 9 ottobre 2000



