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Bollettino U. M. I.
(8) 6-B (2003), 221-235

Uniform Kadec-Klee Property and Nearly Uniform Convexity
in Köthe-Bochner Sequence Spaces.

PAWE LC KOLWICZ

Sunto. – Viene studiata la proprietà uniforme di Kadec-Klee in spazi sequenziali di
Kothe-Bochner E(X), dove E è uno spazio sequenziale di Kothe e X è un arbitrario
spazio di Banach separabile. Precisamente, viene esaminato il problema se questa
proprietà geometrica si può trasportare da X in E(X). Ciò viene stabilito in contra-
sto con il caso in cui E è uno spazio di Kothe. Come corollario viene stabilito un
criterio affichè E(X) sia «nearly» uniformemente convesso.

Summary. – The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces
E(X), where E is a Köthe sequence space and X is an arbitrary separable Banach
space, is studied. Namely, the question of whether or not this geometric property
lifts from X and E to E(X) is examined. It is settled affirmatively in contrast to the
case when E is a Köthe function space. As a corollary we get criteria for E(X) to be
nearly uniformly convex.

1. – Introduction.

Köthe-Bochner spaces of vector valued functions E(X) are generalizations
of Lebesgue-Bochner and Orlicz-Bochner spaces. They have been investigat-
ed by many authors (see for example [3], [4], [5], [10], [13], [14] , [19], [20] and
[21]). One of the fundamental problems in these spaces is the question of
whether or not a geometric property lifts from X and E to E(X). Although the
answer to such a question is often expected, the proof of such a response is
usually nontrivial. A survey of geometry in Köthe-Bochner spaces can be
found in [16].

The property (H) is also known as the Radon-Riesz ([21]) or the Kadec-
Klee property (KK) ([11]). Huff in [11] introduced two successively stronger
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notions and he called them nearly uniform convexity (NUC) and uniform
Kadec-Klee property (UKK). He proved that a Banach space is nearly uni-
formly convex iff it has uniform Kadec-Klee property and it is reflexive. It is
also known that nearly uniformly convex Banach space has the fixed point
property of nonexpansive mappings.

The property (H) in Köthe-Bochner spaces was studied in [3], [5] and [14].
We consider uniform Kadec-Klee property in Köthe-Bochner sequence
spaces. As far as we know, the earliest result concerning that subject is due to
J. R. Partington [19]. He proved that Lebesgue-Bochner sequence space lp (X)
for 1GpEQ is (UKK) if X is (UKK). Moreover Theorem 3.1 in [1] gives a result
for general measure spaces that recovers Partington’s theorem as a corollary.

First we prove a characterization of property (UKK) in an arbitrary Ba-
nach space. Basing on this we show that if X is a separable Banach space with-
out the Schur property and E is a Köthe sequence space, then E(X) is (UKK)
iff X is (UKK) and E is uniformly monotone. Moreover, if X has the Schur
property and E is uniformly monotone, then E(X) is (UKK). Notice that our
results are essentially stronger than that from Partington’s paper [19] (Kif E
is uniformly convex Köthe sequence spaces and X is (UKK), then E(X) is
(UKK)).

From our main result we also conclude that in Köthe sequence space the
uniform monotonicity is stronger that property (UKK). Moreover we give an
example of non symmetric Köthe sequence space which has uniform Kadec-
Klee property and is not uniformly monotone. It corresponds to the result of
Sukochev (Theorem 2 in [22]) from which among others implies that, in sym-
metric sequence spaces E with the shrinking basis, the uniform monotonicity
and property (UKK) coincide.

As a corollary we also get that, if X is an infinite dimensional Banach space,
then E(X) is nearly uniformly convex iff both E and X possess the same prop-
erty and E is uniformly monotone. Furthermore, if X is a finite dimensional
Banach space, then E(X) is nearly uniformly convex iff E is nearly uniformly
convex. The same results have been obtained by D. Kutzarova and T. Landes
in [15]. They consider (NUC) property in the substitution space E(x) of family
x4 (Xv )v�V of Banach spaces, which in particular case, when all spaces Xv are
the same Banach space X, gets the Köthe-Bochner sequence space E(X).

Denote by 8, R and R1 the sets of natural, real and non-negative real
numbers, respectively. Let (8 , 28 , m) be the counting measure space. By
l 0 4 l 0 (m) we denote the linear space of all real sequences.

Let E4 (E , G, V QVE ) be a Banach sequence lattice over the measure space
(8 , 28 , m) (Köthe sequence space), where G is semi-order relation in the
space l 0 and (E , V QVE ) is a Banach sequence space, i.e. E is linear subspace of
l 0, norm V QVE is complete in E and the following two conditions are
satisfied:
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(i) if x�E , y� l 0 , NyNGNxN , i.e. Ny(i)NGNx(i)N for every i�8 , then
y�E and VyVE GVxVE ,

(ii) there exists a sequence x in E that is positive on whole 8 (see [12]
and [18]).

Denote by E1 , l1
0 the positive cone of E , l 0 respectively, i.e. l1

0 4 ]x�
l 0 : xF0(.

E is said to be strictly monotone (E�SM) if for every 0 GyGx with ycx
we have VyVE EVxVE . We say that a Banach lattice E is uniformly monotone
(E�UM) if for every q� (0 , 1 ) there exists p� (0 , 1 ) such that for all 0 GyG

x satisfying VxVE 41 and VyVE Fq we have Vx2yVE G12p (see [9]). Then the
modulus p(Q) of the uniform monotonicity of E is defined as follows

p(q) 4 inf ]12Vx2yVE : VxVE 41, VyVE Fq , 0 GyGx( .

A Banach lattice E is called order continuous (E�OC) if for every x�E
and every sequence (xm ) �E such that 0 Jxm GNxN we have Vxm VE K0 (see
[12] and [18]).

Recall that E satisfies the Fatou property (E�FP) if x� l 0 and (xm ) �E
are such that 0 Gxm 6x and sup

m
Vxm VE EQ , then x�E and VxVE 4 lim

mKQ
Vxm VE

(see [2], [12] and [18]).
Let (X , V QVX ) be a real Banach space, B(X) and S(X) be the closed unit ball,

unit sphere of X , respectively. For any subset A of X , we denote by conv (A)
the convex hull of A. The symbol xn K

w
x denotes that xn converges to x weakly

in X .
We say that a sequence ]xn ( %X is an e-separated for some eD0 if

sep ]xn (X 4 inf ]Vxn 2xm VX : ncm( De .

We say that X has the Kadec-Klee property provided on the unit sphere se-
quences converge in norm whenever they converge weakly. Huff in [11] pre-
sented an equivalent formulation: X has the Kadec-Klee property if

(KK) :

(xn ) %B(X)

xn K
w

x

sep ]xn (X D0

¨ VxVX E1 .

A Banach space X is called to have uniform Kadec-Klee property (X�
(UKK) for short) if for every eD0 there exists d� (0 , 1 ) such that

(UKK) :

(xn ) %B(X)

xn K
w

x

sep ]xn (X Fe

¨ VxVX E12d .(1)
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Recall that a Banach space X has the Schur property (write X� (SP) for
short) if every weakly null sequence is norm null. Every Schur space is (UKK)
and the converse is not true ([11]).

A Banach space is said to be nearly uniformly convex (write X� (NUC)) if
for every eD0 there exists d� (0 , 1 ) such that for every sequence ]xn ( ’B(X)
with sep ]xn (X Fe we have

conv (]xn ()O (12d) B(X) cf .

For any Banach space we have (NUC) ¨ (UKK) ¨ (KK). Moreover X�
(NUC) iff X� (UKK) and X is reflexive ([11]).

Now, let us define the type of spaces to be considered in this paper. For a
real Banach space aX , V QVX b, denote by M(8 , X), or just by M(X), the space of
sequences x4 (x(i) )i41

Q such that x(i) �X for all i�8. Define

E(X) 4 ]x� M(X) : Vx(Q)VX �E( .

Then E(X) becomes to be a Banach space with the norm

VxV4VVx(Q)VX VE

and it is called a Köthe-Bochner sequence space.

2. – Auxiliary lemmas.

LEMMA 1. – If x , y�X0]0(, then

Vx1yVX G
1

2
Vx×1y×VX (VxVX 1VyVX )1g12

1

2
Vx×1y×VXhNVxVX 2VyVXN ,

where x× 4xOVxVX (Lemma 1.1 in [10]).

LEMMA 2. – Let X be a separable Banach space and E be an order continu-
ous sequence Köthe space. If fn , f�E(X) and fn K

w
f in E(X), then fn (i) K

w
f (i)

in X for every i�8 (Lemma 1 in [14]).

LEMMA 3. – Let E be any Banach sequence lattice. Then E� (UM) iff for
every a� (0 , 1 ) there is h(a) � (0 , 1 ) such that for any x�E1 with VxVE41
and for any A�28 such that Vxx A VE Fa there holds Vxx 80A VE G12h (Theo-
rem 7 in [9], see also Lemma 6 in [15]).
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3. – Results.

THEOREM 1. – Let X be a Banach space. Then X� (UKK) iff for every hD0
there exists s� (0 , 1 ) such that

(xn ) %X0]0(

xn K
w

x�X0]0(

sep ]xn OVxn VX ( Fh

K VxVX E (12s) lim inf
nKQ

Vxn VX .(2)

PROOF OF NECESSITY. – Take hD0. Let the sequence (xn ) in X0]0( be such
that xn K

w
x�X0]0( and sep ]xn OVxn VX ( Fh . By the weak convergence of (xn )

to x we get a4 lim inf
nKQ

Vxn VX EQ . Hence, passing to a subsequence, if necess-

ary, we may assume that Vxn VX Ka . Define y4x/a . and yn 4xn OVxn VX . Then
yn �B(X) and sep ]yn ( Fh . We claim that yn K

w
y . Indeed, by the lower semi-

continuity of the norm with respect to the weak topology, we conclude that aF

VxVX D0. Consequently, for every x *�X *, we get

Nx *(yn 2y)N4

Nx *g xn

Vxn VX

2
x

a
hN G Nx *g xn

Vxn VX

2
x

Vxn VX
hN1Nx *g x

Vxn VX

2
x

a
hN 4

1

Vxn VX

Nx *(xn 2x)N1N 1

Vxn VX

2
1

a NNx *(x)NK0 .

Take the number s4d(h) from (1). Then Vx/aV4VyVE12s .

PROOF OF SUFFICIENCY. – Let eD0. Take a sequence (xn ) in B(X) with
sep ]xn ( Fe . Assume that xn K

w
x . Passing to subsequence, if necessary, we

may assume that Vxn VX Kb , b� [e/2 , 1 ] and Vxn VX Fe/4 for every n�8 . Then,
applying Lemma 1, we conclude that there exist a number h4h(e) D0 and a
subsequence (xnj

)j41
Q % (xn )n41

Q such that sep ]xnj
OVxnj

VX ( Fh . Taking d4s (h)
from (2), we can finish the proof.

THEOREM 2. – Let E be a Köthe sequence space and X be a separable Ba-
nach space.

(i) If X� (SP), then E(X) � (UKK) iff X� (UKK) and E� (UM).
(ii) If X� (SP), E� (UM), then E(X) � (UKK).

(i). PROOF OF NECESSITY. – Since E and X are embedded isometrically into
E(X) and the property (UKK) is inherited by subspaces, E and X have the
(UKK) property. Since E� (UKK), so E� (OC) ([6]). Moreover, if Banach
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space X does not have the Schur property, then there exists a sequence
(xn )n41

Q %S(X) such that xn K0 weakly in X. Then, applying Hahn-Banach the-
orem, it is easy to prove that for every a� (0 , 1 ) there exists a subsequence
(yn )n41

Q % (xn )n41
Q such that sep ]yn (X Fa . Using this observation it is easy to

show that E� (UM) the same way as in the proof of Theorem 1 (the implica-
tion (1) ¨ (2)) in [15].

PROOF OF SUFFICIENCY. – Assume that X� (UKK) and E� (UM). Let eD0.
In view of Theorem 1, in order to prove that E(X) � (UKK), it is enough to con-
sider the elements fn from the unit sphere of E(X). Suppose that the sequence
( fn ) %S(E(X) ) is such that sep ] fn (E(X) Fe and fn K

w
f in E(X). Since (UM) ¨

(OC) in any Banach function lattice, in view of Lemma 2, we conclude that
fn (i) K

w
f (i) in X for every i�8. Consequently for every i�8 the sequence

(V fn (i)VX )n41
Q is bounded, so it contains a convergence subsequence. Using well

known diagonal method, we can find a subsequence ( fnk
)k41
Q % ( fn )n41

Q and a se-
quence g� l1

0 such that

V fnk
(i)VXK

kKQ
g(i) for every i�8 .(3)

Denote still this subsequence by ( fn )n41
Q . Notice that uniform monotonicity of

E implies that E has the Fatou property (see [2]). Hence g�E and VgVE G1.
Take h4h(e/8 ) from Lemma 3. Let the number g� R satisfy

0 EgEh/3 .(4)

We consider two cases:

I. Suppose that VgVE G113g2h . By the lower semicontinuity of the norm
with respect to the weak topology, we conclude that V f (i)VX G lim inf V fn (i)VX

for every i�8. Hence V f (i)VX Gg(i) for every i�8. Then V f VG12p1 , where
p1 4h23g .

II. Let

VgVE D113g2h .(5)

Since V f (Q)VX Gg(Q), so supp V f (Q)VX %supp g(Q). Define the sets

A4{i�supp g :
V f (i)VX

g(i)
E

1

2
} and B4{i�supp g :

V f (i)VX

g(i)
F

1

2
} .

Obviously ANB4supp g and AOB4R . We divide the proof into two
parts.

1. Assume that Vgx A VE Fg . Notice that V f (Q)VX Gg(Q)2
1

2
g(Q) x A . It is easy

to see that if E� (UM), then for each 0 EqEb and x , y�E1 such that yGx ,
VxVE Gb and VyVE Fq there holds Vx2yVE GVxVE (12p(q/b) ), where p(Q) is the
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modulus of uniform monotonicity of E given in the definition (see the proof of
Theorem 7 in [9]). Hence we get V f VG12p2 , where p2 4p(g/2 ).

2. Suppose that Vgx A VEEg . Then Vgx B VEFVgVE2g . Denote B4 ]i1 , i2 , R(

and Bk4]i1 , i2 , R , ik (. Let gk4gx BOBk
. Then 0Ggk 6gx B and sup

k
Vgk VEEQ .

By the Fatou property of E we get Vgx B VE 4 lim
kKQ

Vgk VE . Consequently we may
assume that card BEQ and

Vgx B VE FVgVE 22g .(6)

By (3) we get V fn (Q)VX x BK
nKQ

g(Q) x B . Applying again the Fatou property we
obtain Vgx B VE G lim inf

nKQ
V V fn (Q)VX x B VE . Hence, passing to a subsequence, if

necessary, we may assume that

VV fn (Q)VX x B VE FVgVE 23g(7)

for every n�8 . We claim that

VV fn (Q)VX x 8 0 B VE Ee/8(8)

for every n�8 . If not, then VV fn (Q)VX x 8 0 B VE Fe/8 for some n�8 . By Lemma
3 we conclude VV fn (Q)VX x B VE G12h(e/8 ). Consequently, in view of (5) and (7),
we get a contradiction, so (8) is true. We will show that

sep ] fn x B (E(X) Fe/8 .(9)

Otherwise, in view of (8) and the triangle inequality, for some ncm , we would
get

eGV fn 2 fm VGV( fn 2 fm ) x B V1V( fn 2 fm ) x 8 0 B VG
3e

8
.

This contradiction proves that (9) is true. Take l� R such that

0 ElEe/16 .(10)

Then, in view of (9) and (10), it is easy to see that for every ncm there exists
i0 �B satisfying V fn (i0 )2 fm (i0 )VX FlV f (i0 )VX . Moreover we will prove that the
following condition holds:

(1) there exist a subset B0 %B and a subsequence (zn ) % ( fn ) such
that

Vzn (i)2zm (i)VX FlV f (i)VX

for all ncm , i�B0 and

Vzn (i)2zm (i)VX ElV f (i)VX

for every ncm and i�B0B0 .
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Denote by FB the family of all nonempty subsets of the set B . We have
card BEQ , so card FB EQ .

1. Consider the element f1 and the sequence ( fn )n42
Q . Then there exist a

subsequence ( fn
(1) )n41

Q % ( fn )n42
Q and a subset B1 �FB , such that

V f1 (i)2 fn
(1) (i)VX FlV f (i)VX

for every n�8, i�B1 and

V f1 (i)2 fn
(1) (i)VX ElV f (i)VX

for every i�B0B1 and n�8. Denote h1
(1) 4 f1 and hn11

(1) 4 fn
(1) for every

n�8.

2. Consider the element f 1
(1) and the sequence ( fn

(1) )n42
Q . Then there

exist a subsequence ( fn
(2) )n41

Q % ( fn
(1) )n42

Q and a subset B2 �FB such that

V f 1
(1) (i)2 fn

(2) (i)VX FlV f (i)VX

for every n�8, i�B2 and

V f 1
(1) (i)2 fn

(2) (i)VX ElV f (i)VX

for every i�B0B2 and n�8. Denote h1
(2) 4 f 1

(1) and hn11
(2) 4 fn

(2) for every
n�8. Since card FB EQ, so taking the next steps analogously analogously we
conclude that there exist a set B0 �FB , the sequence ( jk )k41

Q of natural num-
bers and the sequence of subsequences (hn

( jk ) )n41
Q , k41, 2 , R such that

(hn
( j1 ) )n41

Q & (hn
( j2 ) )n41

Q &R

and for every k�8 we get

Vh1
( jk ) (i)2hn

( jk ) (i)VX FlV f (i)VX

for every n�8 , nF2, i�B0 and

Vh1
( jk ) (i)2hn

( jk ) (i)VX ElV f (i)VX

for every n�8 , nF2, i�B0B0 . Define zn 4h1
( jn ) for every n�8. In such a

way we have constructed the sequence (zn )n41
Q satisfying the condition (1).

Denote still this subsequence by ( fn )n41
Q . Furthermore we will prove that

V fn x B0
VFe/32(11)

for every n�8 except at most two elements. Suppose conversely that
V( fn ) x B0

VEe/32 for n�]n1 , n2 (. By condition (+) we obtain V fn1
(i)2fn2

(i)VX E
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lV f (i)VX for every i�B0B0 . Hence, by (9) and (10), we get

e

8
GV( fn1

2 fn2
) x B VGV( fn1

2 fn2
) x B0

V1V( fn1
2 fn2

) x B0 B0
VE

V fn1
x B0

V1V fn2
x B0

V1lE
e

8
,

which is a contradiction. Moreover, we will show that

Vgx B0
VFe/64 .(12)

Take a�E such that a(i) D0 for every i�8 and VaVE Ee/64 . Let l4
card B0 . Denote B0 4 ]i1 , i2 , R , il (. In view of (3), for every j41, 2 , R , l
there exists number Nj �8 such that NV fn (ij )VX 2g(ij )NEa(ij ) for every nF

Nj . Denote N0 4 max
1 G iG l

]Ni (. Then

VV fn (Q)VX x B0
2g(Q) x B0

VE Ee/64

for every nFN0 . Consequently, by (11), we conclude that (12) is true.
Note that V f (i)VX D0 for every i�B . For every i�B0 define the se-

quence

(hn (i) )n41
Q 4 ( fn (i)OV f (i)VX )n41

Q %X .

By condition (1) we conclude that for every i�B0 we have sep ]hn (i)X ( Fl.
Let i1 �B0 . Then, in view of the definition of the set B , we get that

lim
nKQ

Vhn (i1 )VX 4
g(i1 )

V f (i1 )VX

4h1 � [1 , 2 ] .

Furthermore, applying Lemma 1, we conclude that there exist a number l 1 4

l 1 (l , h1 ) and a subsequence (hnk
)k41
Q % (hn )n41

Q such that

sep ]hnk
(i1 )OVhnk

(i1 )VX (X Fl 1 .

Moreover the function l 1 (l , Q) is nonincreasing and l 1 (u , v) D0 for every
u , vD0. Let l 0 4l 1 (l , 2 ). Then

sep ]hnk
(i1 )Vhnk

(i1 )VX (X Fl 0 .

Take i2 �B0 and consider the sequence (hnk
(i2 ) )k41

Q . Similarly we deduce that
there exists a subsequence (hnkj

)j41
Q % (hnk

)k41
Q such that

sep ]hnkj
(i2 )OVhnkj

(i2 )VX (X Fl 0 .

In such a way we can find a sequence (vn )n41
Q % (hn )n41

Q satisfying

sep ]vn (i)OVvn (i)VX (X Fl 0
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for every i�B0 . Denote still this subsequence by (hn )n41
Q . But

sep ]hn (i)OVhn (i)VX (X 4 sep ] fn (i)OV fn (i)VX (X .

Basing on Theorem 1 take a number s4s (l 0 ). Then

V f (i)VX Eg(i)(12s)

for every i�B0 . Then V f (Q)VX Gg(Q)2sg(Q) x B0
. By (12) we have Vsg(Q) x B0

VE F

es/64 . Finally V f VG12p3 , where p3 4p(es/64) and p(Q) is the modulus of uni-
form monotonicity of E.

(ii). Suppose that X� (SP), E� (UM). Let eD0. We will show that
E(X) � (UKK). Take a sequence ( fn ) %S(E(X) ) such that sep ] fn (E(X) Fe and
fn K

w
f in E(X). In view of Lemma 2, we conclude that fn (i) K

w
f (i) in X for every

i�8. By the Schur property of X we get fn (i) K f (i) in X for every i�8. We
will use the same notation and the same steps as in the proof of (i). Then
V f (i)VX 4g(i) for every i�8. Moreover A4¯ and B4supp g . Consequently
sep ] fn x B (E(X) Fe/8 . On the other hand card BEQ and V fn (Q)2 f (Q)VX K0 in
E . Hence VV fn (Q)2 f (Q)VX x B VE K0. This contradiction shows that case I is the
only one to consider and finishes the prove. r

REMARK 1. – The implication E(X) � (UKK) ¨ E� (UM) is not true if X
has the Schur property. It is enough to take X4 R and E from Example 1. We
do not know whether that implication holds if X is an infinite dimensional
Banach space with the Schur property, i.e. not reflexive. However, in that
case, we present precise criteria for a sequence Köthe space E with the
shrinking basis (see Theorem 3 below).

REMARK 2. – It is worth to mention that property (UKK) does not lift from
X into E(X) in the case when E is a Köthe function space. It is enough to con-
sider the Lebesgue-Bochner space Lp (m , X) when 1 EpEQ and m is the
Lebesgue measure on [0 , 1 ]. Then if X is not uniformly convex then Lp (m , X)
has not uniform Kadec Klee property (Theorem 3.4.9 in [16]). This fact also
follows from the proof of Theorem 2 in [19].

Denote by ]en (n41
Q the basis of E , by ]en*(n41

Q the sequence of biorthogonal
functionals to the ]en (n41

Q . Let G be the weak topology and G 0 4s(E , []en*(] )
be the topology generated by the closed linear span of ]en*(. Obviously G 0 is
weaker than G . Denote by E * the Banach dual of E . The basis ]en (n41

Q is
called shrinking when ]en*(n41

Q form a basis of E * (in particular this is the
case when E * is separable or E is reflexive, see also Proposition 1.b.1 in [17]).
If the basis ]en (n41

Q is shrinking, then the topology G 0 coincide with G.
It follows from Proposition 8 in [8] that if X is a reflexive Köthe function

space over the complete, s-finite measure space (V , S , m) and xn Kx m-a.e.,
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then xn Kx weakly in X . Notice also that if X has a Schauder basis, then X is
reflexive iff the basis is both shrinking and boundedly complete (Theorem
1.b.5 in [17]).

LEMMA 4. – Let E be a sequence Köthe space with the shrinking basis
]en (n41

Q . If xn K0 pointwisely in E and (Vxn VE )n41
Q is bounded, then xn K0

weakly in E .

PROOF. – Suppose that xn K0 pointwisely in E and (Vxn VE ) is bounded. Un-
der our assumption it is enough to show that xn K0 in topology G 0 in E . Let
x *�G 0 . If x *4 !

i�I
a i ei* for (a i )i�I % R and I%8 with card IEQ , then obvi-

ously x * xn K0 as nKQ . Suppose that x * is such that xk*Kx * in E * and for
every k�8 we have xk*4 !

i�Ik

a i
(k) ei* for (a i

(k) )i�Ik
% R and card Ik EQ . Then

Nx * xn N4N(x *2xk*1xk*) xn NG

N(x *2xk*) xn N1Nxk* xn NGVx *2xk* VE * Vxn VE 1Nxk* xnN .

Hence x * xn K0 as nKQ .
The next result corresponds to Theorem 2(ii) and define precisely in par-

ticular case the criteria for E(X) to be (UKK).

THEOREM 3. – Let E be a sequence Köthe space with the shrinking basis
]en (n41

Q and X be a separable Banach space with the Schur property. Then
E(X) � (UKK) iff E� (UKK).

PROOF OF NECESSITY. – It is clear, since E is embedded isometrically into
E(X) and the property (UKK) is inherited by subspaces.

PROOF OF SUFFICIENCY. – Suppose that E� (UKK). Then E� (OC). Let eD0.
Take a sequence ( fn ) %B(E(X) ) such that sep ] fn (E(X) Fe and fn K

w
f in E(X). In

view of Lemma 2, we conclude that fn (i) K
w

f (i) in X for every i�8. By the
Schur property of X we get fn (i) K f (i) strongly in X for every i�8. Conse-
quently for every I%8 with card IEQ we have VV fn (Q)2 f (Q)VX x I VE K0. Since
E� (OC), so there exists A%8 with

card AEQ and VV f (Q)VX x 80A VE Ee/16 .(13)

Moreover there exists a number N1 �8 such that

V(V fn (Q)VX 2V fm (Q)VX ) x A VE Ee/2

for every n , mFN1 . Then sep ]( fn x 80A )n4N1
Q ( Fe/2 . Consequently

VV fn (Q)VX x 80A VE Fe/4 for every nFN1 excluding at most two elements.(14)

Denote gn (Q) 4 (V fn1N1
(Q)VX 2V f (Q)VX ) x 80A . Then gn K0 pointwisely in E and



PAWE LC KOLWICZ232

(Vgn VE )n41
Q is bounded. By Lemma 4 we get gn K

w
0 in E . Furthermore, by (13)

and (14), we get Vgn VE Fe/8 for every n�8 . Consequently, by Hahn-Banach
theorem, passing to a subsequence if necessary, we may assume that
sep ] gn (E Fe/16 . But

sep ] gn (E 4 sep ]V fn1N1
(Q)VX x 80A (E G sep ]V fn1N1

(Q)VX (E .

Moreover V fn1N1
(Q)VX K

w
V f (Q)VX in E . Applying uniform Kadec Klee property of

E we get

V f V4VV f (Q)VX VE G12d ,

where d4d(e/16) is from (1).
Since (KK) ¨ (OC) ([6]) and every order continuous Köthe sequence

space has a natural basis ]en (n41
Q it is natural to consider the uniform Kadec-

Klee property (UKK)t with respect to convergence in the topology t , where
t4G or t4G 0 . Note that Theorem 1 remains true if we replace the property
(UKK)t for t4G by the property (UKK)t for t4G 0 . Obviously (UKK)G 0

¨
(UKK)G . Moreover, since for reflexive spaces (UKK)G 0

and (UKK)G are equiva-
lent, we conclude that X� (NUC) iff X� (UKK)G 0

and X is reflexive.
Sukochev ([22]) proved that for Banach lattice whose order is induced by

the unconditional basis ]en (n41
Q the uniform monotonicity implies the property

(UKK)G 0
. Taking X4 R in Theorem 2(ii) we get easily the following

COROLLARY 1. – Let E be a sequence Köthe space. If E� (UM), then
E� (UKK)G .

Recall that E is symmetric sequence space if for every x�E there holds
VxVE 4Vx * VE , where x * is a nonincreasing rearrangement of x , i.e. x *4

(x(n1 ), x(n2 ), R , x(nk ), R) and the permutation nk of 8 is such that Nx * N4

(Nx(n1 )N , Nx(n2 )N , R , Nx(nk )N , R) is nonincreasing.
Sukochev (Theorem 2 in [22]) proved that for Banach lattice whose order is

induced by the symmetric basis ]en (n41
Q the uniform monotonicity and the

property (UKK)G 0
coincide. We give an example of non symmetric Köthe se-

quence space which has the (UKK)G 0
property and is not uniformly mono-

tone.

EXAMPLE 1. – For i41, 2 , R , let Xi denote Ri with the norm
V(x1 , x2 , R , xi )Vi 4 sup

1 G jG i
NxjN . Then define

Y4my4 (yi ) : yi �Xi for every i41, 2 , R and !
i41

Q

Vyi Vi
2 EQn
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equipped with the norm VyV4g!
i41

Q

Vyi Vi
2h1/2

. By Theorem 2 in [11],

Y� (NUC), so Y� (UKK). In view of reflexivity of Y we conclude that
Y� (UKK)G 0

. But it is easy to observe that Y is not even strictly mono-
tone.

COROLLARY 2. – Let E be a symmetric sequence Köthe space with the
shrinking basis ]en (n41

Q and X be a separable Banach space. Then E(X) �
(UKK) iff X� (UKK) and E� (UKK) iff X� (UKK) and E� (UM).

PROOF. – From the remarks given above we conclude that under our as-
sumptions we have that E� (UKK)G 0

iff E� (UKK)G . Moreover Theorem 2 in
[22] states that E� (UKK)G 0

iff E� (UM). Thus thesis is an immediate conse-
quence of our Theorem 2.

The following Corollary was also obtained in [15]

COROLLARY 3. – (i) Let E be a sequence Köthe space and X be an infinite
dimensional Banach space. Then E(X) � (NUC) iff X� (NUC), E� (NUC)
and E� (UM).

(ii) Let E be a sequence Köthe space and X be a finite dimensional Ba-
nach space. Then E(X) � (NUC) iff E� (NUC).

(i) Proof of necessity. – Since spaces X and E are embedded isometrical-
ly into E(X) and the property (NUC) is inherited by subspaces, so X� (NUC)
and E� (NUC). Then X is reflexive. But X is also infinite dimensional, so X
fails to have the Schur property. By Theorem 2(i) we conclude that
E� (UM).

PROOF OF SUFFICIENCY. – If X� (NUC), then X� (UKK) and X is reflexive
(Theorem 1 in [11]). Since E� (UM), then by Theorem 2(i) we get E(X) �
(UKK). Moreover E and X are reflexive. From Theorem 5.3 in [7] it follows
that (E(X) )*4E 8 (X *), where X * is a Banach dual of X and E 8 is a Köthe dual
of E , i.e.

E 84my� l 0 : VyVE 84 sup
VxVEG1

!
i41

Q

x(i)y(i) EQn .

Furthermore E� (OC) iff E 84E * (see [18]). Consequently E(X) is reflexive.
Thus E(X) � (NUC).

(ii) We prove only the sufficiency. If E� (NUC), then E� (UKK) and E is
reflexive. So it has the shrinking basis. Moreover, every finite dimensional
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space is reflexive and has the Schur property. Then E(X) is reflexive and the-
sis is a consequence of Theorem 3 and Theorem 1 in [11].

Taking E4l p in Theorem 2 and Corollary 3 we get a result of Partington [19]

COROLLARY 4. – (i) Let 1 GpEQ . The space l p (X) � (UKK) iff X�
(UKK).

(ii) Let 1 EpEQ . The space l p (X) � (NUC) iff X� (NUC).
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