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Some Generic Properties
of Concentration Dimension of Measure.

JÓZEF MYJAK - TOMASZ SZAREK

Sunto. – Sia K un sottoinsieme quasi similare compatto di uno spazio metrico comple-
to. Sia M1 (K) lo spazio delle misure di probabilità su K munito della metrica di
Fortet - Mourier. Si dimostra che per una misura m� M1 (K) tipica (nel senzo della
categoria di Baire) la dimensione inferiore di concentrazione è uguale a zero,
invece la dimensione superiore di concentrazione è uguale alla dimensione di
Hausdorff dell’insieme K.

Summary. – Let K be a compact quasi self-similar set in a complete metric space X and
let M1 (K) denote the space of all probability measures on K , endowed with the
Fortet-Mourier metric. We will show that for a typical (in the sense of Baire catego-
ry) measure in M1 (K) the lower concentration dimension is equal to 0, while the
upper concentration dimension is equal to the Hausdorff dimension of K.

1. – Introduction.

The concept of dimension of measure plays a great role in diverse branches
of mathematics, among other in the theory of dynamical system, the geometric
theory of measure and the theory of fractals. Various definitions of dimension
as box dimension, packing dimension, correlation dimension, informatic di-
mension, entropy, has be proposed, but undoubtedly the most widely investi-
gated and used is Hausdorff dimension. Unfortunately, the Hausdorff dimen-
sion as well as all mentioned above alternative dimensions of even relatively
simple measures or sets, can be hard to calculated.

Recently A. Lasota (see [6]) suggested to study a new concept of dimension
of measure which is defined by mean of the Lévy concentration function. This
dimension, called concentration dimension, has advantage — at least in the
case of fractal measures — to be relatively easy calculable. It is also important
that the concentration dimension is strongly connected with the Hausdorff di-
mension. In particular, the Hausdorff dimension of the self-similar set K is
equal to the supremum of lower concentration dimensions of probability mea-
sures with the support contained in K (see variational principle in [6]). More-
over, likewise as Hausdorff dimension, the concentration dimension is also re-
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lated with the topological dimension. Namely, in [11] it is proved that if X is a
Menger metric space (i.e. such that closed bounded sets are compact), then the
supremum of the lower concentration dimensions of the probability measures
on X is equal to the topological dimension of X.

In this Note we prove that for a typical probability measure defined on a
compact quasi self-similar set K , the lower concentration dimension is equal to
zero, while the upper concentration dimension is equal to the Hausdorff di-
mension of K. In reality we need on K the weaker hypotheses, namely it is suf-
ficient that K is compact and quasi self-similar from below.

For other results concerning typical properties of measures see [2, 3, 8, 9,
10, 13, 14].

2. – Preliminaries.

Let (X , r) be a Polish space i.e. complete and separable metric space. By
B(x , r) we denote the closed ball in X with centre at x and radius rD0. For
C%X and rD0 we denote

B(C , r) 4 ]x�X : r(x , C) Gr( ,

where

r(x , C) 4 min ]r(x , y) : y�C( ,

Moreover, for A , B%X we set

dist (A , B) 4 inf ]r(x , y) : x�A , y�B( .

A subset K of X is called quasi self similar from below if there exist aD0
and r0 D0 such that for every ball B(x , r) with center at x�K and radius
r� (0 , r0 ) there is a mapping W : KKKOB(x , r) such that

ar r(x , y) Gr(W(x), W(y) ) for all x , y�K .

These sets are a natural generalization of self-similar sets which appears in
the theory of iterated function systems. Namely, let Si : XKX , i41, R , N be
strictly contracting similarity transformations. It is well known (see [5]) that

there is a unique compact set K such that K4 0
k41

N

Si (K). Such set, called self-

similar fractal, is obviously quasi self-similar from below. For details see
Example 2 in [1]. In fact in this case the function W satisfies also the quasi self-
similarity condition from above, and the corresponding set K is call quasi self-
similar. Note that quasi self-smilar sets appear in the theory of dynamical sys-
tems and were intensively studied by several authors (see [1, 7, 12]).

Let M1 (X) and M1 (K) be the space of all probability Borel measures on X
and K , respectively. For m 1 , m 2 � M1 (X) we consider the Fortet-Mourier
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norm given by the formula

Vm 1 2m 2 V4 supmNs
X

fdm 1 2s
X

fdm 2N: f� Ln ,

where L is the subset of C(X) which contains all the functions f such
that

Nf (x)NG1 and Nf (x)2 f (y)NGr(x , y) for x , y�X .

It can be proved that the convergence in the Fortet-Mourier norm is equiva-
lent to the weak convergence. In the sequel we assume that the space M1 (X)
is endowed with the metric generated by the norm V QV. It is well known that
such space is complete.

For A%X , sF0 and dD0 we define

Hd
s (A) 4 inf !

i41

Q

(diam Ui )s ,

where the infimum is taken over all countable covers ]Ui ( of A such that
0 E diam Ui Gd. Then

H s (A) 4 lim
dK0

Hd
s (A)

is the s-dimensional Hausdorff measure. Clearly for s sufficiently large
H s (A) 40. The Hausdorff dimension of A is defined by the formula

dimH A4 inf ]sD0 : H s (A) EQ( .

For m� M1 (X) the function F m : R1KR1 given by

F m (r) 4 sup
x�X

m(B(x , r) )

is called the Lévy concentration function. This function was successfully used
to study the convergence of sequences of random variables. For the properties
and other applications of concentration function see [4].

Given m� M1 (X) we define the lower and upper concentration dimension
of m by the formulas

dimL m4 lim inf
rK0

ln F m (r)

ln r

and

dimL m4 lim sup
rK0

ln F m (r)

ln r
.

Clearly, both these dimension are well defined and nonnegative, however they
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can be infinite. If dimL m4 dimL m , this common valued is called concentration
dimension.

Recall that a set in a metric space X is called nowhere dense, if its closure
has empty interior. A countable union of nowhere dense sets is said to be of
the first Baire category. A subset A of a complete metric space X is said to be
residual in X if its complement is of the first Baire category. If the set of all
elements of X satisfying some property P is residual in X, then the property P
is called typical or generic. We also say that a typical element of X has proper-
ty P. In this paper we prove that for a typical measure m in M1 (K) we have
dimL m40 and dimL m4dimH K , where dimH K stands for the Hausdorff di-
mension of K.

3. – Auxiliary results.

LEMMA 1. – Let m 1 , m 2 � M1 (X) and eD0. If Vm 1 2m 2 VGe k , where kD1,
then

m 1 (B(C , e) ) Fm 2 (C)2e k21 ,

for every Borel set C%K.

PROOF. – Let m 1 , m 2 � M1 and eD0 be as in the statement of the Lemma 1.
Let C be a Borel subset of K. Consider a function f : XK [0 , e] given by the
formula

f (x) 4 max ]e2r(C , x), 0( .

Since f� L and f (x) 40 for x�B(C , e), f (x) 4e for x�C , we have

em 2 (C)2em 1 (B(C , e) ) Gs
X

fdm 2 2s
X

fdm 1 GVm 2 2m 1 VGe k ,

whence the statement of Lemma 1 follows. This completes the proof. r

LEMMA 2. – Let K be a compact quasi self-similar from below subset of X.
Then the set

F 4 ]m� M1 (K) : dimL m40(

is dense in M1 (K).

PROOF. – Obviously dimL d x 40 for x�K , where d x is a d-Dirac measure
supported at the point x. From this and the fact that the linear combinations of
point Dirac measures are dense in the space M1 (K), the statement of Lemma
2 follows. r



SOME GENERIC PROPERTIES ETC. 215

LEMMA 3. – Let K be a compact quasi self-similar from below subset of X
and let 0 EsEdimH K. Then for every ball B(z , e) with center at z�K and
radius eD0 there exists a measure m� M1 (K) with supp m%B(z , e)OK such
that dimL mFs.

PROOF. – By Theorem 2.1 from [6] there exists a measure mA � M1 (K) such
that dimL mA Fs. Since K is a quasi self-similar set, there exist a mapping
W : KKB(z , e)OK and the constant lD0 such that

lr(x , y) Gr(W(x), W(y) ) for all x , y�K .

Clearly W is invertible and the inverse function W21 (from W(K) into K) is Lips-
chitzian with Lipschitz constant equal to 1 /l.

Define

m4 mA i W21 .

Obviously supp m%B(z , e)OK. From inclusion W21 (B(x , r) )%B(W21 (x), r/l) it
follows that F m (r) GF mA (r/l). Using the last inequality one can easely verify
that dimL mF dimL mA Fs. This completes the proof. r

LEMMA 4. – Let K be a compact quasi self-similar from below subset of X
and let 0 EsEdimH K. Then the set

]m� M1 (K) : dimL mFs(

is dense in M1 (K).

PROOF. – Let 0 EsEdimH K. Let m� M1 (K) be an arbitrary linear combi-
nation of d-Dirac point measures, i.e.

m4 !
i41

N

ai d xi
,

where xi �K , i41, R , N. Let

0 Er1 E minm 1

3
r(xi , xj ) : i , j� ]1, R , N(, ic jn .

Without any loss of generality we can assume that r1 Gr0 , where r0 is that
from definition of quasi self-similarity from below. Fix an arbitrary e� (0 , r1 ).
Obviously

dist (B(xi , e), B(xj , e) )Fe for i , j� ]1, R , N(, ic j .

By virtue of Lemma 3 for every i� ]1, R , N( there exists a measure m i �
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M1 (K) with supp m i %B(xi , e)OK such that dimL m i Fs. Consider

mA 4 !
i41

N

ai m i

and observe that

Vm2mA VG !
i41

N

ai Vm i 2d xi
VG !

i41

N

ai e4e .

Since for every r� (0 , r1 ) and x�B(xi , e) the ball B(x , r) intersects only the
ball B(xi , e) we have

mA (B(x , r) )4ai m i (B(x , r) ) .

From this and the inclusion supp mA % 0
i41

N

B(xi , e) it follows that

F mA (r) 4 max
1 G iGN

ai F m i
(r) for r� (0 , r1 ) .

Consequently

ln F mA (r)

ln r
4 min

1 G iGN

ln ai F m i
(r)

ln r
for r� (0 , r1 ) .

From the last equality and inequalities dimL m i Fs for i41, R , N , it follows
that dimL mA Fs. From this and the fact that the linear combinations of Dirac
point measures are dense in the space M1 (K), the statement of Lemma 4
follows. r

4. – Main results.

THEOREM 1. – Let K be a compact quasi self-similar from below subset of
X. Then the set

]m� M1 (K) : dimL m40(

is residual in the space M1 (K).

PROOF. – Let F be the set defined in Lemma 2. For m� F and n�N we
define

Dn (m) 4 ]n� M1 (K) : Vm2nVE (rm , n )(n11) /n ( ,

where rm , n E1/n and such that F m (rm , n ) F2(rm , n )1/n. The existence of such
rm n . n follows from condition dimL m40.
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Define

D 4 1
n41

Q

Dn where Dn 4 0
m� F

Dn (m) .

Since Dn , n�N , are open and dense in M1 (K), the set D is residual. We claim
that dimL n40 for every n� D. Indeed, let n� D and let ]m n ( % F be such
that

Vm n 2nVE (rm n , n )(n11) /n .

By virtue of Lemma 1 for arbitrary x�K we have

n(B(x , 2rm n , n ) )Fm n (B(x , rm n , n ) )2 (rm n , n )1/n .

From the last inequality and the definition of rm , n we have

F n (2rm n , n ) FF m n
(rm n , n )2 (rm n , n )1/n F (rm n , n )1/n .

Hence

ln F n (2rm n , n )

ln 2rm n , n

G
1

n

ln rm n , n

ln 2rm n , n

,

and consequently

lim inf
rK0

ln F n (r)

ln r
G lim inf

nKQ

1

n

ln rm n , n

ln 2rm n , n

40 ,

which completes the proof. r

THEOREM 2. – Let K be a compact quasi self-similar from below subset of
X. Then the set

]m� M1 (K) : dimL m4dimH K(

is residual in the space M1 (K).

PROOF. – Set d4dimH K. For n�N define

Fn 4 ]m� M1 (K) : dimL mDd21/n( .

By Lemma 4 the set Fn is dense in M1 (K).
Now, for m� Fn we define

Gn (m) 4 ]n� M1 (K) : Vm2nVE (rm , n )d1 (n21) /n ( ,

where rm , n E1/n is such that F m (2rm , n ) G (rm , n )d21/n.
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Define

G 4 1
n41

Q

Gn where Gn 4 0
m� Fn

Gn (m) .

Since Gn , n�N , are open and dense in (M1 (K), V QV), the set G is residual. We
claim that dimL n4d for every n� G. For, let n� G be fixed. Clearly, by the
definition of G, there exists a sequance ]m n ( with m n � Fn such that

Vm n 2nVE (rm n , n )d1 (n21) /n .

By virtue of Lemma 1 we have

m n (B(x , 2rm n , n ) )Fn(B(x , rm n , n ) )2 (rm n , n )d21/n for all x�K .

From the last inequality and the definition of rm , n we have

F n (rm n , n ) G2(rm n , n )d21/n

and consequently

ln F n (rm n , n )

ln rm n , n

Fd2
1

n
1

ln 2

ln rm n , n

.

Thus

lim sup
rK0

ln F n (r)

ln r
F lim sup

nKQ
gd2

1

n
1

ln 2

ln rm n , n
h4d .

The proof is complete. r

As an immediate consequence of Theorem 1 and 2 we obtain:

COROLLARY 3. – Let K be a compact quasi self-similar from below subset of
X. Then the set

]m� M1 (K) : dimL m40 and dimL m4dimH K(

is residual in M1 (K).
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