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Existence and Decay in Non Linear Viscoelasticity.

JAIME E. MUÑOZ RIVERA (*) - FÉLIX P. QUISPE GÓMEZ

Sunto. – In questo lavoro si studia l’esistenza, l’unicitá e il decadimento di soluzioni a
una classe di equazioni viscoelastiche in uno spazio di Hilbert H separabile, dato da:

utt1M( [u] ) Au2s
0

t

g(t2t) N( [u] ) Au dt40, in L 2 (0 , T ; H)

u(0) 4u0 , ut (0) 4u1 ,

dove con [u(t) ] si denota

[u(t) ] 4 g(u(t), ut (t), (Au(t), ut (t) ), VA
1

2 u(t)V

2 , VA
1

2 ut (t)V

2 , VAu(t)V

2h�R5 ,

A : D(A) %HKH è un operatore autoaggiunto non-negativo, M , N : R5KR sono
funzioni di classe C 2 e g : RKR è una funzione di classe C 3 verificante condizioni
opportune. Mostriamo che esistono soluzioni globali nel tempo per piccoli dati ini-
ziali. Quando [u(t) ] 4VA 1/2 uV

2 , M : RKR e N41, si mostra l’esistenza globale
per grandi dati iniziali (u0 , u1 ) presi negli spazi D(A)3D(A 1/2 ) a condizione che
siano abbastanza prossimi a dati analitici. È anche dimostrato un tasso uniforme
di decadimento.

Summary. – In this work we study the existence, uniqueness and decay of solutions to
a class of viscoelastic equations in a separable Hilbert space H given by

utt1M( [u] ) Au2s
0

t

g(t2t) N( [u] ) Au dt40, in L 2 (0 , T ; H)

u(0) 4u0 , ut (0) 4u1 ,

where by [u(t) ] we are denoting

[u(t) ] 4 g(u(t), ut (t), (Au(t), ut (t) ), VA
1

2 u(t)V

2 , VA
1

2 ut (t)V

2 , VAu(t)V

2h�R5 ,

A : D(A) %HKH is a nonnegative, self-adjoint operator, M , N : R5KR are C 2-
functions and g : RKR is a C 3-function with appropriates conditions. We show
that there exists global solution in time for small initial data. When [u(t) ] 4
VA 1/2 uV

2 , M : RKR and N41, we show the global existence for large initial data
(u0 , u1 ) taken in the space D(A)3D(A 1/2 ) provided they are close enough to Gevrey
data. Uniform rate of decay is also proved.

(*) Supported by a grant 305406/88-4 of CNPq-Brasil.
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1. – Introduction.

The nonlinear wave equation

utt 1M(VA 1/2 uV

2 ) Au40

was studied for several authors see for example [1, 2, 5, 6, 7, 9, 20]; but until
now the question about the global existence of solution for initial data taken in
the usual Sobolev’s Spaces remains open. To obtain global solution to a class
relative to the above equation, several authors [14, 15, 18] to name but a few,
have considered damping terms as A 2 u , Aut , or A a ut which gives strong esti-
mates resulting in the convergence of the nonlinear term of the approximated
solution. In Nishihara [19] the author consider the wave equation with linear
frictional damping and show the existence of global solution for a class of large
initial data in D(A) spaces, non analytical but close to an analytical data (ana-
lytical in the sense of Gevrey functions). Nishihara’s result is an important im-
provement about the question of existence of solution for the nonlinear Kirch-
hoff equation with weak dissipation, because it provides a large space where
the initial data can be taken to produce large existence result. In this paper we
consider the viscoelastic nonlinear wave equation of memory type. The system
in question is the following

utt 1M( [u] ) Au2s
0

t

g(t2t) N( [u] ) Au dt40, in L 2 (0 , T ; H)(1.1)

u(0) 4u0 , ut (0) 4u1 ,(1.2)

where by H we are denoting separable Hilbert space and by [u(t) ] the nonlin-
ear argument of N and M of the form

[u(t) ] 4 g(u(t), ut (t), (Au(t), ut (t) ), VA
1

2 u(t)V

2 , VA
1

2 ut (t)V

2 , VAu(t)V

2h�R5 .

Here V QV and (Q , Q) denote the norm and the inner product defined over H . By
A we are denoting an unbounded nonnegative self-adjoint operator satisfy-
ing

A : D(A) %HKH ,

and

[V1] The embedding D(A r ) %KD(A s ) is compact for any rDsF0. On M and
N we impose the following hypotheses

[V2] The functions M , N : R5 KR are C 2 and g : RKR is a C 3-function.

The main result of this paper is to show the global existence of solution to
(1.1)–(1.2) provided the initial data is small. For large initial data we show the
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global existence of solution for the Kirchhoff equation with memory, that is
when [u] 4VA 1/2 uV

2 , M : RKR and N41, see section 6 for details. Addition-
ally, we show that the solutions of the different Kirchhoff’s models we study in
this paper, decay with the same rate as the relaxation function g .

The remaining part of this work is organized as follows. In the next section
2 we prove the existence of local solutions while in section 3 we show that the
solution has uniform rate of decay for the linear problem that is to say, when
the relaxation function decays exponentially, then the corresponding solution
also decays exponentially. When the relaxation decays polynomially the sol-
ution also decays polynomially with the same rate as the relaxation. In section
4 we consider a special case of the nonlinear viscoelastic equation, where the
nonlinearity works only on the memory stress. We will show in this case that
there exists only one global large solution, for initial data taken in the usual
Sobolev Space. In section 5 we use the uniform rate of decay, obtained in sec-
tion 3, to show the global existence of solutions to equation (1.1) when the in-
itial data is small. In section 6 we consider the existence of Gevrey (analytical)
solutions to (1.1) for any Gevrey initial data. Finally, in section 7 we show the
existence of large solutions in the usual Sobolev’s spaces D(A) provided the in-
itial data is close enough to an Gevrey initial data.

2. – Existence of solutions.

The local existence is summarized in the following theorem:

THEOREM 2.1. – Suppose that (u0 , u1 ) �D(A 3/2 )3D(A) and that the hy-
potheses [V1], [V2] holds. Then there exists TD0 and only one function

u :[0 , T] KH

solution the equation (1.1), satisfying

u�C 2 ( [0 , T[, D(A 1/2 ) )OC 1 ( [0 , T[, D(A) )OC( [0 , T[, D(A 3/2 ) ).

In addition if the initial data satisfies

(u0 , u1 ) �D(A 11 l )3D(A
1

2
1 l

), lF1/2 ,

then there exists only one solution of (1.1), such that

u�C( [0 , T], D(A 11 l ) )OC 1 ( [0 , T], D(A
1

2
1 l

) )OC 2 ( [0 , T], D(A l ) ).
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Finally, if Tmax is the maximal time for which the solution exists, then we
have

Tmax EQ ¨ lim sup
tKTmax

]VAut (t)V

2 1VA 3/2 u(t)V

2( 4Q . r

PROOF. – Let us introduce the space Y given by

Y 4 ]v�C( [0 , T], D(A) ), vt �C( [0 , T], D(A 1/2 ) )( ,

and let us define the norm

VvVY 4 sup
t� [0 , T]

]VAv(t)V

2 1VA 1/2 vt (t)V

2( .

Let us denote by

W (h , T) 4m w� Y : wt , A 1/2 w� Y,
w(0) 4u0 , wt (0) 4u1 and NNNwNNNEh

n
where by NNN QNNN we are denoting

NNNwNNN4 sup
t� [0 , T]

]VA 3/2 wV

2 1VAwt V
2 1VA 1/2 wtt V

2( ,

and h is a positive number to be fixed later. It is easy to verify that W is a
closed subspace of Y. Let us define the operator

R : W KW

w O Rw4u

where u is a solution of the equation

utt 1M( [w] ) Au4s
0

t

g(t2t) N( [w] ) Aw(t) dt ,(2.3)

u(0) 4u0 �D(A), ut (0) 4u1 �D(A
1

2 ) .

Our starting point is to show that the operator R is invariant on W (h , T) ) for
T small enough, that is R(W (h , T) ) % W (h , T) then we will show that the re-
striction of R to W (h , T) is a contraction in Y for some hD0 and T small
enough.

Using the continuity of tOw(t) � W (h , T) together with the hypotheses
on M and N we conclude that there exist positive constants satisfying

0 Em0 GM( [w(t) ] ) Gm1(2.4)

0 En0 GN( [w(t) ] ) Gn1 .
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Let us introduce the following functionals

E(t , v) 4VA
1

2 vV

2 1Vvt V
2 , L(t , v) 4E(t , Av).

Note that for any w� W we have that N[w(t) ]NR5 Ec2 h where c2 is a positive
constant depending on the embedding D(A) %KD(A

1

2 ) %KH . Let us consider
w� W, v0 �D(A 3/2 ) and v1 �D(A). Under these conditions is easy to verify that
the solution v of

vtt 1M( [w] ) Av4s
0

t

g(t2t) N( [w] ) Aw(t) dt

���
:4F(t)

,

v(0) 4v0 , vt (0) 4v1 ,

satisfies

L(t , v) G{c3 L(0 , v)1
1

c2 m0

VF(t)V

2 1
1

2c2

s
0

t

VF 8 (s)V

2 ds} e c4 (h) t ,(2.5)

where c2 4minm 1

2
, m0

4
n, c3 4

1

c2

maxm 1

2
, m1

2
n and c4 (h) 4

(c1 mh11)

2c2

.

Let us denote by

m4 sup
NsNEc2 h

]N¯a M(s)N , N¯a N(s)N ; NaNG2(.

Then for any w� W (h , T) it follows that

N d

dt
M( [w(t) ] ) N Gmc1 h , N d

dt
N( [w(t) ] ) N Gmc1 h

V( g * Aw)(t)V

2 Ghu s
0

t

g(t) dtv
2

,

where c1 D0 and c2 are positive constant depending only on embedding
D(A) %KD(A

1

2 ) %KH . On the other hand, we get

VF(t)V

2 4Vg * N( [w] ) AwV

2 Gn1
2 hu s

0

t

g(t) dtv
2

.

VF 8 (t)V

2 4Vg(0)N( [w] ) Aw1g 8* N( [w] ) AwV

2

G2]( g(0) n1 )2
VAwV

2 1 (cn1 )2
Vg * AwV

2(

G2hr{11u s
0

t

g(t) dtv
2} ,
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where c5 is a positive constant and r4 ( g(0) n1 )2 1 (c5 n1 )2 . Hence, from (2.5)
we get

L(t , u) G
{c3 L(0 , u)1

n1
2 hgs

0

t

g(t) dth2

c2 m0

1
rh

c2

y11u s
0

t

g(t) dtv
2z t}e c4 (h) t .

Since s
0

t

g(t) dtK0 when tK0, then there exists T0 D0 such that

u s
0

T0

g(t) dtv
2

E
m0 c2

n1
2 h

, 11u s
0

T0

g(t) dtv
2

E2,

T0 E min{ 1

c4 (h)
,

1

rh
} .

Therefore, for any t� [0 , T0 ] we have

L(t , u) Gmc3 L(0 , u)1g11
2

c2
hn e4: K0 .

From equation (2.3) it follows

VA 1/2 utt V
2 G4 ]m1

2
VA 3/2 uV

2 1n1
2
Vg˜A 3/2 wV

2( ,

which implies

VA 1/2 utt V
2 Gm1

2 L(t , u)14n1
2 hu s

0

T0

g(t) dtv
2

G4m1
2 K0 14n1

2 hu s
0

T0

g(t) dtv
2

.

Taking h4 (215m1
2 )K0 and choosing T0 D0 such that

4n1
2 hu s

0

T0

g(t) dtv
2

Gm1
2 K0 ,

from where it follows that

NNNuNNN4 sup
t� [0 , T0 ]

]VA 3/2 uV

2 1VAut V
2 1VA 1/2 utt V

2( Gh .

which proves that R is invariant.
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Now we will show that there exists T1 , 0 ET1 ET0 such that the restriction
of R over W (h , T1 ) is a contraction in Y. Let us take w 1 and w 2 � W (h , T1 ).
Denoting by u i 4 Rw i , i41, 2; U4u 1 2u 2 and W4w 1 2w 2 . We have

Utt 1M( [w 1 ] )AU4 ]M( [w 1 ] )2M( [w 2 ] )( Au 2 1

g *]N( [w 1 ] )2N( [w 2 ] )( Aw 1 1g˜N( [w 2 ] ) AW .

Using multiplicative techniques and the mean value theorem we get

VA 1/2 Ut V
2 1VAUV

2 G

1

c6

u
K1 T3 1

2n1
2gs

0

t

g(t) dth2

m0

v
VWVY

2 1
(mc1 h11)

c6

s
0

t

]VA 1/2 Ut V
2 1VAUV

2 ( dt ,

where c6 4minm m0

2
, 1n . Using Gronwall’s inequality we arrive at

VA 1/2 Ut V
2 1VAUV

2 G
1

c6

u
K1 T1 1

2n1
2gs

0

t

g(t) dth2

m0

v
VWVY

2 e gT1 ,

where g4
(mc1 h11)

c6

and K1 are positive constants. Taking T1 D0 such
that

1

c6

u
K1 T1 1

2n1
2gs

0

T1

g(t) dth2

m0

v
Qe gT1 E1 ,

we have that RN W (h , T). is a contraction on Y. From where the existence result
follows. To show the uniqueness let us take two solutions u 1 and u 2 of (2.3).
Denoting by U4u 1 2u 2 we have that

Utt 1M( [u 1 ] ) AU4

]M( [u 1 ] )2M( [u 2 ] )( Au 2 2g *]N( [u 1 ] )2N( [u 2 ] )( Au 1 1g˜N( [u 2 ] ) AU

U(0) 4Ut (0) 40 .

Using multiplicative techniques we are able to show that

VUt (t)V

2 1
m0

2
VA 1/2 U(t)V

2 GC1 (11 t)s
0

t

VUt (t)V

2 1VA 1/2 U(t)V

2 dt .

From Gronwall’s inequality we get that U40, which completes the
proof. r
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3. – Asymptotic behaviour: Linear Case.

In this section, we study the asymptotic behaviour of the equation

utt 1Au2s
0

t

g(t2t) Au(t) dt4 f .

To prove the exponential decay of the solutions we use the following hypothe-
ses on g:

0 Eg(t) �C 3 , 2kg(t) Gg 8 (t) G2cg(t)(3.2)

Ng 9 (t)NGCg(t),(3.3)

a4: 12N( [0 ] )s
0

Q

g(t) dtD0(3.4)

to facilitate our computation we introduce the notations

( gp f )(t) 4s
0

t

g(t2t)V f (t)2 f (t)V

2 dt and

(h˜v)(t) 4s
0

t

h(t2t) v(t) dt .

The following Lemma will play an important role in the sequel.

LEMMA 3.1. – Let us denote by X a Hilbert space. Consider h a C 1 (R)-func-
tion and f�C 1 ( [0 , T]; X). Under this conditions the following identity
holds

2(h˜f) f 842h(t)NfN2 2
d

dt
{hpf2u s

0

t

hdtvNfN2}1h 8 pf .(3.5)

PROOF. – It is sufficient to differentiate the expression

hpf2u s
0

t

hdtvNfN2 . r

Let us introduce the energy functional,

E(t , v) 4
1

2
{

Vvt V
2 1u12s

0

t

gdtv VA 1/2 vV

2 1gpA 1/2 v} .(3.6)
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Multiplying equation (3.1) by ut and applying Lemma 3.1 we have that

d

dt
E(t , u) 42

1

2
g(t)VA 1/2 uV

2 1
1

2
g 8 pA 1/2 u1 ( f , ut ) .(3.7)

Let us introduce the function w4u2g * u . A simply computation yields

wt 4ut 2g(0) u2g 8* u

wtt 4utt 2g(0) ut 2g 8 (0) u2g 9* u

So, w satisfies:

(3.8) wtt 1Aw1g(0) wt 1

g(0)2 u1g(0) g 8 ˜u1g 8 (0) u1g 9 ˜u4 f in L 2 (0 , T ; H)

w(0) 4u0 (x); wt (0) 4u1 (x).(3.9)

Note that the function w transform equation (1.1) into a wave equation with
frictional damping except for the remaining terms on u . The idea now is to es-
timate the terms on u and to use the simple dissipation on w to prove the uni-
form rate of decay. To do this, let us introduce the functional

E(t) 4
1

2
{Vwt V

2 1VA 1/2 wV

2 1g(0)(w , wt )1
g(0)2

2
VwV

2}
Our method consist in introducing functions whose derivatives have the terms
2Vwt V

2 , 2VA 1/2 wV

2 . The starting point of this process is to establish an in-
equality which we summarized in following Lemma:

LEMMA 3.2. – Under the above conditions, the solution of equation (3.12)
satisfies the following inequality

d

dt
E(t) G2g g(0)

2
2dh]Vwt V

2 1VA 1/2 wV

2(1

Cd]g(t)VuV

2 1gpu(1gf , wt 1
g(0)

2
wh

where d is a small constant to be fixed, later.

PROOF. – Multiplying equation (3.8) by wt we have,

(3.10)
1

2

d

dt
]Vwt V

2 1VA 1/2 wV

2(1g(0)Vwt V
2 4

( f , wt )2g(0)(] g(0) u1g 8 ˜u , wt 2 (] g 8 (0) u1g 9 ˜u(, wt .
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Note that

g(0) u1g 8 ˜u4g(t) u1s
0

t

g 8 (t2t)]u(t)2u(t)( dt

g 8 (0) u1g 9 ˜u4g 8 (t) u1s
0

t

g 9 (t2t)]u(t)2u(t)( dt .

Inserting the above identities into relation (3.10) we get

(] g(0) u1g 8 ˜u(, wt ) Gcd] g(t)Vu(t)V

2 1gpu(1
d

2
Vwt V

2

(] g 8 (0) u1g 9 ˜u(, wt ) Gcd] g(t)Vu(t)V

2 1gpu(1
d

2
Vwt V

2

From where it follows that

(3.11)
1

2

d

dt
]Vwt V

2 1VA 1/2 wV

2 (1

( g(0)2d)Vwt V
2 Gcd] g(t)Vu(t)V

2 1gpu(1 ( f , wt ) .

Multiplying equation (3.8) by w , we have

d

dt
(w , wt ) 4Vwt V

2 2VA 1/2 wV

2 2g(0)(w , wt )1 ( f , w)2

g(0)(] g(0) u1g 8 ˜u(, w)2 (] g 8 (0) u1g 9* u(, w) .

Using similar arguments as above, we have

d

dt
{(w , wt )1

g(0)

2
Vw(t)V

2}G

Vwt V
2 2 (12d)VA 1/2 wV

2 1 ( f , w)1cd] g(t)Vu(t)V

2 1gpu( .

Multiplying the above expression by g(0) /2 and adding the product result to
(3.11) our conclusion follows. r

In the following remark we show how the frictional dissipation on w can be
used to estimate the expression on u .

REMARK 3.1. – It is easy to see that there exists a positive constant C for
which we have:

E(t) GCE(t),
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and also

Vwt V
2 1VA 1/2 wV

2 F (12d)Vut V
2 1

u12s
0

t

g dtv VA 1/2 uV

2 2cd] g(t)VA 1/2 uV

2 1gpA 1/2 u(

We will show only that

Vwt V
2 GcE(t) .

The others inequalities are similar. Note that

wt 4ut 2g(t) u2s
0

t

g 8 (t2t)]u(Q , t)2u(Q , t)( dt .

From where it follows that

Vwt V
2 Gc]Vut V

2 1g(t)VuV

2 1gpu( .

Using that D(A s ) %D(A r ) has continuous immersion for sDr , our conclu-
sion follows. r

From (3.7) and Lemma 3.2 we have that the functional L(t) given by

L(t) 4nE(t)1 E(t)

satisfies:

c0 E(t) G L(t) Gc1 E(t)(3.12)

and also that

d

dt
L(t) G2k L(t)1 (nf , ut )1gf , wt 1

g(0)

2
wh .(3.13)

The exponential decay of the solution of equation (1.1) is summarized in the
following Theorem

THEOREM 3.1. – Under the same hypothesis as Lemma 3.2, with the kernel
g satisfying conditions (3.2)-(3.4), and V f V

2 Gce 2gt , there is positive con-
stants k 0 , c0 and k 1 such that

E(t , u) G (k 0 E(0 , u)1c0 ) e 2k 1 t .
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PROOF. – From (3.13) we have

d

dt
L(t) G2

k

2
L(t)1CV f V

2 G2
k

2
L(t)1C0 e 2gt .

From where our result follows. r

Now we consider kernel which decay polynomially that is we suppose that
the kernel g satisfies

0 Eg(t) �C 3 ,(3.14)

2c0 g
11

1

p (t) Gg 8 (t) G2c1 g
11

1

p (t); Ng 9 (t)NGc2 g
11

1

p (t)(3.15)

b»4s
0

Q

g
12

1

p (t) dtEQ , pD2.(3.16)

The relations (3.14)-(3.16) mean that gB (11 t)2p as tKQ , for pD2. We will
show that under the above conditions the solution of (1.1) decays polynomially,
with the same rate of decay of g . To do this we will use the following
Lemma.

LEMMA 3.3. – Suppose that «g» and «h» are continuous functions satisfy-
ing g�L

11
1

q (0 , Q)OL 1 (0 , Q) and g r �L 1 (0 , Q) for some 0 GrE1, then,
we have that:

s
0

t

Ng(t2t) h(t)NdtG

{ s
0

t

Ng(t2t)N
11

12r

q Nh(t)Ndt}
q

q11 { s
0

t

Ng(t2t)Nr Nh(t)Ndt}
1

q11

.

PROOF. – For any t fixed we have:

s
0

t

Ng(t2t) h(t)Ndt4s
0

t

Ng(t2t)N
r

q11 Nh(t)N
1

q11

���
:4z

Ng(t2t)N
12

r

q11 Nh(t)N
q

q11

���
:4v

dt .

Note that z�L p (0 , Q) and v�L p 8 (0 , Q), where p4q11 and p 84
q11

q
.
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Using the Hölder’s inequality, we have

s
0

t

Ng(t2t) h(t)NdtG

{ s
0

t

Ng(t2t)Nr Nh(t)Ndt}
1

q11 { s
0

t

Ng(t2t)N
11

12r

q Nh(t)Ndt}
q

q11

.

Which completes the proof. r

LEMMA 3.4. – Suppose that v�C(0 , T ; D(A 1/2 ) ) and g are continuous
functions satisfying the hypotheses (3.15)–(3.16), then for 0 ErE1, we
have

gpA 1/2 vG2{ s
0

t

g r dtVA 1/2 vVC(0 , T)
2 }

1

11 (12r)p

mg
11

1

p pA 1/2 vn
(12r)p

11 (12r)p ,

and for r40,

gpA 1/2 vG2{ s
0

t

VA 1/2 v(t)V

2 dt1 tVA 1/2 v(t)VH
2 }

1

p11

mg
11

1

p pA 1/2 vn
p

11p .

PROOF. – From hypotheses on v and the Lemma 3.3, we have:

gpA 1/2 v4s
0

t

g(t2t) (A 1/2 v(t)2A 1/2 v(t) )(A 1/2 v(t)2A 1/2 v(t) )
���

4h(t)

dt

G{ s
0

t

g r (t2t) h(t) dt}
1

(12r)p11 { s
0

t

g
11

1

p (t2t) h(t) dt}
(12r)p

(12r)p11

G ] g r pA 1/2 v(
1

(12r)p11 mg
11

1

p pA 1/2 vn
(12r)p

(12r)p11 .

For 0 ErE1 we have

g r pA 1/2 v4s
0

t

g r (t2t)(A 1/2 v(t)2A 1/2 v(t) )(A 1/2 v(t)2A 1/2 v(t) ) dt

G4 s
0

t

g r (t) dtVA 1/2 vV

2
C(0 , T) .

From where it follows the first inequality of Lemma 3.4. To prove the second
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part, let us take r40. From Lemma 3.3 we have

1 pA 1/2 v4s
0

t

(A 1/2 v(t)2A 1/2 v(t) )(A 1/2 v(t)2A 1/2 v(t) ) dt

G2 tVA 1/2 v(t)V

2 12 s
0

t

VA 1/2 v(t)V

2 dt .

Substitution of the above inequality into (3.17) our conclusion follows. The
proof is complete. r

From above Lemmas and taking in mind that the first order energy is
bounded we have

gpA 1/2 uGc0gg 11
1

p pA 1/2 uh
(12r)p

11 (12r)p
,(3.18)

for 0 ErE1.

LEMMA 3.5. – Under the above conditions and f�C 1 ( [0 , T[; H), the sol-
ution of equation (3.8) satisfies the inequality

d

dt
E(t) G2

( g(0)2d)

2
]Vwt V

2 1VA 1/2 wV

2(1

Cdmg(t)VuV

2 1g
11

1

p pun1gf , wt 1
g(0)

2
wh

where d is a positive number that will be fixed later.

PROOF. – The only difference with the proof of the Lemma 3.2, is the esti-
mate of the following term,

2uwt , s
0

t

g 8 (t2t)]u(t)2u(t)( dtvGC mg
11

1

p pun1/2
Vwt V

The others estimates follow using similar arguments. r

Now we are in conditions to prove the polynomial decay.

THEOREM 3.2. – Suppose that the initial data (u0 , u1 ) is such that

u0 �D(A), u1 �D(A 1/2 ), V f V

2 G
c

(11 t)p11
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verifying (3.24), (3.25), then the solution of equation (6.5) satisfies:

E(t , u) GCE(0 , u)(11 t)2p ,

for pD2.

PROOF. – As in Theorem 3.1, we arrive at the following inequality

d

dt
L(t)G2 k 0{VutV

21VA 1/2uV

2

���
:48(t; u)

1g
11

1

p pA 1/2u}1(nf, ut)1gf, wt1
g(0)

2
wh .

Since the energy is bounded, Lemma 3.4 implies that,

8(t) Fc8(t)
11 (12r)p

(12r)p , g
11

1

p pA 1/2 uFc]gpA 1/2 u(
11 (12r)p

(12r)p .

It is not difficult to verify that L satisfies:

c]E(t , u)( G L(t , u) Gc1 ]8(t)1gpA 1/2 u(
(12r)p

11 (12r)p .(3.19)

for n large enough. From where it follows

d

dt
L(t , u) G2 c2 L(t , u)

11 (12r)p

(12r)p 1cV f (t)V

2 .

using the hypothesis on f we get

L(t , u) GC L(0 , u)
1

(11 t)(12r)p
.

From where it follows that energy decay uniformly to zero. From Lemma 3.4
for r40 we have

8(t) Fc8(t)
11p

p , g
11

1

p pA 1/2 uFc] gpA 1/2 u(
11p

p .

Using similar reasoning as above we arrive at

L(t , u) GC L(0 , u)
1

(11 t)p
.

From where our conclusion follows. r

REMARK 3.2. – The above result says that there exists one functional L as-
sociated to the viscoelastic system (3.1) satisfying

d

dt
L(t) G2k8(t)2

n

2
kgpA 1/2 u1 (nf , ut )1gf , wt 1

g(0)

2
wh .
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while when the kernel decays polynomially we have

d

dt
L(t) G2k8(t)2

n

2
g

11
1

p pA 1/2 u1 (nf , ut )1gf , wt 1
g(0)

2
wh .

Note that L also depends on n . In fact, from equation (3.7) and Lemma 3.2 we
have that

d

dt
Ln (t) G2g g(0)

2
2dh]Vwt V

2 1VA 1/2 wV

2(

2(n2Cd )]g(t)VA 1/2 uV

21gpA 1/2 u(1(nf , ut )1gf , wt1
g(0)

2
wh .

From remark 3.1 it follows that

d

dt
Ln (t) G2g g(0)

2
2dh (12d){Vut V

2 1u12s
0

t

g dtv VA 1/2 uV

2}
2(n2Cd2cd) ]g(t)VA 1/2uV

21gpA 1/2u(1(nf, ut)1gf, wt1
g(0)

2
wh .

From where we arrive at

d

dt
Ln (t) G2g g(0)

2
2dh (12d){Vut V

2 1u12s
0

t

gdtvVA 1/2 uV

2 1gpA 1/2}
2gN2Cd2cd1

g(0)

2
2dh ] g(t)VA 1/2 uV

2 1gpA 1/2 u(

1(nf , ut )1gf , wt 1
g(0)

2
wh

Since L satisfies (3.21), taking n/2 DCd1cd2
g(0)

2
1d we have that

d

dt
Ln (t)G2kLn (t)2

n

2
]g(t)VA 1/2uV

21gpA 1/2u(1(nf, ut1gf, wt1
g(0)

2
wh .

Analogously when g decays polynomially we get

d

dt
Ln (t)G2k8(t)2

n

2
mg(t)VA 1/2uV

21g
11

1

p pA 1/2un1(nf, ut)1gf, wt1
g(0)

2
wh

From where our conclusion follows. r
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4. – Global large solution and uniform rate of decay.

In this section we show the global existence of solutions for large data of
the nonlinear viscoelastic system:

utt 1Au2s
0

t

g(t2t) N( [u(t) ] ) Au dt40 ,(4.1)

with initial conditions

u(0) 4u0 ; ut (0) 4u1

here for [u] we are denoting the functional

[u(t) ] 4 g(u(t), ut (t) ), (Au(t), ut (t) ), VA
1

2 u(t)V

2 , VA
1

2 ut (t)V

2 , VAu(t)V

2h�R5 .

We assume that,

NN(s1 , s2 , s3 , s4 , s5 )NGC(4.2)

REMARK 4.1. – Let us denote by s the number

s4 sup
NsNEc2 h

]N¯a M(s)N , N¯a N(s)N ; NaNG2( .

and let us introduce the set

W (h , T) 4 ]v�C 2 (0 , T ; D(A 1/2 ) );

v�C(0 , T ; D(A 3/2 ) ), vt �C 1 (0 , T ; D(A) ) and NNNvNNNGh(

where by NNN QNNN we are denoting the norm

NNNvNNN2 4 sup
t� [0 , T]

]VA 3/2 vV

2 1VA v
t V

2 1VA 1/2 vtt V
2( .

Then for any w� W (h , T) we have that for F4M or N the following
inequalities:

N d

dt
F( [w(t) ] )NGsc3 h

V( g˜Aw)(t)V

2 Ghu s
0

t

g(t) dtv
2

,

holds, where c3 D0 is a positive constant which depends on the embedding
D(A) %KD(A 1

2
) %KH .
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In this conditions we are able to show the existence of strong solutions. We
suppose that g satisfies

g , g 8�L 1 (R)(4.3)

THEOREM 4.1. – Suppose that N satisfies the hypotheses (4.2) and that the
initial data satisfies:

u0 �D(A 3/2 ), u1 �D(A).

Then there exists, only one solution of (4.1) satisfying:

u�C i ( [0 , T[; D(A 3/22 i/2 ) ), i40, 1 , 2 .

PROOF. – By the local existence result it is sufficient to show that the
second order energy remains bounded for any tD0. Differentiation equation
(4.1) with respect to time, we get

uttt 1Aut 2g(0) N( [u] ) Au2s
0

t

g 8 (t2t) N( [u] ) Au(t) dt40.

Multiplying the above equation by utt we have that the functional

8(t ; ut ) 4
1

2
]Vutt V

2 1VA 1/2 ut V
2(

satisfies

d

dt
8(t ; ut ) 4g(0) N( [u] )(Au , utt )1s

0

t

g 8 (t2t) N( [u] )(Au(t) dt , utt ) .(4.4)

From equation (4.1), we have

VAu(t)V

2 GVutt (t)V

2 1Cs
0

t

g(t2t)VAu(t)V

2 dt

and using Gronwall’s Lemma we have

VAu(t)V

2 GVutt V
2 1cs

0

t

Vutt V
2 dt .

Substitution of the above inequality into identity (4.4) we conclude that there
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exists a positive constant C such that:

d

dt
8(t ; ut ) GCVutt (t)V

2 1Cs
0

t

Vutt (t)V

2 dt .

Integrating with respect to the time and using Gronwall’s Lemma we finally
arrive at

8(t ; ut ) G8(0 ; ut )1Cs
0

t

8(t , ut ) dt

from where it follows that

8(t ; ut ) G8(0 ; ut ) e Ct .

Note that v4A 1/2 u satisfies:

vttt 1Avt 2g(0) N( [u] ) Av2s
0

t

g 8 (t2t) N( [u] ) Av(t) dt40 .

Repeating the above process we conclude that there exists one positive con-
stant C such that:

VA 1/2 utt V
21VAut V

21VA 3/2 u(t)V

2GC]VA 1/2 u2 V

21VAu1 V

21VA 3/2 u0 V

2( , (tD0

this complete the existence result. r

To study the uniform rate of decay of equation (4.1) we rewrite it in the fol-
lowing form.

utt 1Au2s
0

t

g(t2t) Au(t) dt4 f

where f is given by

f (t) 4s
0

t

g(t2t)]N( [u(t) ] )2N(0)( Au(t) dt(4.5)

We suppose, with out loss of generality, that N(0) 41, (otherwise, put gA »4

N( [0 ] ) g) then hypothesis (3.4) can be written as

12s
0

Q

g(t) dt4aD0 .(4.6)

In the next theorem we show the exponential decay of the solution.
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THEOREM 4.2. – Let us take g�C 3 satisfying the hypotheses (3.2)-(3.4),
V˜NVEd and with initial data (u0 , u1 ) in D(A 3/2 )3D(A). Then the energy
associated to system (4.1), has exponential decay.

PROOF. – From remark 3.2, we have the functional L satisfies:

d

dt
Ln (t)G2kLn (t)2

n

2
]g(t)VA 1/2uV

21gpA 1/2u(1(nf, ut)1gf, wt1
g(0)

2
wh .

Note that

( f , ut ) 4
d

dt
( f , u)2 ( ft , u)

4
d

dt
( f , u)2g(0)]N( [u(t) ] )2N( [0 ] )((Au , u)

2s
0

t

g 8 (t2t)]N( [u(t) ] )2N( [0 ] )((A 1/2 u , A 1/2 u) dt

G
d

dt
( f , u)1dVA 1/2 uV

2 1ce]gpA 1/2 u1VA 1/2 uV

2( .

Similarly we have

( f , wt ) G
d

dt
( f , w)1g(t) cd E(0)1dVA 1/2 uV

2 1c]gpA 1/2 u1g(t)VA 1/2 uV

2(

where E is defined in (3.6). From the mean value inequality we have that there
exists one positive constant C such that

NN( [u] )2N( [0 ] )NGCd .

Taking n/2 Dc , the functional H given by

H(t) 4 L(t)1n( f , u)1 ( f , w)

satisfies

d

dt
H(t) G2k L(t)1g(t) cd E(0) ,

1

2
L(t) G H(t) G2 L(t).

From the two above inequalities, it follows that L(t) G L(0) e 2gt which that
the solution decays exponentially. r
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Now we show the polynomial decay of the solution

THEOREM 4.3. – Under the same hypotheses as Theorem 4.2, AFa 0 D0,
and g satisfying (3.14)-(3.16) we have for any initial data

(u0 , u1 ) �D(A 3/2 )3D(A)

that there is only one solution u of the equation (4.1), that is to say

E(t) GCE(0)(11 t)2p (tF0.

PROOF. – From remark 3.2, we have that the functional L satisfies

d

dt
Ln (t) G2k8(t)2

n

2
mg(t)VA 1/2 uV

2 1g
11

1

p pA 1/2 un1 (nf , ut )1gf , wt 1
g(0)

2
wh .

As in the proof of Theorem 4.2 we have

( f , ut ) G
d

dt
( f , u)1dVA 1/2 uV

2 1cemg
11

1

p pA 1/2 u1VA 1/2 uV

2n

( f , wt ) G
d

dt
( f , w)1dVA 1/2 uV

2 1cmg
11

1

p pA 1/2 u1g(t)VA 1/2 uV

2n

8(t) Fc8(t)
11 (12r)p

(12r)p , g
11

1

p pA 1/2 uFc]gpA 1/2 u(
11 (12r)p

(12r)p .

It is not difficult to verify, that taking N large enough, we have that L

satisfies:

c]E(t , u)( G L(t , u) Gc1
m8(t)1g

11
1

p pA 1/2 un
(12r)p

11 (12r)p

.(4.7)

Since

NN( [u] )2N( [0 ] )NGd ,

and taking s/2 Dc the functional H given by

H(t) 4 L(t)1n( f , u)1 ( f , w)

verifies

d

dt
H(t) G2k L(t)

11 (12r)p

(12r)p 1cg(t)2 .
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Since

1

2
L(t) G H(t) G2 L(t).

We conclude that

L(t , u) GC L(0 , u)
1

(11 t)(12r)p
.

From where it follows that the energy decays uniform by to zero. Finally,
using similar arguments as in the proof of Theorem 3.2 our conclusion
follows. r

5. – Global solutions for small data.

In this section we study the existence of global solutions for small data and
also the asymptotic behaviour of the solution to the full nonlinear prob-
lem,

utt 1M( [u] ) Au2s
0

t

g(t2t) N( [u] ) Au(t) dt40 ,(5.1)

u(0) 4u0 , ut (0) 4u1

where, M and N satisfies conditions [V2], M( [0 ] ) D0 and [u] is given by

[u(t) ] 4 g(u(t), ut (t) ), (Au(t), ut (t) ), VA
1

2 u(t)V

2 , VA
1

2 ut (t)V

2 , VAu(t)V

2h�R5

The particular case A42! and [u] 4VA 1/2 uV

2 , was studied by Torrejon and
Young [22]. The authors showed the existence of global solution, for analytical
data and the asymptotic stability when tKQ . To explore the dissipative prop-
erties of equation (5.1) let us rewrite the equation in the following form,

utt 1M( [0 ] ) Au2N( [0 ] )s
0

t

g(t2t) Au(t) dt4P»4R1Q ,(5.2)

where R and Q are the nonlinear term of equation

R(t) 4s
0

t

g(t2t)]N( [u(t) ] )2N(0)( Au(t) dt

Q(t) 4 ]M( [u(t) ] )2M( [0 ] )( Au(t)
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We assume hypotheses (3.2)-(3.3) on the kernel g and instead of the hypothesis
(3.4) we use hypothesis:

M( [0 ] )2N( [0 ] )s
0

Q

g(t) dtD0(5.3)

For simplicity and without loss of generality, we suppose that M(0) 41,
N(0) 41, (otherwise we make the change of variables tOkM( [0 ] ) t , and put
g× »4

M( [0 ] )

N( [0 ] )
g) then hypothesis (5.3) may be written as,

12s
0

Q

g(t) dt4aD0 .(5.4)

Rewriting equation (5.2) we have

utt 1Au2s
0

t

g(t2t) Au(t) dt4P»4R1Q ,(5.5)

THEOREM 5.1. – Let us suppose that hypotheses [V1] and [V2] holds and let
us take g satisfying (3.2)-(3.4). Consider eD0 such that the initial data

(u0 , u1 ) �D(A 3/2 )3D(A)

satisfies

VA
3

2 u0 V

2 1VAu1 V

2 Ee .

Then, there exist, only one solution u of equation (5.1), such that

u�C 2 ( [0 , Q[, D(A 1/2 ) )OC 1 ( [0 , Q[, D(A) )OC( [0 , Q[, D(A 3/2 ) ).

In addition, we have that the energy E(t) defined in (3.6) satisfies

E(t) GE(0) e 2gt (tF0 e gD0.

PROOF. – Applying the operator A to equation (5.5) and using remark 3.2
for v4Au we have

d

dt
Ln (t , Au) G2k Ln (t , Au)2

n

2
]g(t)VA 3/2 uV

2 1gpA 3/2 u(1(5.6)

1n(AP , Aut )1gAP , Awt 1
g(0)

2
Awh
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Since M and N are continuous functions, for all dD0, there exists eD0, such
that

NsNR5 Ec2 e ¨ NM(s)2M( [0 ] )NEd and NN(s)2N( [0 ] )NEd .

From Theorem 2.1, there exists 0 ET0 GTmax , such that

M(t , Au) »4VA
3

2 u(t)V

2 1VAut V
2 1gpA 3/2 uGde em [0 , T0 [ .

where dF1 and will be fixed later. Let us consider

T *4 sup ]T *1 D0 : E(t) Gde in [0 , T1*[(

We have two cases: (i) T *4Tmax , (ii) T *ETmax . The first one implies that the
solution u is bounded so, we have Tmax 4Q . Hence, we only consider case (ii).
Suppose that T *ETmax and Tmax EQ then we have

(5.7) N[u(t) ]NR5 Ec2 e ¨ NM( [u] )2M( [0 ] )NEd

and NN( [u] )2N( [0 ] )NEd in [0 , T *[ .

Denoting by a 1 the expression,

a 1 4 max
NsNGc2 e

m ¯M

¯xi

(s) : i41, 2 , 3 , 4 , 5n .

From remark 4.1 we have that

(5.8) N d

dt
]M( [0 ] )2M( [u] )( N G

2a 1]VA 1/2 utt (t)V1VA 3/2 u(t)V1VAut (t)V( Gc3 e ,

note that

(AQ , Aut ) 4 ]M( [u] )2M( [0 ] )((A 2 u , Aut )

42
1

2
g d

dt
]M( [u] )2M( [0 ] )(h VA 3/2 uV

2

1
1

2

d

dt
(]M( [u] )2M( [0 ] )(VA 3/2 uV

2)

Gc3 dVA 3/2 uV

2 1
1

2

d

dt
(]M( [u] )2M( [0 ] )(VA 3/2 uV

2)
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(AR , Aut )4
d

dt
(AR , Au)2 (ARt , Au)

4
d

dt
(AR , Au)2g(0)]N( [u(t) ] )2N( [0 ] )((A 2 u , Au)

1s
0

t

g 8 (t2t)]N( [u(t) ] )2N( [0 ] )( A 2 u(t) dt Au

G
d

dt
(AR , Au)1dg(0)VA 3/2 uV

2 1dC]gpA 3/2 u1VA 3/2 uV

2( .

From where it follows that

(AP , Aut ) Gc3 e]VA 3/2 uV

2 1gpA 3/2 u(1

d

dt
m 1

2
]M( [u] )2M( [0 ] )(VA 3/2 uV

2 1 (AR , Au)n .

Similarly, we have

gAP , Awt 1
1

2
AwhGc3 d]VA 3/2 uV

2 1gpA 3/2 u(1

1

2

d

dt
(]M( [u] )2M( [0 ] )(VA 3/2 uV

2)1
d

dt
(AR , Au) .

Denoting by

S(t) 42]M( [u] )2M( [0 ] )(VA 3/2 uV

2 12(AR , Au) .

From (5.6) and taking e and d small enough it follow that

d

dt
]L(t)2 S(t)( G2

k

2
L(t);

N S(t)NE
c0

2
d M(t).

Recalling the definition of S we have

1

2
M(t) G L(t)2 S(t) G2 M(t),(5.9)

and

d

dt
]L(t)2 S(t)( G2

k

2
]L(t)2 S(t)( ,
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which implies that

L(t)2 S(t) ) G ]L(0)2 S(0)( e 2gt ,

where g4
k

2
. From above inequality together with (5.9) we have

M(t) G
2

c0

]L(0)2 S(0)( e 2gt G
4c1

c0

M(0) e 2gt (t� [0 , T *[.

The next step is to show that Tmax 4Q . To do it we reason by contradiction.
Let us suppose that T *ETmax EQ and that T *4T1* . Thus we have

M(t) Gd M(0)e 2gt Edee 2gt .(5.10)

Letting tKT *4T1* , it follows that

M(T1*) Gde 2gT1* eEde ,

which is a contradiction to the maximality of T1* . Hence, Tmax 4Q so, and the
solution is global in time. From where our conclusion follows. r

6. – Analytical solutions.

In this section we deal with the existence of analytical solutions for sys-
tems (1.1) with M and N satisfying the hypotheses of section 1. We prove the
existence of solutions for large A-Gevrey vector data. The idea is to use the lo-
cal existence result and show that the expression

VA 1/2 ut (t)V

2 1VAu(t)V

2 1Vutt (t)V

2

remains bounded for any tD0. To do this we introduce the concept of Gevrey
function (also known as analytical function). The existence of solutions for
large non Gevrey data is an open problem.

A field of Hilbert spaces is an applications lO H(l) defined on R , where
H(l) is a Hilbert space. A vectorial field over R is an application lOu(l) such
that u(l) � H(l), for any l�R . Let us denote by F the vectorial space given by
all the vectors over R and let us denote by m a measure over R .

DEFINITION 6.1. – A field of Hilbert spaces lO H(l) is called m-measur-
able when there exists a subspace M c¯ of F, satisfying the following
conditions

i) The application lOVu(l)VH(l) is m-measurable for any u� M;

ii) For u� F the function lO (u(l), v(l) )H(l) is m-measurable for any
field v� M, then u� M;
the elements of M are called m-measurable vector field
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DEFINITION 6.2. – A field u of vectors over R is called square integrable
with respect to a measure m when

s
R

Vu(l)VH(l)
2 dm(l) EQ .

Denoting by H0 the vectorial space given by the vector field square integrable
with respect to m . Let us define in H0 the following inner product

(u , v)0 4s
R

(u(l), v(l) )H(l) dm(l), u , v� H0 .

Then the Hilbert space H0 is called Hilbertian Integral of the spaces field

lO H(l), and it is denoted by H0 4 s
5

H(l) dm(l). Under this conditions we
have the following result

THEOREM 6.1. – Let H be a Hilbert space and let us denote by A a self ad-
joint operator, positive definite in H , then there exists a bounded positive

measure n over R , a Hilbert space H0 4 s
5

H(l) dn(l) and a unitary operator
U from H over H0 , satisfying the following properties

i) U(A a u) 4la U(u), (u�D(A a ), aF0,

ii) U is an isomorphism from D(A a ) over Ha , aF0.

PROOF. – See [10] e [13].

DEFINITION 6.3. – A function v�H is called A(k)-Gevrey vectors of order
kD0 if exists one positive constant g satisfy the following property:

s
0

Q

e glk
N U v(l)N2 dm(l) EQ ,(6.1)

where U is the given unit operator in H. We say that the function v is A-
Gevrey vector if it is A(1)-Gevrey vector of order one.

The idea we use, is a combination of Arosio and Spagnolo’s method [1] and
the continuation of local solutions, exploring the dissipative properties of the
memory effect. For the case A42D and periodic boundary conditions in
bounded domain of Rn then A-Gevrey vector is a classic analytical functions,
see [1]. Before to proof the existence of solutions, we show the following
Lemma.
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LEMMA 6.1. – Let us take n�C(R), g�C 1 (R) and v�C 1 ( [0 , T[; H), then
we have that:

u s
0

t

g(t2t) n(t) v(t) dt , vt
v

42
1

2

d

dt
{ s

0

t

g(t2t) n(t)Nv(t)2v(t)N2dt}1
1

2
s
0

t

g 8(t2t) n(t)Nv(t)2v(t)N2dt

1
1

2

d

dt
{ s

0

t

g(t2t) n(t) dtNvN2}2
1

2
{g(0) n(t)1s

0

t

g 8(t2t) n(t) dt}NvN2

PROOF. – Differentiation the expression

d

dt
{ s

0

t

g(t2t) n(t)Nv(t)2v(t)N2 dt}
we arrived to the required identity. r

THEOREM 6.2. – Suppose that the initial data u0 , u1 are A-Gevrey vectors,
and that M(t) FCD0 and N(t) F0 are bounded functions, then there exists
only one global solution of system (5.1) satisfying,

u�C 1 ( [0 , T[; A)

where A is a set of all Gevrey vector functions

PROOF. – For dD0 denote jd a Friedrich’s regularization with support on
[2d , d]. Let us denote by u the local solution and

Md (r) »4 (M˜jd )(r) 4s
R

M(s) jd (r2s) ds ,

where M(t) »4M( [u(t) ] ) is the extension of M for negative values of t . Similar-
ly for Nd , denoting by v»4 U u , then it follows that v satisfies:

(6.2) vtt 1Md lv1s
0

t

g(t2t) Nd lv(t) dt4

(Md2M) lv1s
0

t

g(t2t)(n d2n) lv(t) dt .



EXISTENCE AND DECAY IN NON LINEAR VISCOELASTICITY 29

Multiplying (6.2) by vt and using the Lemma 6.1 we get

d

dt
{NvtN

21lMdNvN21ls
0

t

g(t2t) NdNv(t)2v(t)N2dt2ls
0

t

g(t2t) Nd (t) dtNvN2}4

lMd8 NvN2 1 (Md2M) lvvt 1s
0

t

g(t2t)(Nd2N) lv dtvt

1s
0

t

g 8 (t2t) Nd lNv(t)2v(t)N2 dt2lug(0) Nd NvN22s
0

t

g 8 (t2t) Nd (t) dtvNvN2 .

Introducing the following functionals

Ed (t , l) 4NvtN
2 1lMd NvN2 1ls

0

t

g(t2t) Nd Nv(t)2v(t)N2 dt

E(t , l) 4NvtN
2 1lNvN2 1ls

0

t

g(t2t) Nd Nv(t)2v(t)N2 dt ,

we have that there exist positive constants such that

c0 E(t , l) GEd (t , l) Gc1 E(t , l)

for d small. From the above inequalities we have,

d

dt
{Ed (t , l)2ls

0

t

g(t2t) Nd (t) dtNvN2}G

elNvNNvtN1els
0

t

g(t2t)NvNdtNvtN1cd Ed (t , l).

Integrating in time we arrive at

E(t , l) GCE(0 , l)1s
0

t

g c

d 2
1elh E(s , l) ds .

From Gronwall’s inequality we have

E(t , l) GcE(0 , l) e cT * /d2
e elT * t� [0 , T*)(6.3)

Using that

l m G
m!

e m
e el , m�N
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we get

s
0

Q

l m E(t , l) dm(l) Gc(g , T*)s
0

Q

e gl E(0 , l) dm(l),(6.4)

From where the right hand side of the above equation is finite by hypothesis.
Therefore from Theorem 2.1 it follows the existence of global solution.

REMARK 6.1. – From inequality (6.3) we deduce that the solution is also A-
Gevray. In fact, multiplying the inequality (6.3) by e el we have:

e el E(t , l) GcE(0 , l)e cT * /d2
e el(T *11) .

Taking e4g/(T*11) our conclusion follows. r

COROLLARY 6.1. – Suppose that M and N be functions satisfying:

M , N : R1KR1

sN(s) GCs
0

s

M(s) ds .

Let us consider [u] 4VA 1/2 uV

2 . In this conditions we have for any initial
data u0 , u1 A-Gevray, that there exists only one global A-Gevray solution of
system (5.1).

PROOF. – By Theorem 6.2 it is enough to show that M( [u] ) and N( [u] ) are
bounded. To do this let us, multiply equation (5.1) by ut so we have:

1

2

d

dt
]Vut (t)V

2 1M×(VA 1/2 u(t)V

2)( 4

u s
0

t

g(t2t) N(VA 1/2 u(t)V

2 ) A 1/2 u(t) dt , A 1/2 ut (t)v
where M×(s)4s

0

s

M(s) ds . Applying Lemma 6.1 to the above expression we have

d

dt
{E(t)21/2 s

0

t

g(t2t) N(VA 1/2 u(t)V

2 ) dtVA 1/2 u(t)V

2}4

1

2
s
0

t

g 8 (t2t) N(VA 1/2 u(t)V

2 )VA 1/2 u(t)2A 1/2 u(t)V

2 dt

21/2{g(0) N(VA 1/2 u(t)V

2 )1s
0

t

g 8 (t2t) N(VA 1/2 u(t)V

2 ) dt} VA 1/2 u(t)V

2
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where

E(t) 4
1

2
{

Vut (t)V

2 1M×(VA 1/2 u(t)V

2 )1

s
0

t

g(t2t) N(VA 1/2 u(t)V

2 )VA 1/2 u(t)2A 1/2 u(t)V

2 dt} .

Note that

2s
0

t

g 8 (t2t) N(VA 1/2 u(t)V

2 ) dtVA 1/2 u(t)V

2 G

22 s
0

t

g 8 (t2t) N(VA 1/2 u(t)V

2 )VA 1/2 u(t)2A 1/2 u(t)V

2 dt

2s
0

t

g 8 (t2t) N(VA 1/2 u(t)V

2 )VA 1/2 u(t)V

2 dt .

Using the hypotheses on M and N we have that there exists one constant C ,
such that

2s
0

t

g 8 (t2t) N(VA 1/2 u(t)V

2 ) dtVA 1/2 u(t)V

2 G

2 s
0

t

Ng 8 (t2t)NN(VA 1/2 u(t)V

2 )VA 1/2 u(t)2A 1/2 u(t)V

2 dt

12Cs
0

t

Ng 8 (t2t)NM×(NA 1/2 u(t)N2 ) dt

from where it follows that there exists a positive constant such that:

E(t) GE(0)1Cs
0

t

E(t) dt .

So, we have that E(t) is bounded. Which implies that M( [u(t) ] ) and N( [u(t) ] )
are also bounded. Therefore applying the Theorem 6.2, our conclusion
follows. r

Using similar methods as in section 2 and 4 we are able to show the uni-
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form rate of decay of the solutions of

utt 1M(VA 1/2 uV

2 ) Au2s
0

t

g(t2t) Au(t) dt40,(6.5)

u(0) 4u0 , ut (0) 4u1 ,

for large initial data and arbitrary function M satisfying:

m0 GM(s), (sF0, m0 2s
0

t

g(t) dtD0.(6.6)

Therefore we have:

THEOREM 6.3. – Suppose that g satisfies hypotheses (3.2)-(3.4), then the sol-
ution of equation (6.5) decays exponentially, that is

Vut (t)V

2 1VA 1/2 u(t)V

2 1gpA 1/2 u(t) Gc]Vu1 V

2 1VA 1/2 u0 V

2( e 2gt

while when g satisfies the hypotheses (3.15)-(3.16), then solution decays poly-
nomially, that is

E(t) GCE(0)(11 t)2p (tF0. r

COROLLARY 6.2. – With the same hypothesis as in Theorem 6.3, we have
that

VA l ut (t)V

2 1VA l11/2 u(t)V

2 1gpA l uGC]VA l u1 V

2 1VA l11/2 u0 V

2( e 2g 8 t

PROOF. – Note that v4A l u , satisfies the equation

vtt 1Av2s
0

t

g(t2t) Av(t) dt4 (12M(VA 1/2 uV

2 )) Av .

Repeating the same arguments used in the proof of Lemma 3.2, we have:

d

dt
L(t) G (Au , ut )VAvV

2 2c0 L(t) .

Since Av is bounded and ut decays exponentially, our conclusion fol-
lows. r

7. – Large solutions in D(A) spaces.

In this section we show that for a class of initial data in D(A), there exists
global solution for large initial data. Suppose that a function M has the follow-
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ing form:

M(s) 411s

therefore equation (6.5) may be written as:

utt 1 (11VA 1/2 uV

2 ) Au2s
0

t

g(t2t) Au(t) dt40,(7.1)

u(0) 4u0 , ut (0) 4u1

Denoting by v0 and v1 initial data in D(A)3D(A 1/2 ) we have that there exists
only one local solution of equation (7.1).

THEOREM 7.1. – Suppose that (u0 , u1 ) �D(A)3D(A 1/2 ) and g satisfy (3.2)-
(3.4). Then exists TD0 and only one function

u : [0 , T] KH

solution of (7.1), satisfying:

u�C 2 ( [0 , T], H)OC 1 ( [0 , T], D(A 1/2 ) )OC( [0 , T], D(A) ).

Also by Corollary 6.1, for arbitrary A-Gevrey data u0 and u1 we have that there
exists only one A-Gevrey solution u of (7.1). We will be prove that when v0 and
v1 are close enough to u0 and u1 respectively, then v is bounded uniformly in
the norm of D(A), this implies the existence of global solution. We summarized
this result in the following theorem.

THEOREM 7.2. – Let us denote by (u0 , u1 ) �D(A)3D(A 1/2 ) and g satisfy
(3.2)-(3.4), such that

VAu0 2Av0 V

2 1VA 1/2 u1 2A 1/2 v1 V

2 Ge

with v0 and v1 A-analytical data and e a small positive number. Then the lo-
cal solution u of (7.1) is globally defined.

PROOF. – Denoting by U4u2v . Since

VA 1/2 uV

2 4VA 1/2 UV

2 1VA 1/2 vV

2 12(A 1/2 U , A 1/2 v).

and recalling that u and v are solutions of equation (7.1), we have that U
satisfies:

Utt 1 (11VA 1/2 UV

2 ) AU2s
0

t

g(t2t) AU(t) dt4R ,(7.2)

U(0) 4U0 4u0 2v0 , Ut (0) 4U1 4u1 2v1
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where

R42]VA 1/2 vV

2 12(A 1/2 U , A 1/2 v)(
���

R1

AU2]VA 1/2 UV

2 12(A 1/2 U , A 1/2 v)(
���

R2

Av .

Rewriting the equation (7.2) we get

Utt 1AU2s
0

t

g(t2t) AU(t) dt42VA 1/2 UV

2 AU1R»4P .(7.3)

From the hypotheses and the continuity of solutions it follows that there exists
T1 ETmax for which we have

8(t , A 1/2 U) »4VAU(t)V

2 1VA 1/2 Ut (t)V

2 1gpAUGde t� [0 , T1 ](7.4)

where dD1 is a number to be fixed later. To show that Tmax 4Q , we reason by
contradiction, suppose that Tmax EQ and denoting by T *ETmax

T *4 sup ]T1 ; 8(t , A 1/2 U) Gde , t� [0 , T1 ]( .

From remark 3.2, we have that

d

dt
Ln (t , A 1/2 U) G2k Ln (t , A 1/2 U)2

n

2
]g(t)VAUV

2 1gpAU(

1(NA 1/2 P , A 1/2 Ut)1gA 1/2 P , A 1/2 Wt 1
g(0)

2
A 1/2 Wh

where W4U2g˜U . Thus we have

(VA 1/2 UV

2 A 3/2 U , A 1/2 Ut) 4
1

2
VA 1/2 UV

2 d

dt
VAUV

2

4
1

2

d

dt
]VA 1/2 UV

2
VAUV

2(2
1

2
m d

dt
VA 1/2 UV

2n VAUV

2

G
1

2

d

dt
]VA 1/2 UV

2
VAUV

2(1deVAUV

2 .

On the other hand

(A 1/2 R , A 1/2 Ut) 42
1

2
R1

d

dt
VAUV

2 2R2 (A 3/2 v , A 1/2 Ut )

4
1

2
g d

dt
R1h VAUV

2 2
1

2

d

dt
(R1 VAUV

2)

1CeVA 3/2 vV]VA 1/2 Ut V1VA 1/2 UV( .
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Since

N d

dt
R1N G2VA 1/2 vt V

2 12VA 1/2 vV

2 1VA 1/2 Ut V
2 1VA 1/2 UV

2

���
Gde

,

it is easy to see that

(A 1/2 R , A 1/2 Ut) G2
1

2

d

dt
(R1 VAUV

2)1Ce8(t , A 1/2 v)1Ce8(t , A 1/2 U).

Similar we have that

gA 1/2 P , A 1/2 Wt 1
g(0)

2
A 1/2 WhG

1

2

d

dt
]VA 1/2 UV

2
VAUV

2 2R1 VAUV

2(1Ce8(t , A 1/2 v)

1Ce8(t , A 1/2 U)1C]gpA 1/2 U1g(t)VA 1/2 UV

2( .

From where it follows

d

dt
]Ln (t , A 1/2 U)2VA 1/2 UV

2
VAUV

2 1R1 VAUV

2( G

2k Ln (t , A 1/2 U)1Ce8(t ; A 1/2 v) .

Using relation (7.4) and recalling that R1 F0 we have that

1

2
Ln (t , A 1/2 U) G Ln (t , A 1/2 U)2VA 1/2 UV

2
VAUV

2 1R1 VAUV

2 G2 Ln (t , A 1/2 U)

for e small enough. From Theorem 6.3, v decay exponential, therefore there
exist positive constants C and g 2 such that

Ln (t , A 1/2 U) G Ln (0 , A 1/2 U) e
2

k

2
t
1Ce8(0 ; A 1/2 v) e 2g 2 t

Ge(C18(0 ; A 1/2 v)) e 2rt

Since

c0 8(t , A 1/2 U) G Ln (t , A 1/2 U) Gc1 8(t , A 1/2 U)

we have that

8(t , A 1/2 U) Gec0 (C18(0 ; A 1/2 v)) e 2rt .
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Taking d4c0]C18(0 ; A 1/2 v)( and letting tKT * we have

8(T *, A 1/2 U) Gdee 2rT * Ede ,

but this is contradictory to the maximality of Tmax . So we have that Tmax 4Q ,
hence u is globally defined and since v decays exponentially we have

VAuV

2 1VA 1/2 ut V
2 GCe 2gt ,

from where our conclusion follows, the proof is now complete. r
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