Bollettino

Unione Matematica Italiana

Carla Dionisi, Marco Maggesi
 Minimal resolution of general stable rank-2
 vector bundles on \mathbb{P}^{2}

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 6-B (2003), n.1, p. 151-160.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2003_8_6B_1_151_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Minimal Resolution of General Stable
 Rank-2 Vector Bundles on P^{2}.

Carla Dionisi - Marco Maggesi

Sunto. - Abbiamo studiato gli elementi generici degli spazi di moduli $\mathfrak{M}_{\mathrm{p}^{2}}\left(2, c_{1}, c_{2}\right)$ dei fibrati vettoriali stabili di rango 2 su \mathbb{P}^{2} e le loro risoluzioni libere minimali. $N e$ segue una dimostrazione piuttosto semplice dell'irriducibilità di $\mathfrak{M}_{\mathrm{p}^{2}}\left(2, c_{1}, c_{2}\right)$.

Summary. - We study general elements of moduli spaces $\mathfrak{M}_{\mathbb{P}^{2}}\left(2, c_{1}, c_{2}\right)$ of rank-2 stable holomorphic vector bundles on \mathbb{P}^{2} and their minimal free resolutions. Incidentally, a quite easy proof of the irreducibility of $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ is shown.

1. - Introduction.

We investigate stable rank-2 vector bundles on the complex projective plane P^{2} by means of their minimal free resolutions. Bohnhorst and Spindler in their paper [BS92] develop interesting techniques for the study of minimal free resolution of rank- n stable vector bundles on \mathbb{P}^{n} of homological dimension 1. In this work we derive a number of consequences for rank- 2 vector bundles on \mathbb{P}^{2}.

As Bohnhorst and Spindler observe, Betti numbers define a stratification of the moduli space $\mathfrak{M}_{\mathbb{P}^{2}}\left(2, c_{1}, c_{2}\right)$ of stable holomorphic vector bundles on \mathbb{P}^{2} by constructible subsets. We estimate the codimension of such strata and characterize Betti numbers of the general element of the moduli space. As a corollary, we get a simple proof of the irreducibility of $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$. The irreducibility of $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ was proved for c_{1} even in [Bar77a] and c_{1} odd indipendently in [Pot79] and [Hul79] and other proofs can be found in [Ell83, HL93, Mar78].

We would like to thank G. Ottaviani for his invaluable guidance and V. Ancona for many useful discussions.

2. - Admissible pairs and resolutions.

Let \mathcal{E} be a rank-2 vector bundle on \mathbb{P}^{2}. By Horrocks' theorem [Hor64], \& has homological dimension at most 1, i.e., it has a free resolution of the form

$$
\begin{equation*}
0 \rightarrow \bigoplus_{i=1}^{k} \mathcal{O}_{\mathbb{P}^{2}}\left(-a_{i}\right) \xrightarrow{\Phi} \bigoplus_{j=1}^{k+2} \mathcal{O}_{\mathbb{P}^{2}}\left(-b_{j}\right) \rightarrow \delta \rightarrow 0 \tag{1}
\end{equation*}
$$

We do not assume that such a resolution is minimal. In what follows we suppose that \mathcal{E} has homological dimension 1 (so that $k>0$); we are not interested in vector bundles of homological dimension 0 , i.e., splitting vector bundles, since they are not stable.

We suppose that the two sequences a_{i} and b_{i} are indexed in nondecreasing order

$$
\begin{align*}
& a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{k} \tag{2}\\
& b_{1} \leqslant b_{2} \leqslant \ldots \leqslant b_{k+2}
\end{align*}
$$

call $(a, b)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k+2}\right)\right)$ the associated pair to the resolution (1). If this resolution is minimal, we call (a, b) the pair associated to the bundle 8. Notice that the associated pair and Betti numbers encode exactly the same information; in particular $\max \left(a_{k}-1, b_{k+2}\right)$ is the Castelnuovo-Mumford regularity of δ.

Chern classes c_{1}, c_{2} of δ are expressed in terms of the a_{i}, b_{j} by the formulas

$$
\begin{align*}
c_{1} & =\sum_{i=1}^{k} a_{i}-\sum_{i=1}^{k+2} b_{i}, \tag{3}\\
2 c_{2}-c_{1}^{2} & =\sum_{i=1}^{k} a_{i}^{2}-\sum_{i=1}^{k+2} b_{i}^{2} .
\end{align*}
$$

Definition 2.1. - A pair (a, b) is said to be admissible if

$$
\begin{equation*}
a_{i}>b_{i+2} \quad \text { for all } i=1, \ldots, k \tag{5}
\end{equation*}
$$

For the sake of brevity, we say that the resolution (1) is admissible if its associated pair (a, b) is so.

More generally, we can consider the associated pair (a, b) to any vector bundle of homological dimension 1 on \mathbb{P}^{n} with $n \geqslant 2$. In that case, we say that (a, b) is admissible if $a_{i}>b_{n+i}$ for $i=1, \ldots, k$, as in [BS92].

Let us restate the main results of Bohnhorst and Spindler on admissible pairs (proposition 2.3 and theorem 2.7 in [BS92]) in our settings.

Theorem 2.2. - Let $\&$ be the rank-2 vector bundle on \mathbb{P}^{2} of resolution (1). Then

1. resolution (1) is minimal if and only if it is admissible and every constant entry of the matrix Φ is zero;
2. if resolution (1) is admissible then \mathcal{E} is stable (resp. semistable) if and only if $b_{1}>-\mu$ (resp. $b_{1} \geqslant-\mu$) where $\mu=c_{1} / 2$ is the slope of δ.

We denote by \mathfrak{J} the set of all admissible pairs (a, b) associated to rank-2 vector bundles on \mathbb{P}^{2} with Chern classes c_{1}, c_{2} which satisfy the condition

$$
b_{1}>-\mu=\frac{1}{2}\left(\sum a_{i}-\sum b_{j}\right) .
$$

Theorem 2.2 shows that the set \mathfrak{J} contains the set of all possible associated pairs to a stable vector bundle in $\mathcal{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ and coincides exactly with it. Then

$$
\begin{equation*}
\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)=\coprod_{(a, b) \in \mathfrak{J}} \mathfrak{M}(a, b) \tag{6}
\end{equation*}
$$

where $\mathfrak{M}(a, b)$ is the constructible subset of $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ of vector bundles with associated pair (a, b).

Proposition 2.3. - For all $(a, b) \in \mathfrak{F}$, the closed set $\overline{\mathfrak{M}(a, b)}$ is an irreducible algebraic subset of $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ of dimension

$$
\begin{align*}
\operatorname{dim} \overline{\mathfrak{M}(a, b)} & =\operatorname{dim} \operatorname{Hom}\left(F_{1}, F_{0}\right)+\operatorname{dim} \operatorname{Hom}\left(F_{0}, F_{1}\right)+ \tag{7}\\
& -\operatorname{dim} \operatorname{End}\left(F_{1}\right)-\operatorname{dim} \operatorname{End}\left(F_{0}\right)+1-\#\left\{(i, j): a_{i}=b_{j}\right\},
\end{align*}
$$

where $F_{0}=\bigoplus_{j=1}^{k+2} \mathcal{O}\left(-b_{j}\right), F_{1}=\bigoplus_{i=1}^{k} \mathcal{O}\left(-a_{i}\right)$.

Proof. - Proposition 3.3 in [BS92].

In the following lemma we find an upper bound on the regularity of semistable vector bundles on P^{2} of rank-2. A lower bound is given in corollary 3.7.

Theorem 2.4. - A normalized semistable rank-2 bundle \& on \mathbb{P}^{2} is c_{2}-regular.

Proof. - For brevity's sake, we set $\xi_{i}:=a_{i}-b_{i+2}$ and $t_{i}:=b_{i+2}-b_{2}$. Obviously, $\xi_{i} \geqslant 1$ and $t_{i} \geqslant 0$. We rewrite (3) as

$$
\begin{equation*}
\sum_{i=1}^{k} \xi_{i}=b_{1}+b_{2}+c_{1} \tag{8}
\end{equation*}
$$

By equation (4) and theorem 2.2, using inequalities (2) and (5), we get

$$
\begin{align*}
b_{1}^{2}+b_{2}^{2}+2 c_{2}-c_{1}^{2} & =\sum_{i=1}^{k}\left(a_{i}^{2}-b_{i+2}^{2}\right)=\sum_{i=1}^{k} \xi_{i}\left(2 b_{2}+2 t_{i}+\xi_{i}\right) \geqslant \\
& \geqslant 2 b_{2} \sum_{i=1}^{k} \xi_{i}+\sum_{i=1}^{k}\left(2 t_{i}+\xi_{i}\right)= \tag{9}\\
& =\left(2 b_{2}+1\right)\left(b_{1}+b_{2}+c_{1}\right)+2 \sum_{i=1}^{k} t_{i} .
\end{align*}
$$

If we suppose that $b_{2}+\sum_{i=1}^{k} t_{i} \geqslant c_{2}+1$, we have

$$
b_{1}^{2}+b_{2}^{2}+2 b_{2}-c_{1}^{2}-\left(2 b_{2}+1\right)\left(b_{1}+b_{2}+c_{1}\right) \geqslant 2 .
$$

The left side of the above inequality is non-increasing with respect to b_{1}, hence it remains true after substituting $-c_{1}$ to b_{1}; but $b_{2}-b_{2}^{2} \geqslant 2$ has no solutions. Thus $\sum_{i=1}^{k} t_{i}$ must be at most $c_{2}-b_{2}$ and in particular

$$
\begin{equation*}
b_{k+2}=b_{2}+t_{k} \leqslant b_{2}+\sum t_{i} \leqslant c_{2} . \tag{10}
\end{equation*}
$$

Now, we must show that $a_{k} \leqslant c_{2}+1$. We rewrite (3) as $\sum_{i=1}^{k-1} \xi_{i}=b_{1}+b_{2}+$ $b_{k+2}-a_{k}+c_{1}$ and by (4)

$$
\begin{align*}
b_{1}^{2}+b_{2}^{2}+b_{k+2}^{2}-a_{k}^{2}+2 c_{2}-c_{1}^{2} & =\sum_{i=1}^{k-1}\left(a_{i}^{2}-b_{i+2}^{2}\right)=\sum_{i=1}^{k-1} \xi_{i}\left(2 b_{2}+2 t_{i}+\xi_{i}\right) \geqslant \\
& \geqslant 2 b_{2} \sum_{i=1}^{k-1} \xi_{i}+\sum_{i=1}^{k-1} \xi_{i} \geqslant \tag{11}\\
& \geqslant\left(2 b_{2}+1\right)\left(b_{1}+b_{2}+b_{k+2}-a_{k}+c_{1}\right)
\end{align*}
$$

that can be put in the form

$$
\begin{align*}
b_{1}^{2}+b_{2}^{2}-\left(2 b_{2}+1\right)\left(b_{1}+b_{2}+c_{1}\right)+2 & c_{2}-c_{1}^{2} \geqslant \tag{12}\\
& \geqslant\left(a_{k}-b_{k+2}\right)\left(a_{k}+b_{k+2}-2 b_{2}-1\right) .
\end{align*}
$$

Suppose that $a_{k} \geqslant c_{2}+2$. By (10) we have $a_{k}-b_{k+2} \geqslant c_{2}+2-c_{2}=2$ and we observe also that $a_{k}+b_{k+2}-2 b_{2}-1 \geqslant c_{2}-b_{2}+1$. Substituting and simplifying,
equation (12) becomes

$$
\begin{equation*}
b_{1}^{2}+b_{2}^{2}-\left(2 b_{2}+1\right)\left(b_{1}+b_{2}+c_{1}\right)-c_{1}^{2} \geqslant c_{1}^{2}+2 . \tag{13}
\end{equation*}
$$

As before, we can restrict ourselves to the case $b_{1}=-c_{1}$ obtaining

$$
b_{1}^{2}+b_{2}^{2}-\left(2 b_{2}+1\right)\left(b_{1}+b_{2}\right) \geqslant 2
$$

which has no solution for b_{i} positive. Then $a_{k} \leqslant c_{2}+1$.
Remark 2.5. - The above theorem is sharp. Indeed $\left(\left(c_{2}+1\right),\left(0,1, c_{2}\right)\right)$ and $\left(\left(c_{2}+1\right),\left(1,1, c_{2}\right)\right)$ are admissible pairs associated to rank-2 semistable bundles with Chern classes c_{1}, c_{2} and regularity c_{2}.

Remark 2.6. - It is also possible to prove that a semistable rank-2 bundle on \mathbb{P}^{2} is c_{2} regular if $c_{1}=0$ and $\left(c_{2}+1\right)$-regular if $c_{1}=-1$ using the bounds on dimension of cohomology groups proved by Elencwajg and Forster (proposition 2.18 in [EF80]) and the Grauert-Mülich theorem.

Remark 2.7. - From (8) and the thesis of the previous theorem, the value k in (1) is bounded by:

$$
\begin{equation*}
k \leqslant \sum_{i=1}^{k} \xi_{i}=b_{1}+b_{2}+c_{1} \leqslant 2 c_{2}+c_{1} . \tag{14}
\end{equation*}
$$

Hence, for fixed Chern classes c_{1}, c_{2}, there are only a finite number of admissible pairs of rank-2 vector bundles and we can write an algorithm to enumerate such pairs restricting the search to a finite domain.

3. - Natural pairs and general vector bundles.

We say that $(a, b)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k+2}\right)\right)$ is a natural pair if it is admissible and

$$
\begin{equation*}
b_{k+2}<a_{1}, \quad a_{k} \leqslant b_{1}+2 \tag{15}
\end{equation*}
$$

The above inequalities imply $a_{i} \neq b_{j}$ for all i and j.
We observe that natural pairs are parametrized by three integers s, k, α such that

$$
\begin{equation*}
k \geqslant 1 \quad \text { and } \quad-k+1 \leqslant \alpha \leqslant k+2 \tag{16}
\end{equation*}
$$

as follows: the pair $(a, b)_{s, k, \alpha}$ corresponding to the triple (s, k, α) is the pair associated to a resolution of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-s-1)^{k} \rightarrow \mathcal{O}(-s)^{\alpha} \oplus \mathcal{O}(-s+1)^{k-\alpha+2} \rightarrow \mathcal{E} \rightarrow 0 \tag{17}
\end{equation*}
$$

if $\alpha \geqslant 0$, or of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-s-1)^{k+\alpha} \oplus \mathcal{O}(-s)^{-\alpha} \rightarrow \mathcal{O}(-s+1)^{k+2} \rightarrow \delta \rightarrow 0 \tag{18}
\end{equation*}
$$

if $\alpha<0$. We have excluded the case $\alpha=-k$ so that s is the regularity of the pair, i.e., $s=\max \left(a_{k}-1, b_{k+2}\right)$.

In this section we are going to show that resolutions of general vector bundles have natural pairs.

Theorem 3.1. - One has codim $\mathfrak{M}(a, b)=0$ if and only if (a, b) is a natural pair.

As a remarkable consequence we will derive a quite simple proof of the irreducibility of moduli spaces of rank-2 stable vector bundles on \mathbb{P}^{2}, and we will compute regularity and cohomology of their general elements.

We recall that, since $\operatorname{dim} \operatorname{Ext}^{2}(\mathfrak{F}, \mathfrak{F})=0$ for any stable vector bundle \mathfrak{F} on P^{2}, the corresponding moduli space $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ is smooth of dimension

$$
\begin{equation*}
\operatorname{dim} \operatorname{Ext}^{1}(\mathfrak{F}, \mathfrak{F})=4 c_{2}-c_{1}^{2}-3 \tag{19}
\end{equation*}
$$

Let us consider the function $A(t):=h^{2}(\mathcal{O}(t))$ and its finite differences of first and second order $\left(\Delta_{u} A\right)(t):=A(t+u)-A(t)$ and $\left(\Delta_{v} \Delta_{u} A\right)(t):=\left(\Delta_{u} A\right)$. $(t+v)-\left(\Delta_{u} A\right)(t)$.

Lemma 3.2. - If $\mathcal{E} \in \mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ has associated admissible pair (a, b), then

$$
\begin{align*}
& \operatorname{codim} \overline{\mathfrak{M}(a, b)}=h^{1}\left(\mathcal{E}\left(b_{1}\right)\right)+h^{1}\left(\mathcal{E}\left(b_{2}\right)\right)+\#\left\{(i, j): a_{i}=b_{j}\right\}+ \tag{20}\\
&+\sum_{i, j=1}^{k}\left(\Delta_{b_{i+2}-a_{i}} \Delta_{b_{j+2}-a_{j}} A\right)\left(a_{i}-b_{i+2}\right)
\end{align*}
$$

Proof. - Let

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow \delta \rightarrow 0 \tag{21}
\end{equation*}
$$

be the minimal resolution of 8 where

$$
\begin{equation*}
F_{0}=\bigoplus_{j=1}^{k+2} \mathcal{O}\left(-b_{j}\right), \quad F_{1}=\bigoplus_{i=1}^{k} \mathcal{O}\left(-a_{i}\right) . \tag{22}
\end{equation*}
$$

Stability of \mathcal{E} ensures the vanishing $\operatorname{dim}\left(\operatorname{Ext}^{2}(\mathcal{E}, \mathcal{E})\right)=h^{2}\left(\mathcal{\delta}^{*} \otimes \mathcal{E}\right)=0$ so that
$h^{2}\left(F_{0}^{*} \otimes \mathcal{E}\right)=h^{2}\left(F_{1}^{*} \otimes \mathcal{E}\right)$. Then from (21) we easily find the following data:

$$
\begin{aligned}
& h^{0}\left(F_{0}^{*} \otimes \mathcal{E}\right)=h^{0}\left(F_{0}^{*} \otimes F_{0}\right)-h^{0}\left(F_{0}^{*} \otimes F_{1}\right), \\
& h^{0}\left(F_{1}^{*} \otimes \mathcal{E}\right)=h^{0}\left(F_{1}^{*} \otimes F_{0}\right)-h^{0}\left(F_{1}^{*} \otimes F_{1}\right),
\end{aligned}
$$

$$
\begin{align*}
\operatorname{dim}\left(\operatorname{Ext}^{1}(\mathcal{\delta}, \mathcal{E})\right)= & h^{1}\left(\mathcal{\delta}^{*} \otimes \mathcal{E}\right)= \tag{23}\\
= & h^{1}\left(F_{0}^{*} \otimes \mathcal{E}\right)-h^{1}\left(F_{1}^{*} \otimes \mathcal{E}\right)+ \\
& +h^{0}\left(F_{1}^{*} \otimes \mathcal{\delta}\right)-h^{0}\left(F_{0}^{*} \otimes \mathcal{E}\right)+1
\end{align*}
$$

and from (7) we have

$$
\begin{align*}
\operatorname{codim} \overline{\mathfrak{M}(a, b)} & =\operatorname{dim}\left(\operatorname{Ext}^{1}(\mathcal{E}, \mathcal{E})\right)-\operatorname{dim} \overline{\mathfrak{M i}(a, b)}= \tag{24}\\
& =h^{1}\left(F_{0}^{*} \otimes \mathcal{E}\right)-h^{1}\left(F_{1}^{*} \otimes \mathcal{E}\right)+\#\left\{(i, j): \underset{\widetilde{\widetilde{c}}}{a_{i}}=b_{j}\right\}
\end{align*}
$$

Now, by splitting F_{0} as $\mathcal{O}\left(-b_{1}\right) \oplus \mathcal{O}\left(-b_{2}\right) \oplus \widetilde{F_{0}}$ with $\widetilde{F}_{0}:=\bigoplus_{i=3}^{k+2} \mathcal{O}\left(-b_{i}\right)$, the above formula becomes

$$
\begin{align*}
\operatorname{codim} \overline{\mathfrak{M} i(a, b)}= & h^{1}\left(\mathcal{E}\left(b_{1}\right)\right)+h^{1}\left(\mathcal{\delta}\left(b_{2}\right)\right)+\#\left\{(i, j): a_{i}=b_{j}\right\}+ \tag{25}\\
& +h^{1}\left(\widetilde{F}_{0}^{*} \otimes \mathcal{E}\right)-h^{1}\left(F_{1}^{*} \otimes \mathcal{E}\right) .
\end{align*}
$$

Since $h^{2}\left(\widetilde{F}_{0}^{*} \otimes F_{0}\right)=h^{2}\left(\widetilde{F}_{0}^{*} \otimes \widetilde{F_{0}}\right)$ and $h^{2}\left(F_{1}^{*} \otimes F_{0}\right)=h^{2}\left(F_{1}^{*} \otimes \widetilde{F_{0}}\right)$ the following identity holds:

$$
\begin{align*}
& h^{1}\left(\widetilde{F}_{0}^{*} \otimes \mathcal{E}\right)-h^{1}\left(F_{1}^{*} \otimes \mathcal{E}\right)= \tag{26}\\
& =h^{2}\left(\widetilde{F}_{0}^{*} \otimes F_{1}\right)-h^{2}\left(\widetilde{F}_{0}^{*} \otimes F_{0}\right)-h^{2}\left(F_{1}^{*} \otimes F_{1}\right)+h^{2}\left(F_{1}^{*} \otimes F_{0}\right)= \\
& =h^{2}\left(\widetilde{F}_{0}^{*} \otimes F_{1}\right)-h^{2}\left(\widetilde{F}_{0}^{*} \otimes \widetilde{F}_{0}\right)-h^{2}\left(F_{1}^{*} \otimes F_{1}\right)+h^{2}\left(F_{1}^{*} \otimes \widetilde{F}_{0}\right)= \\
& =\sum_{i, j=1}^{2}\left[h^{2}\left(\mathcal{O}\left(b_{i+2}-a_{j}\right)\right)+-h^{2}\left(\mathcal{O}\left(b_{i+2}-b_{j+2}\right)\right)+\right. \\
& \left.\quad-h^{2}\left(\mathcal{O}\left(a_{i}-a_{j}\right)\right)+h^{2}\left(\mathcal{O}\left(a_{i}-b_{j+2}\right)\right)\right] .
\end{align*}
$$

Then equation (20) follows by substitution of (26) in (25).
Proof of theorem 3.1. - It can be verified by direct computation from proposition 2.3 that, if $\mathcal{\&}$ has natural pair, then the codimension of $\overline{M i(a, b)}$ is zero. Conversely, let u, v be two non-negative integers. Since all finite differences $\left(\Delta_{u} A\right)(t):=A(t+u)-A(t)$ are non decreasing functions of t, then

$$
\begin{equation*}
\left(\Delta_{v} \Delta_{u} A\right)(t) \geqslant 0 \tag{27}
\end{equation*}
$$

and by the previous lemma

$$
\begin{equation*}
\operatorname{codim} \overline{\mathfrak{M}(a, b)} \geqslant h^{1}\left(\mathcal{E}\left(b_{1}\right)\right)+h^{1}\left(\mathcal{\&}\left(b_{2}\right)\right)+\#\left\{(i, j): a_{i}=b_{j}\right\} . \tag{28}
\end{equation*}
$$

If $\operatorname{codim} \overline{\mathcal{M}(a, b)}=0$, we have $a_{k} \leqslant b_{1}+2$ and $\#\left\{(i, j): a_{i}=b_{j}\right\}=0$, since $h^{1}\left(\mathcal{\&}\left(b_{1}\right)\right)=0$ implies $h^{2}\left(F_{1}\left(b_{1}\right)\right)=0$. This forces (a, b) to be a natural pair.

Proposition 3.3. - Suppose that $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ be nonempty and let

$$
\begin{equation*}
s:=\max \left\{\varrho \in \mathbb{Z}: 2 \varrho^{2}+2 c_{1} \varrho-2 \varrho \leqslant 2 c_{2}-c_{1}^{2}+c_{1}-1\right\}, \tag{29}
\end{equation*}
$$

If α and k are defined by

$$
\begin{align*}
& \alpha:=2 c_{2}-c_{1}^{2}+2-2 s^{2}-2 c_{1} s, \tag{30}\\
& k:=\left(2 s+c_{1}-2+|\alpha|\right) / 2,
\end{align*}
$$

then $(a, b)_{s, k, \alpha}$ is the only natural pair of $\mathfrak{M}_{\mathbb{P}^{2}}\left(2, c_{1}, c_{2}\right)$.
Proof. - Note that, since $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ is nonempty, from theorem 3.1 there exists a vector bundle associated to a natural pair. It is easy to verify that equations (3) and (4) are equivalent to (30) and conditions (16) are equivalent to

$$
2 s^{2}+2 c_{1} s-c_{1}-2 s+1 \leqslant 2 c_{2}-c_{1}^{2} \leqslant 2 s^{2}+2 c_{1} s+c_{1}+2 s
$$

The intervals

$$
\left[2 s^{2}+2 c_{1} s-c_{1}-2 s+1,2 s^{2}+2 c_{1} s+c_{1}+2 s\right]
$$

are disjoint for s varying in \mathbb{Z}. Hence s is uniquely determined from c_{1}, c_{2} and satisfies (29).

Remark 3.4. - Equation (29) in proposition 3.3 is also equivalent to

$$
\begin{equation*}
s:=\min \left\{\varrho \in \mathbb{Z}: 2 \varrho^{2}+2 c_{1} \varrho+2 \varrho \geqslant 2 c_{2}-c_{1}^{2}-c_{1}\right\} . \tag{29bis}
\end{equation*}
$$

Theorem 3.5. - Moduli spaces of stable rank-2 vector bundles on \mathbb{P}^{2} are irreducible.

Proof. - Moduli spaces of stable rank-2 vector bundles on \mathbb{P}^{2} are smooth. By theorem 3.1 and the above proposition they can have only one connected component.

Corollary 3.6. - The general element of $\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ has natural cohomology.

The above corollary justify the terminology «natural pair». A different proof for it, working also for rank greater than 2, can be found in [HL93], by using sophisticated techniques of stacks theory.

Using proposition 3.3 we are going to give some bounds on regularity and
cohomology of stable vector bundles. In particular, for rank-2 vector bundles, the next two corollaries give respectively a refined version of corollary 5.4 in [Bru80] and proposition 7.1 in [Har78].

Corollary 3.7. - The general vector bundle \mathcal{E} in $\mathfrak{M}_{\mathbb{P}^{2}}\left(2, c_{1}, c_{2}\right)$ has regularity s given by (29).

Corollary 3.8. - Let [8] be a vector bundle in $\mathfrak{M}=\mathfrak{M}_{\mathrm{P}^{2}}\left(2, c_{1}, c_{2}\right)$ and let s be defined by (29). Then $H^{0}(\mathcal{E}(t)) \neq 0$ if

$$
\begin{array}{ll}
t \geqslant s & \text { when } 2 s^{2}+2 c_{1} s+2 s=2 c_{2}-c_{1}^{2}-c_{1} \\
t \geqslant s-1 & \text { otherwise. }
\end{array}
$$

The above inequality is sharp, in the sense that it gives a necessary and sufficient condition for $\&$ general.

Proof. - Let $\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k+2}\right)\right)$ be the admissible pair associated to a vector bundle δ in \mathfrak{M}. Then one has $H^{0}(\delta(t)) \neq 0$ if and only if $t-b_{1} \geqslant 0$. By the semicontinuity of cohomology groups and theorem 3.5, it is enough to restrict ourselves to the case where δ is general. So, by (17) and (18) one has $H^{0}(\mathcal{E}(t)) \neq 0$ if and only if

$$
\begin{array}{ll}
t \geqslant s & \text { when } \alpha=k+2 \\
t \geqslant s-1 & \text { otherwise }
\end{array}
$$

and the condition $\alpha=k+2$ is equivalent to $2 s^{2}+2 c_{1} s+2 s=2 c_{2}-c_{1}^{2}-c_{1}$ by (30).

REFERENCES

[Bar77a] W. Barth, Moduli of vector bundles on the projective plane, Invent. Math. (1977), no. 42, 63-91.
[Bar77b] W. Barth, Some properties of stable rank 2 vector bundles on \mathbb{P}^{n}, Math. Ann. (1977), no. 226, 125-150.
[BH78] W. Barth - K. Hulek, Monads and moduli of vector bundles, Manuscripta Math. (1978), no. 25, 323-347.
[Bru80] J. Brun, Les fibrés stables de rang deux sur \mathbb{P}^{2} et leur sections, Bull. Soc. Math. France, 4 (1980), no. 108, 457-473.
[BS92] G. Bohnhorst and H. Spindler, The stability of certain vector bundles on \mathbb{P}^{n}, Lecture Notes (1992), no. 1507, 39-50.
[Dio00] C. Dionisi, Multidimensional matrices and minimal resolutions of vector bundles, Ph.D. thesis, Dip. Matematica «R.Caccioppoli», Università di Napoli, 2000.
[DL85] J. M. Drezet - J. LePotier, Fibrés stables et fibrés exceptionnels sur \mathbb{P}^{2}, Ann. Sci. Ec. Norm. Supér., IV (1985), no. 18, 193-244.
[EF80] G. Elencwajg - O. Forster, Bounding cohomology groups and vector bundles on P^{n}, Math. Ann. (1980), no. 246, 251-270.
[Ell83] G. Ellingsrud, Sur l'irréducibilité du module des fibrès stable sur P^{2}, Math. Z. (1983), no. 182, 189-192.
[Gre89] M. L. Green, Koszul cohomology and geometry, Proceedings of the first college on Riemann surfaces held in Trieste (Italy) (M. Cornalba et al., eds.), World Scientific Publishing Co., November 1989, pp. 177-200.
[Har78] R. Hartshorne, Stable vector bundles of rank 2 on \mathbb{P}^{3}, Math. Ann., 238 (1978), 229-280.
[Har83] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, no. 52, Springer-Verlag, New York-Heidelberg-Berlin, 1983.
[HL93] A. Hirschowitz - Y. Laszlo, Fibrés génériques sur le plan projectif, Math. Ann. (1993), no. 297, 85-102.
[Hor64] G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. Lond. Math. Soc., III. Ser., 14 (1964), 689-713.
[Hor87] G. Horrocks, Vector bundles on the punctured spectrum of a local ring II, Vector bundles on algebraic varieties, Stud. Math., no. 11, Tata Inst. Fundam. Res., 1987, Bombay 1984, pp. 207-216.
[Hul79] K. Hulek, Stable rank 2 vector bundles on \mathbb{P}^{2} with c_{2} odd, Math. Ann. (1979), no. 242, 241-266.
[Hul80] K. Hulek, On the classification of stable rank-k vector bundles over the projective plane, A. Hirschowitz (ed): Vector bundles and differential equations, Progress in Mathematics, no. 7, Birkhäuser, Boston-Basel-Stuttgart, 1980, Nice 1979, pp. 113-144.
[Mag99] M. Maggesi, Some results on holomorphic vector bundles over projective spaces, Ph.D. thesis, Dip. Matematica «U. Dini» , Università di Firenze, 1999.
[Mar78] M. Maruyama, Moduli of stable sheaves II, J. Math. Kyoto Univ. (1978), no. 18, 557-614.
[OSS80] C. Okonek - M. Schneider - H. Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, no. 3, Birkhäuser, Boston-BaselStuttgart, 1980.
[Pot79] J. Le Potier, Fibrés stables de rang 2 sur \mathbb{P}^{2}, Math. Ann. (1979), no. 241, 217-256.
[Sch61] R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc. London Math. Soc., 3 (1961), no. 11, 623-640.

Carla Dionisi: Dipartimento di Matematica Applicata «G. Sansone»
Via S. Marta 3, 50139, Firenze, Italy email: dionisi@math.unifi.it
Marco Maggesi: Dipartimento di Matematica «U. Dini»
Viale Morgagni 67/a, 50134, Firenze, Italy
email: maggesi@math.unifi.it

