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Star-invertible Ideals of Integral Domains.

GYU WHAN CHANG - JEANAM PARK(*)

Sunto. – Sia ˜ uno star-operatore su R e s̃ lo star-operatore di carattere finito indot-
to da ˜. Lo scopo di questo lavoro è studiare quando ˜4y o s̃4 t . In particola-
re, proviamo che se ogni ideale primo di R è ˜-invertibile, allora ˜4y e che se R è
un dominio a ˜-fattorizzazione unica, allora R è un dominio di Krull.

Summary. – Let ˜ be a star-operation on R and s̃ the finite character star-operation
induced by ˜ . The purpose of this paper is to study when ˜4v or s̃4 t . In par-
ticular, we prove that if every prime ideal of R is ˜-invertible, then ˜4v , and that
if R is a unique ˜-factorable domain, then R is a Krull domain.

1. – Introduction.

Let R be a commutative integral domain with identity and K the quotient
field of R . Let F(R) be the set of nonzero fractional ideals of R . A mapping
AKA* of F(R) into F(R) is called a star-operation on R if the following condi-
tions hold for all a�K2 ]0( and A , B�F(R).

1. (aR)*4aR , (aA)*4aA*;

2. A’A*, if A’B then A*’B*; and

3. (A*)*4A*.

It is easy to show that for all A , B�F(R), (AB)*4 (AB*)*4 (A* B*)* . A
fractional ideal A of R is called a ˜-ideal if A4A*. An integral ideal A of R is
said to be a maximal ˜-ideal if A is maximal among proper integral ˜-ideals.
Given any ˜-operation on R , we can construct another ˜-operation s̃ de-
fined by A*s 4N]J* N0 cJ’A is finitely generated( for A�F(R). We say
that s̃ is the finite character star-operation induced by ˜ and that ˜ is of
finite character if ˜4 s̃ . It is well-known that the set of maximal s̃-ideals,
denoted by s̃-Max (R), is nonempty and a maximal s̃-ideal is a prime ideal.
A�F(R) is said to be ˜-invertible if (AA 21 )*4R . Note that A is ˜-invert-

(*) The second author’s work was supported by funds from the Basic Research In-
stitute Program, Korea Research Foundation, 2000-015-DP0006.
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ible if and only if (1) A*4 (a1 , R , an )* for some finite subset of elements
]a1 , R , an ( and (2) AP is principal for each maximal ˜-ideal P . One can easily
show that if A is s̃-invertible, then there is a finitely generated ideal J so that
A*4J*.

The most important star-operations are (1) the d-operation Ad 4A , (2) the
v-operation Av 4 (A 21 )21 for A�F(R), and (3) the finite character star-opera-
tion induced by the v-operation, which is called the t-operation, i.e., At 4N
]Jv N0 cJ’A is finitely generated(.

For any star-operation ˜ on R and for any A�F(R), we have A’A*’Av ,
and hence (A*)v 4Av . In particular, a v-ideal is a ˜-ideal for any ˜ , and if A
is ˜-invertible, then A is v-invertible (cf., [2, Corollary 3.4(a)]).

This paper is divided into three sections including the introduction. In Sec-
tion 2, we study some properties of finite character star-operations. As in [3],
we say that an ideal I of R is ˜-nonfactorable if it is a proper ˜-ideal and
I4 (AB)* implies that either A*4R or B*4R , where A , B are ideals of R .
Then R is called a ˜-factorable domain if each proper ˜-ideal is a ˜-product
of ˜-nonfactorable ideals. Also, R is called a unique ˜-factorable domain if
each proper ˜-ideal can be factored uniquely into a ˜-product of ˜-nonfac-
torable ideals. Let R be a unique ˜-factorable domain and let A be a proper
˜-invertible ˜-ideal. Then A is ˜-nonfactorable if and only if A is prime
[3, Lemma 11]. Moreover, R is a unique t-factorable domain if and only if R
is a Krull domain [3, Theorem 12]. In Section 3, we show that if R is a unique
˜-factorable domain, then R is a Krull domain.

2. – Finite character star-operations.

LEMMA 2.1. – Let ˜ be a star-operation on R and let s̃ be the finite char-
acter star-operation induced by ˜ . Let I be a nonzero fractional ideal of R .
Then

1. I*s ’It .

2. I*s 4 1
P� s̃2Max (R)

I*s RP and I*4 1
P� s̃2Max (R)

I* RP .

3. If I is ˜-invertible, then I is v-invertible and I*4Iv .

4. If I is s̃-invertible, then I is t-invertible and I*4I*s 4It 4Iv .

PROOF. – (1): Since for each nonzero fractional ideal J of R , J*’Jv , we have
I*s ’It .

(2): Let x� 1
P� s̃2Max (R)

I*s RP and J4 [I*s : xR]K . Note that I*s is a s̃-ide-

al, and hence J is also a s̃-ideal [4, Ex.1, Section 32]. For all P� s̃-Max (R),
there is some a�R2P such that ax�I*s since x�I*s RP . Hence J’O P for all
P� s̃-Max (R). It follows that J4J*s 4R , and hence x�I*s . Thus I*s 4
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1
P� s̃2Max (R)

I*s RP . The proof of the second part is similar, or see [8, Proposi-

tion 2.8(3)].

(3): Let I be ˜-invertible. Then I is v-invertible, and hence

Iv 4 (II 21 )* Iv ’ ( (II 21 )* Iv )*

4 (II 21 Iv )*4 (I(I 21 Iv )*)*4I* .

Hence I*4Iv .
(4): Let I be s̃-invertible. Then I is t-invertible [2, Corollary 3.4(b)], and

hence

It ’Iv 4 (II 21 )*s Iv ’ ( (II 21 )*s Iv )*s

4 (II 21 Iv )*s 4 (I(I 21 Iv )*s )*s 4I*s .

This completes the proof. r

LEMMA 2.2. – Let ˜ be a finite character star-operation on R and let P be
a ˜-invertible prime ideal such that P*

’I R . Then

1. If A is a ˜-invertible ˜-ideal containing P , then A4P4P* .

2. P is a t-invertible maximal t-ideal.

PROOF. – (1): Suppose that P’I A and let Q be a minimal prime ideal of A .
Since ˜ has finite character, Q is a ˜-ideal [6, Theorem 9, p. 30], and hence
PRQ and ARQ are principal ideals. Also, since Q is minimal over A , QRQ 4

kARQ 4kaRQ for some a�A .
Let PRQ 4pRQ . Then p n �aRQ and p n21 �aRQ for some nF1. Let r�RQ

such that p n 4ar . Since a�pRQ and pRQ is a prime ideal, r�pRQ , and thus
r4pr 8 for some r 8�RQ . Hence p n21 4ar 8�aRQ , a contradiction. Thus P4

A , and hence P4A4A*4P*.
(2): Since P is ˜-invertible, P is t-invertible and Pt 4P* by Lemma 2.1(4).

Thus by (1), P is a t-invertible prime t-ideal, and hence P is a maximal t-ideal
[5, Proposition 1.3]. r

Recall from [1, Corollary 4] that for an ideal I of R , every minimal prime
ideal of It is t-invertible if and only if It 4 (P1

e1
RPn

en )t for some t-invertible
prime t-ideals Pi and positive integers ei . In this case, I is t-invertible. This re-
sult cannot be generalized to an arbitrary star-operation. For example, let K be
a field and let X , Y be indeterminates over R . Consider a d-operation on
K[X , Y]. Then (X 2 , XY) is a d-ideal whose minimal prime ideals (X) and (Y) are
d-invertible. But (X 2 , XY) cannot be presented in the form (X)p(Y)q4 (X p Y q)
for all positive integers p , q . If I is a ˜-invertible ideal, we have a star-operation
analog of [1, Corollary 4].
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THEOREM 2.3. – Let ˜ be a finite character star-operation on R and let I
be a ˜-invertible ideal of R . Then every minimal prime ideal of I* is ˜-in-
vertible if and only if I*4 (P1

e1
RPn

en )* for some prime ˜-ideals Pi and posi-
tive integers ei . In this case, It 4 (P1

e1
RPn

en )t .

PROOF. – (¨) Assume that every minimal prime ideal of I* is ˜-invertible.
Then, by [1, Theorem 1], the number of minimal prime ideals of I* is finite. Let
P1 , R , Pn be the minimal prime ideals of I*. Note that each Pi is a ˜-invert-
ible ˜-ideal. Thus each Pi is a t-invertible maximal t-ideal by lemma 2.2(2).
Hence It 4 (P1

e1
RPn

en )t for some positive integers ei [1, Theorem 3]. Moreover,
since I and P1

e1
RPn

en are ˜-invertible, I*4It and (P1
e1

RPn
en )*4 (P1

e1
RPn

en )t

by Lemma 2.1 (3). Thus I*4 (P1
e1

RPn
en )* . (ˆ) Let P be a minimal prime ideal

of I*. Then P is a ˜-ideal and contains some Pi . Since Pi is a ˜-ideal and I’
Pi , we have Pi 4P by the minimality. Moreover, since I* is ˜-invertible, P4

Pi is also ˜-invertible. r

THEOREM 2.4. – Let ˜ be a finite character star-operation on R and let I
be a nonzero proper ideal of R . If every prime ideal containing I is ˜-invert-
ible, then every ˜-ideal containing I is a t-ideal.

PROOF. – Let J be an ideal containg I . Then every prime ideal containg J is
also ˜-invertible. Replacing J with I , it suffices to show that I*4It . Note that
since every prime ˜-ideal containing I is ˜-invertible, every prime ˜-ideal
containing I is a maximal ˜-ideal by Lemma 2.2(1); whence P is a prime
˜-ideal containing I if and only if P is a minimal prime ideal of I*. Let P be a
minimal prime ideal of I*. Then P is a ˜-invertible prime ˜-ideal, and hence
the number of minimal prime ideals of I* is finite [1, Theorem 1]. Let
]P1 , R , Pn ( be the set of such prime ideals. Since each Pi is a ˜-invertible
maximal ˜-ideal, Pi is a t-invertible maximal t-ideal by Lemma 2.2(2). More-
over, ]P1 , R , Pn ( is the set of prime t-ideals containing I . For if Q is a prime
t-ideal containing I , then Q contains a minimal prime ideal P of I*. Since I* is a
˜-ideal, P is also a ˜-ideal, and hence P4Pi for some i . Also, since Pi is a
maximal t-ideal, P4Q .

Thus, by Lemma 2.1(2), we have

I*4 1
P�˜-Max (R)

I* RP 4g 1
i41

n

I* RPi
hOR

*g 1
i41

n

IRPi
hOR4g 1

i41

n

(IRPi
)t
hOR

4g 1
i41

n

It RPi
hOR4 1

P� t-Max (R)
It RP 4It *I*.
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Hence I*4It , where the fourth equality holds because each Pi RPi
is a princi-

pal ideal. r

REMARK. – In [1, Theorem 3], Anderson-Zafrullah showed that every ideal
containing I is ˜-invertible if and only if every prime ˜-ideal minimal over I*
is a ˜-invertible maximal ˜-ideal if and only if I*4 (P1

e1
RPn

en )* for some ˜-
invertible prime ˜-ideals Pi and positive integers ei .

LEMMA 2.5. – ([4, Ex. 22, p. 52]) Let L be a set of prime ideals of R . Then
each proper ideal of the form aR : bR’I R is contained in some P�L if and
only if R4 1

P�L
RP .

THEOREM 2.6. – For an integral domain R , the followings are equiva-
lent.

1. R is a Krull domain.

2. Every prime ideal of R is t-invertible.

3. Every prime ideal of R contains a t-invertible prime ideal.

4. Every prime ideal of R contains a ˜-invertible prime ideal for some
finite character star-operation ˜ on R .

PROOF. – (1) ¨ (2): [7, Theorem 3.6].
(2) ¨ (3) ¨ (4): These are clear.
(4) ¨ (1): Suppose that I»4aR : bR’I R for some a , b�R . Then I is a ˜-

ideal [4, Section 32, Ex. 1]. Let P be a minimal prime ideal of I . Then P is a ˜-
ideal [6, Theorem 9, p. 30] and PRP is a t-ideal of RP (note that PRP is minimal
over IRP 4aRP : bRP). Since P is a ˜-ideal, every prime ideal of RP contains a
invertible (and so principal) prime ideal. Hence RP is a UFD [9, Theorem 5].
Also, since PRP is a prime t-ideal, htPRP 41 and RP is a rank one DVR. Hence,
by Lemma 2.5, R4 1

P�X 1 (R)
RP , where X 1 (R) is the set of height-one prime ide-

als of R . Moreover, since each height-one prime ideal is ˜-invertible and ˜ is
of finite type, we also have that the intersection R4 1

P�X 1 (R)
RP has finite char-

acter. Hence R is a Krull domain. r

REMARK. – (1) Let ˜4d and let R be a UFD of dim RF2. Then every
prime ideal contains a ˜-invertible prime ideal, but ˜c t .

(2) The equivalent conditions (1), (2) and (3) of Theorem 2.6 appear in [7,
Theorem 3.6]. (3) ¨ (4) is clear and (4) ¨ (3) follows from the fact that A*’At

for A�F(R).
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COROLLARY 2.7. – Let ˜ be a finite character star-operation on R . If every
prime ideal of R is ˜-invertible, then ˜4 t . In particular, R is a Krull
domain.

PROOF. – Let I be a nonzero ideal of R . Then every prime ideal of R con-
taining I is ˜-invertible and hence I*4It by Theorem 2.4. Thus ˜4 t . Hence
R is a Krull domain by Theorem 2.6. r

An integral domain R is called a Prüfer v-multiplication domain (PVMD)
if every finitely generated ideal of R is t-invertible, and R is called a v-domain
if every finitely generated ideal of R is v-invertible.

THEOREM 2.8. – Let ˜ be a star-operation on R and s̃ the star-operation
induced by ˜ .

1. If every ideal of R is ˜-invertible, then ˜4v . In particular, R is com-
pletely integrally closed.

2. If every finitely generated ideal of R is ˜-invertible, then s̃ 4 t and
R is a v-domain.

3. If every finitely generated ideal of R is s̃-invertible, then s̃ 4 t . In
particular, R is a PVMD.

PROOF. – (1): Let A be an ideal of R . Then

Av 4 (AA 21 )* Av ’ ( (AA 21 )* Av )*

4 (AA 21 Av )*4 (A(A 21 Av )*)*

4 (AR)*4A*.

Thus A*4Av , and hence ˜4v .
(2): Let A be a finitely generated ideal of R . Then A is ˜-invertible, and so

v-invertible (Lemma 2.1(3)). Thus R is a v-domain. Moreover, since A*4Av

(by (1)), for an ideal I of R we have that I*s 4N]J* N0 cJ’I is finitely gener-
ated( 4N]Jv N0 cJ’I is finitely generated( 4It . Hence s̃ 4 t .

(3): Let I be a proper ideal of R . Then

I*s 4 1
P� s̃2Max (R)

I*s RP * 1
P� s̃2Max (R)

IRP

4 1
P� s̃2Max (R)

(IRP )t 4 1
P� s̃2Max (R)

It RP

4It *I*s ,
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where the third equality follows from the fact that RP is a valuation domain.
Thus I*4It , and hence s̃ 4 t . r

REMARK. – (1) An integral domain R is called a Prüfer ˜-multiplication
domain if every finitely generated ideal of R is s̃-invertible. Theorem 2.8
shows that a Prüfer ˜-multiplication domain is a PVMD.

(2) If R is a PVMD that is not a Prüfer domain, then R is not a Prüfer d-
multiplication domain.

3. – Unique ˜-factorable domains.

Recall that R is called a ˜-factorable domain if each proper ˜-ideal is a
˜-product of ˜-nonfactorable ideals. Also, R is called a unique ˜-factorable
domain if each proper ˜-ideal can be factored uniquely into a ˜-product of
˜-nonfactorable ideals. For example, let R4D1XLeXf , where D is a subring
of a field L . Let ˜ be a star operation on R . Then R is a ˜-factorable domain
if and only if D is a field. Moreover, R is a unique ˜-factorable domain if and
only if D4L [3, Corollary 8]. A t-factorable domain R is a Krull domain if and
only if R is a PVMD [3, Theorem 9]. Moreover, R is a unique t-factorable do-
main if and only if R is a Krull domain [3, Theorem 12].

The purpose of this section is to prove that if R is a unique ˜-factorable do-
main, then R is a Krull domain.

LEMMA 3.1. – Let R be a unique ˜-factorable domain. Then

1. Every ˜-invertible ˜-nonfactorable ideal P is a height-one prime
ideal and RP is a rank one DVR.

2. Every nonzero element of R is contained in a finite number of
height-one prime ideals of R .

PROOF. – (1): Let P be a ˜-invertible ˜-nonfactorable ideal. Then P is a
prime ideal by [3, Lemma 11]. Suppose that htPF2. Then P contains a ˜-in-
vertible ˜-nonfactorable ideal P0 such that P0 ’I P . By [3, Lemma 11] P0 is also
a prime ideal; whence P0 RP ’I PRP are principal prime ideals, a contradiction.
Thus htP41. Moreover, since P is a -̃invertible -̃ideal, PP 21 *I P , and
hence RP is a rank one DVR.

(2): Let a be a nonzero nonunit element of R . Since R is a unique ˜-fac-
torable domain, there are ˜-nonfactorable ideals A1 , R , An such that aR4

(A1 R An )* . Since aR is ˜-invertible, each Ai is ˜-invertible and Ai is a
height-one prime ideal (by (1)), hence a is contained in a finite number of
height-one prime ideals A1 , R , An . r
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THEOREM 3.2. – If R is a unique ˜-factorable domain, then R is
a Krull domain.

PROOF. – Suppose that I»4aR : bR’I R for some a , b�R . Since R is a
unique ˜-factorable domain, there are some ˜-nonfactorable ideals
A1 , R , Ak and B1 , R , Bn such that aR4 (A1 R Ak )* and bR4 (B1 R Bn )* .
Since aR and bR are ˜-invertible, Ai , Bj are ˜-invertible, and hence height-
one prime ideals by Lemma 3.1(1). Note that

B1 R Bn I’ (B1 R Bn I)*4bI’aR4 (A1 R Ak )*’A1

and assume that I’O Ai for i41, R , n . Then since A1 is a prime ideal, A1 con-
tains some Bi . We may assume that A1 contains B1 , and hence A1 4B1 (note
that htA1 4htB1 41). Since A1 , B1 are ˜-invertible,

B2 R Bn I’ (B2 R Bn I)*’ (A2 R Ak )* .

By induction and the assumption that I’O Ai , we have that kGn and

(B1 R Bk )*4 (A1 R Ak )*4aR ,

whence

bR4 (B1 R Bn )*4 (A1 R Ak Bk11 R Bn )*4a(Bk11 R Bn )*
or

b

a
R4 (Bk11 R Bn )*’R .

Thus aR : bR4R , a contradiction. Hence I’Ai for some Ai . Recall that Ai is a
height-one prime ideal; whence R4 1

P�X 1 (R)
RP by Lemma 2.5. By Lemma

3.1(2), the intersection R4 1
P�X 1 (R)

RP has finite character, and RP is a rank one

DVR for each P�X 1 (R). Hence R is a Krull domain. r

COROLLARY 3.3. – If R is a unique ˜-factorable domain with s̃-dim R4

1, then s̃ 4˜4v4 t , where s̃ is the finite character star-operation in-
duced by ˜ .

PROOF. – Let I be a proper ideal of R . Since R is a Krull domain (Theorem
3.2), It 4Iv 4 1

P�X 1 (R)
IRP [4, Theorem 44.2]. Moreover, by Lemma 2.1(1),

since

I*4 1
P�X 1 (R)

I* RP * 1
P�X 1 (R)

I* RP 4I*s * 1
P�X 1 (R)

IRP ,

we have that I*4I*s 4Iv 4It . r
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For a nonzero polynomial f�R[X], let Af be the ideal of R generated by the
coefficients of f .

LEMMA 3.4. – If R is a unique ˜-factorable domain, then for any elements
a , b�R , ( (a , b)2 )*4 (a 2 , b 2 )* .

PROOF. – Let f4aX1b and g4aX2b be polynomials in R[X]. Then there
is a positive integer mF1 such that Af

m11 Ag 4Af
m Afg [4, Theorem 28.1]. Since

R is a unique ˜-factorable domain, we have that (Af Ag )*4 (Afg )* , and hence
( (a , b)2 )*4 (a 2 , b 2 )* . r

THEOREM 3.5. – Let ]Pa( be a set of prime ideals of R with R4ORPa
. For

A�F(R), define A*4OARPa
and s̃ the finite character star-operation in-

duced by ˜. If R is a unique ˜-factorable domain, then s̃ 4˜4v4 t .

PROOF. – It suffices to show that s̃-dimR41 by Corollary 3.3. Suppose
that there exists a prime s̃-ideal Q with htQF2. Since R is a Krull domain,
we can take elements a , b�Q such that (a , b)v 4R . By Lemma 3.4,
(a 2 , b 2 )*4 ( (a , b)2 )* . Thus (a 2 , b 2 ) RQ 4 (a , b)2 RQ , and hence (a , b) RQ is in-
vertible [4, Proposition 24.2]. Since Q is a s̃-ideal, each height one prime ideal
of RQ is invertible and so is principal. Thus RQ is a UFD [9, Theorem 5]. Note
that (a , b) RQ is not contained in a height-one prime ideal of RQ . Thus RQ 4

(a , b) RQ ’QRQ ’I RQ , a contradiction. Hence s̃-dim R41. This completes the
proof. r
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