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Star-invertible Ideals of Integral Domains.

GYU WHAN CHANG - JEANAM PARK(¥)

Sunto. — Sia * uno star-operatore su R e *  lo star-operatore di carattere finito indot-
to da *. Lo scopo di questo lavoro ¢ studiare quando * =v o *,=t. In particola-
re, proviamo che se ogni ideale primo di R ¢ * -invertibile, allora * =vechese R ¢
un dominio a * -fattorizzazione unica, allora R ¢ un dominio di Krull.

Summary. — Let * be a star-operation on R and * , the finite character star-operation
mduced by * . The purpose of this paper is to study when * =v or *,=t. In par-
ticular, we prove that if every prime ideal of R is * -invertible, then * = v, and that
if R is a unique * -factorable domain, then R is a Krull domain.

1. — Introduction.

Let R be a commutative integral domain with identity and K the quotient
field of R. Let F(R) be the set of nonzero fractional ideals of B. A mapping
A— A, of F(R) into F(R) is called a star-operation on R if the following condi-
tions hold for all ae K — {0} and A, Be F(R).

L. (aR)y = aR, (aA), = aAy;
2. AcA,, if AcB then A,CB,; and
3. (A ). =A,.

It is easy to show that for all A, Be F(R), (AB)y = (ABy)s = (A.By)s. A
fractional ideal A of R is called a * -ideal if A = A,.. An integral ideal A of R is
said to be a maximal * -ideal if A is maximal among proper integral * -ideals.
Given any = -operation on R, we can construct another = -operation =, de-
fined by A, = U{J,|0=JCA is finitely generated} for AeF(R). We say
that = is the finite character star-operation induced by * and that = is of
finite character if = = .. It is well-known that the set of maximal * ;ideals,
denoted by =*,-Max (R), is nonempty and a maximal * sideal is a prime ideal.
AeF(R) is said to be * -invertible if (AA ~'), = R. Note that A is * -invert-
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ible if and only if (1) A, = (a4, ..., a,), for some finite subset of elements
{ai, ..., a,} and (2) Ap is principal for each maximal =* -ideal P. One can easily
show that if A is * invertible, then there is a finitely generated ideal J so that
A,=J,.

The most important star-operations are (1) the d-operation A; = A, (2) the
v-operation A, = (A ~})"! for A e F(R), and (3) the finite character star-opera-
tion induced by the v-operation, which is called the t-operation, i.e., A;= U
{J, 0= JCA is finitely generated}.

For any star-operation * on R and for any A € F(R), we have ACA.CA,,
and hence (4.),=A4,. In particular, a v-ideal is a * -ideal for any * , and if A
is = -invertible, then A is v-invertible (cf., [2, Corollary 3.4(a)]).

This paper is divided into three sections including the introduction. In Sec-
tion 2, we study some properties of finite character star-operations. As in [3],
we say that an ideal I of R is * -nonfactorable if it is a proper = -ideal and
I = (AB), implies that either A, = R or B, = R, where A, B are ideals of R.
Then R is called a * -factorable domain if each proper *-ideal is a * -product
of = -nonfactorable ideals. Also, R is called a unique * -factorable domain if
each proper #-ideal can be factored uniquely into a = -product of * -nonfac-
torable ideals. Let R be a unique * -factorable domain and let A be a proper
* -invertible *-ideal. Then A is *-nonfactorable if and only if A is prime
[3, Lemma 11]. Moreover, R is a unique t-factorable domain if and only if R
is a Krull domain [3, Theorem 12]. In Section 3, we show that if R is a unique
% -factorable domain, then R is a Krull domain.

2. — Finite character star-operations.

LEMMA 2.1. — Let * be a star-operation on R and let * be the finite char-
acter star-operation induced by * . Let I be a nonzero fractional ideal of R.
Then

1. I.cl,.
2. I, = N 1. Rpand I, = N I.Rp.
Pe #;— Max(R) Pe x;— Max(R)

3. If I is = -invertible, then I is v-invertible and I, =1,.
4. If I is = 1invertible, then I is t-invertible and I, =1, =1,=1,.

ProOF. — (1): Since for each nonzero fractional ideal J of R, J,. cJ,, we have
I.cl.

2): Let x e n I, Rpand J=[Il,:xR]g. Note that [, is a * cide-
Pe *,— Max(R)

al, and hence J is also a * -ideal [4, Ex.1, Section 32]. For all P e * -Max (R),
there is some a € R — P such that ax eI, since xel, Rp. Hence J ¢ P for all
Pe % -Max(R). It follows that J=J, =R, and hence xel, . Thus I, =
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P nM (R)I «,2p. The proof of the second part is similar, or see [8, Proposi-

tion 2.8(3)].

(3): Let I be = -invertible. Then I is v-invertible, and hence
I,=I N L,c (I 1), 1)),

=1 '1).=UI 1)) =1, .

Hence 1. =1,.
(4): Let I be = invertible. Then [ is t-invertible [2, Corollary 3.4(b)], and
hence

Licl,= I Y I,c (I 7Y, 1)y,
=71y, = UUT 7)), = L,

s

This completes the proof. =

LEMMA 2.2. — Let = be a finite character star-operation on R and let P be
a *-invertible prime ideal such that P, G R. Then

1. If A is a * -invertible * -ideal containing P, then A= P =P,,.
2. P is a t-invertible maximal t-ideal.

ProOF. — (1): Suppose that P¢ A and let @ be a minimal prime ideal of A.
Since * has finite character, @ is a * -ideal [6, Theorem 9, p. 30], and hence
PR, and AR, are principal ideals. Also, since @ is minimal over A, QR,=
\/A_RQ = \/E for some aeA.

Let PRy =pR,. Then p"eaRq and p" ' ¢ aR, for some n =1. Let re R
such that p" = ar. Since a ¢ pR, and pR, is a prime ideal, r€ pR,, and thus
r=pr’ for some r’ € Ry. Hence p"~' = ar’ e aRy, a contradiction. Thus P =
A, and hence P=A=A,=P,.

(2): Since P is = -invertible, P is t-invertible and P, = P, by Lemma 2.1(4).
Thus by (1), P is a t-invertible prime ¢-ideal, and hence P is a maximal ¢-ideal
[5, Proposition 1.3]. =

Recall from [1, Corollary 4] that for an ideal I of R, every minimal prime
ideal of I; is t-invertible if and only if I, = (P{*...P;"), for some t-invertible
prime t-ideals P; and positive integers e;. In this case, I is t-invertible. This re-
sult cannot be generalized to an arbitrary star-operation. For example, let K be
a field and let X, Y be indeterminates over R. Consider a d-operation on
K[X, Y]. Then (X2, XY) is a d-ideal whose minimal prime ideals (X) and (Y) are
d-invertible. But (X2, XY) cannot be presented in the form (X)"(Y)!= (X?Y?)
for all positive integers p, q. If I is a * -invertible ideal, we have a star-operation
analog of [1, Corollary 4].
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THEOREM 2.3. — Let * be a finite character star-operation on R and let 1
be a * -invertible ideal of R. Then every minimal prime ideal of I, is * -in-
vertible if and only if I, = (P{*...P"), for some prime * -ideals P; and posi-
tive integers e;. In this case, I, = (P{*...P),.

PROOF. — (=) Assume that every minimal prime ideal of I, is * -invertible.
Then, by [1, Theorem 1], the number of minimal prime ideals of 1., is finite. Let
Py, ..., P, be the minimal prime ideals of I,.. Note that each P; is a * -invert-
ible * -ideal. Thus each P; is a t-invertible maximal t-ideal by lemma 2.2(2).
Hence I, = (P{*...P:), for some positive integers e; [1, Theorem 3]. Moreover,
since I and P{'...P/" are = -invertible, I, = I, and (P{*...P/"), = (P{*...P"),
by Lemma 2.1 (3). Thus I, = (P{*...P."),. (<) Let P be a minimal prime ideal
of I,.. Then P is a * -ideal and contains some P;. Since P; is a * -ideal and I C
P;, we have P; = P by the minimality. Moreover, since I, is * -invertible, P =
P; is also * -invertible. m

THEOREM 2.4. — Let = be a finite character star-operation on R and let 1
be a nonzero proper ideal of R. If every prime ideal containing I is * -invert-
ible, then every = -ideal containing I is a t-ideal.

ProoF. — Let J be an ideal containg I. Then every prime ideal containg J is
also = -invertible. Replacing J with 7, it suffices to show that I, = I;. Note that
since every prime *-ideal containing I is * -invertible, every prime = -ideal
containing 7 is a maximal *-ideal by Lemma 2.2(1); whence P is a prime
* -ideal containing I if and only if P is a minimal prime ideal of I... Let P be a
minimal prime ideal of /.. Then P is a * -invertible prime = -ideal, and hence
the number of minimal prime ideals of I, is finite [1, Theorem 1]. Let
{Py, ..., P,} be the set of such prime ideals. Since each P; is a * -invertible
maximal * -ideal, P; is a t-invertible maximal ¢-ideal by Lemma 2.2(2). More-
over, {Py, ..., P,} is the set of prime ¢-ideals containing /. For if @ is a prime
t-ideal containing 7, then @ contains a minimal prime ideal P of I... Since I, is a
% -ideal, P is also a * -ideal, and hence P = P; for some 7. Also, since P; is a
maximal t-ideal, P = Q.

Thus, by Lemma 2.1(2), we have

I.= N I.Rp= (4@11*RP1_) NR

Pe *-Max(R)

2 (iéllRPi) Nk= (iél(IRPi)t) NE

= ('OIItRPi) NR= LRy,=12I,.

- P et-Max (R)
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Hence I, = I;, where the fourth equality holds because each P; Rp, is a princi-
pal ideal. =

REMARK. - In [1, Theorem 3], Anderson-Zafrullah showed that every ideal
containing I is = -invertible if and only if every prime : -ideal minimal over I,
is a * -invertible maximal * -ideal if and only if I,. = (P{*...P/"), for some # -
invertible prime = -ideals P; and positive integers e;.

LemmaA 2.5, — ([4, Ex. 22, p. 52]) Let A be a set of prime ideals of R. Then
each proper ideal of the form aR : bR G R is contained i some Pe A if and
only if R= PﬂARP.

THEOREM 2.6. — For an integral domain R, the followings are equiva-
lent.

1. R is a Krull domain.
2. Every prime ideal of R 1is t-invertible.
3. Every prime ideal of R contains a t-invertible prime ideal.

4. Every prime ideal of R contains a * -invertible prime ideal for some
finite character star-operation * on R.

Proor. — (1) = (2): [7, Theorem 3.6].

(2)= (3)=(4): These are clear.

(4)=>(1): Suppose that I :=aR : bR¢ R for some a, beR. Then I is a * -
ideal [4, Section 32, Ex. 1]. Let P be a minimal prime ideal of /. Then P is a * -
ideal [6, Theorem 9, p. 30] and PRp is a t-ideal of Rp (note that PRp is minimal
over IRp = aRp: bRp). Since P is a * -ideal, every prime ideal of Rp contains a
invertible (and so principal) prime ideal. Hence Rp is a UFD [9, Theorem 5].
Also, since PRp is a prime t-ideal, ht PRp = 1 and Rp is a rank one DVR. Hence,
by Lemma 2.5, R= (1 Rp, where X!(R) is the set of height-one prime ide-

PeX'(R)
als of R. Moreover, since each height-one prime ideal is * -invertible and * is
of finite type, we also have that the intersection R = [1 R, has finite char-

. . 1
acter. Hence R is a Krull domain. = PeX(B)

REMARK. — (1) Let * =d and let R be a UFD of dimR = 2. Then every
prime ideal contains a * -invertible prime ideal, but = =t¢.

(2) The equivalent conditions (1), (2) and (3) of Theorem 2.6 appear in [7,
Theorem 3.6]. (3) = (4) is clear and (4) = (3) follows from the fact that A, c A,
for Ae F(R).
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COROLLARY 2.7. — Let * be a finite character star-operation on R. If every
prime ideal of R is * -invertible, then * =t. In particular, R is a Krull
domain.

ProOF. — Let I be a nonzero ideal of . Then every prime ideal of R con-
taining 7/ is * -invertible and hence I,. = I; by Theorem 2.4. Thus * =t. Hence
R is a Krull domain by Theorem 2.6. =

An integral domain R is called a Priifer v-multiplication domain (PVMD)
if every finitely generated ideal of R is ¢-invertible, and R is called a v-domain
if every finitely generated ideal of R is v-invertible.

THEOREM 2.8. — Let * be a star-operation on R and * the star-operation
mduced by * .

1. If every ideal of R is * -invertible, then * =wv. In particular, R is com-
pletely integrally closed.

2. If every finitely generated ideal of R is * -invertible, then * =1t and
R is a v-domain.

3. If every finitely generated ideal of R is * -invertible, then *,=t. In
particular, R is a PVMD.

Proor. — (1): Let A be an ideal of R. Then
A, = (AA ), A,c(AA 7Y, Ay
=(AA A, = (AA T A4
=(AR), =A,.

Thus A, =A,, and hence * =v.

(2): Let A be a finitely generated ideal of R. Then A is * -invertible, and so
v-invertible (Lemma 2.1(3)). Thus R is a v-domain. Moreover, since A, =A,
(by (1)), for an ideal I of R we have that I, = U{J, |0 = Jc/ is finitely gener-
ated} = U{J, |0 =JcI is finitely generated} =1I,. Hence = =t¢.

(3): Let I be a proper ideal of R. Then

I*g = n I*qRPQ n IRP
' Pex,~Max(R) Pe #y—Max(R)
= N URp),= N LRp
Pe #,—Max(R) Pex;—Max(R)

=]t:_)1>ksy
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where the third equality follows from the fact that Rp is a valuation domain.
Thus I, =1,, and hence *,=t. =

REMARK. — (1) An integral domain R is called a Priifer = -multiplication
domain if every finitely generated ideal of R is * cinvertible. Theorem 2.8
shows that a Priifer *-multiplication domain is a PVMD.

(2) If R is a PVMD that is not a Priifer domain, then R is not a Priifer d-
multiplication domain.

3. — Unique = -factorable domains.

Recall that R is called a =* -factorable domain if each proper = -ideal is a
x -product of *-nonfactorable ideals. Also, R is called a unique * -factorable
domain if each proper :*-ideal can be factored uniquely into a * -product of
* -nonfactorable ideals. For example, let R = D + XL[X], where D is a subring
of a field L. Let * be a star operation on R. Then R is a * -factorable domain
if and only if D is a field. Moreover, R is a unique * -factorable domain if and
only if D = L [3, Corollary 8]. A t-factorable domain R is a Krull domain if and
only if R is a PVMD [3, Theorem 9]. Moreover, R is a unique t-factorable do-
main if and only if R is a Krull domain [3, Theorem 12].

The purpose of this section is to prove that if R is a unique * -factorable do-
main, then R is a Krull domain.

LEMMA 3.1. — Let R be a unique * -factorable domain. Then

1. Every = -invertible *-nonfactorable ideal P is a height-one prime
ideal and Rp is a rank one DVR.

2. Every monzero element of R is contained in a finite number of
height-one prime ideals of R.

Proor. — (1): Let P be a = -invertible * -nonfactorable ideal. Then P is a
prime ideal by [3, Lemma 11]. Suppose that htP = 2. Then P contains a * -in-
vertible *-nonfactorable ideal P, such that P, P. By [3, Lemma 11] P, is also
a prime ideal; whence Py, RpG PRp are principal prime ideals, a contradiction.
Thus htP =1. Moreover, since P is a =-invertible =-ideal, PP "'2P, and
hence Rp is a rank one DVR.

(2): Let a be a nonzero nonunit element of R. Since R is a unique * -fac-
torable domain, there are * -nonfactorable ideals A, ..., A,, such that aR =
(Ay...A,)s. Since aR is *-invertible, each A; is *-invertible and A; is a
height-one prime ideal (by (1)), hence a is contained in a finite number of
height-one prime ideals A4, ..., 4,. =
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THEOREM 3.2. — If R is a wunique * -factorable domain, then R is
a Krull domain.

ProOF. — Suppose that I:=aR : bRGR for some a,beR. Since R is a
unique * -factorable domain, there are some *-nonfactorable ideals
Ay, ..., A, and By, ..., B, such that aR = (A4,...4;), and bR = (B;...B,)x.
Since aR and bR are = -invertible, A;, B; are * -invertible, and hence height-
one prime ideals by Lemma 3.1(1). Note that

B,...B,Ic(By...B, )y =blcaR =(A;...A;)..CA,
and assume that /¢ A; for ¢ =1, ..., n. Then since A, is a prime ideal, A, con-

tains some B;. We may assume that A; contains B, and hence A; = B; (note
that htA; = htB; =1). Since A,, B; are * -invertible,

By...B,Ic(By...B,I),,C(As... A})s.
By induction and the assumption that I ¢A;, we have that k£ <% and
(By...Bp)y=(A;... Ay =aR,
whence
bR=(B;...B,)s=(A;...A. B, 1...B)s =a(Bj,1...B,)x
or

b
ER=(Bk+1---Bn)*§R-

Thus aR : bR = R, a contradiction. Hence I ¢ A; for some A;. Recall that A, is a

height-one prime ideal; whence R = Q Rp by Lemma 2.5. By Lemma
PeX(R)
3.1(2), the intersection R = [l R has finite character, and Rp is a rank one

PeX'(R)
DVR for each Pe X'(R). Hence R is a Krull domain. m

COROLLARY 3.3. — If R is a unique * -factorable domain with * ,-dimR =
1, then #,= * =v=t, where *, is the finite character star-operation in-
duced by = .

ProoF. — Let I be a proper ideal of R. Since R is a Krull domain (Theorem

32), I,=1,= 1 IR, [4, Theorem 44.2]. Moreover, by Lemma 2.1(1),
since PeX'(R)

I.= N LRy N I,Ry=I,2> N IR,
PeX'(R) PeX'(R) " PeXU(R)

we have that I, =1, =1,=1,, =
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For a nonzero polynomial fe R[X], let A;be the ideal of R generated by the
coefficients of f.

LEMmMA 3.4. — If R is a unique * -factorable domain, then for any elements
a,beR, ((a, b)), = (a? b?),.

PrOOF. — Let f=aX + b and g = aX — b be polynomials in R[X]. Then there
is a positive integer m = 1 such that Af"” lAg = A" Ay, [4, Theorem 28.1]. Since
R is a unique * -factorable domain, we have that (A;A,). = (45), and hence
(@, b))y = (a?, b?),. m

THEOREM 3.5. — Let {P, } be a set of prime ideals of R with R = NRp_ . For
AeF(R), define A, = NARp and * the finite character star-operation in-
duced by *. If R is a unique * -factorable domain, then *,= * =v=¢.

Proor. — It suffices to show that *.,-dimR =1 by Corollary 3.3. Suppose
that there exists a prime * ideal @ with ht@Q = 2. Since R is a Krull domain,
we can take elements a,be@Q such that (a,d),=R. By Lemma 34,
(a®, b?), = (@, b)*),. Thus (a?, b®) Ry = (a, b)* Ry, and hence (a, b) Ry is in-
vertible [4, Proposition 24.2]. Since @ is a * ideal, each height one prime ideal
of Ry is invertible and so is principal. Thus R is a UFD [9, Theorem 5]. Note
that (a, b) Ry is not contained in a height-one prime ideal of R. Thus R, =
(a, b) RycQRy G Ry, a contradiction. Hence # -dim R = 1. This completes the
proof. =
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