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Bollettino U. M. I.
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Existence and Boundedness
of Minimizers of a Class of Integral Functionals.

A. MERCALDO (%)

Sunto. — In questo lavoro si considera una classe di funzionali integrali, il cui inte-
grando verifica le sequenti condizioni

»
|§| - _bl(x)mlﬁl_gl(x)’

Sflw, n, & BG(W)W

@, m, 0) < by()|7]%2+ ga (),

dove 0 <Sa<p,1<B,<p,0<B,<p,a+p;<p,alx), b;(x), g;(x) (i=1, 2) sono
Sfunzioni non negative che soddisfano opportune ipotesi di sommabilita. St dimo-
stra Uesistenza e la limitatezza di minimi di tali funzionali nella classe di funzioni
appartenenti allo spazio di Sobolev pesato W' P(a), che assumono un assegnato
dato al bordo uye WhP(a) N L~ ().

Summary. — In this paper we consider a class of integral functionals whose integrand
satisfies growth conditions of the type

P
|§| - _bl(x)|77|ﬂl_gl(%)’

fle, n, & BG(%)W

@, m, 0) <by()|7]%2+ ga (),

where 0 <a<p,1<B,<p,0<B<p,a+p;<p,alx), b(x),g;(x) i=1,2)are
nonnegative functions satisfying suitable summability assumptions. We prove the
existence and boundedness of minimizers of such a functional in the class of func-

tions belonging to the weighted Sobolev space W' P (a), which assume a boundary
datum uye WhP(a) N L~ ().

1. — Introduction.

Let us consider functionals of Calculus of Variations of the type

1.1 F) = ff(ac, v, Vo) dx,

Q

(*) Work partially supported by MURST.
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where 2 is a bounded open subset of R", having finite Lebesgue measure and
[ 2 xR XR"—=R is a Carathéodory function, convex in & which satisfies the
following growth conditions

p
(1.2) fle,n, &) Ba(W)# = by (@) 9] = gy (),
(1+|n])
(1.3) [, n, 0) < b () |n]°2+ gy (),

where p>1,0<a<p,l1<p;<p,0<By<p,a+p;<p,(@=1,2)and ax),
b;(x), g;(x) (1=1,2) are nonnegative functions, which belong to some
Lebesgue space.

Our aim is to prove existence and boundedness of minimizers of F' in the
class of functions v belonging to the weighted Sobolev space W' ?(a), which
assume a boundary datum wu,e WY'P(a)NL~(2) in a weak sense, i.e.
v—uye WP (a).

Here we recall that the weighted Sobolev space W' ?(a) is the closure of
C~ () with respect to the norm

lell, p, o = llelh,  + 11 V2 I,

where

1/p
Hunl,p = ( f|u|pa(9€) dx) .
Q

Moreover W' ?(a) is the closure of Cy°(2) in W' (a).
In [BO] existence and regularity results are proved for a class of function-
als, whose model is F(v) with f(«x, n, &) given by

1§17

14 1, &) = —2—— —bx) 7,
(1.4) fle, n, &) T+ ] () n

with a < p — 1. Similar functionals are studied in [GP2]. The properties of sol-
utions of equations related to functonals (1.1) are studied by many authors
(see, e.g. [AFT], [BDO], [Tr], [GP1], [GP2]).

The difficulties which arise in studying functionals (1.1) are due to the fact
that, in general, they are not coercive in the space W' ?(a) and then F may not
attain minimum on this space. As in [BO], in this paper we extend the function-
al F to a functional G defined on a larger space, that is the class of functions v
belonging to W' 7(2) such that v — uy,e W{ (), for a suitable ¢ less than p
and such that the inclusion of W ?(a) in W1 9(2) holds (see, e.g., [MS]). We
prove that the functional G is coercive and weakly lower semicontinuous in the
above space, so that it admits a minimizer in such a class of functions. Roughly
speaking, we show that the functional G is coercive in the class of functions v
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belonging to a W' 7(2) such that v — uy,e Wi (), if the growth of f(x, 1, &)
with respect to # is controlled from below, that is if we assume a + 8, < p or if
a+ 1 =p and the norm of b; is small enough.

In Section 2, we prove that any minimizer of G is bounded under the follow-
ing assumptions of summability of the coefficients

1 o
—eL»1(Q), b;e L"(R), gieL"(Q),
a

with

1.5) — < =, —+— <
¥ m n k; m

and under the conditions
(1.6) a+pB;<p, 1=1,2.

We use, among other tools, a result proved by Talenti in [T] (see also [M]).
Finally, since we have boundedness of minimizers, the growth conditions on ¥
allows to prove that the minimizers of G belong to W' ?(a) and thus they are
minimizers of F.

Let us observe that when fis given by (1.4) and a(«) is constant, the results
which we obtain coincide with those proved in [BO].

Related results are also contained in [C1], [C2], [CS], [S].

2. — An existence result.

In the present Section we show that F', suitable extended, has a minimum
in the class of functions v belonging to W' 9(2) and assuming the boundary
datum u,, that is v —uye Wi 9(2), where

mn(p — a)

7= m(n—a)+n(p—l)'

More precisely let us consider the functional (1.1) under the assumption (1.2)
and

21 LeLiT(Q), with
a

-1 1 -1
mos 1+p—+a(1——)<p<n(l+p—);
p—1 p m n
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(2.2) b,eL"™(£), with

where ¢* =ng/(n — q);
23) g1eL'(Q)
24) a+p<p.

Moreover let us assume that the boundary datum u, belongs to W' ?(a) N
L~(Q).
We define the following functional

F(v), if F(v) is finite,

+ o, otherwise,

G) = {

where ve W' 9(Q) is a function such that v — uye Wi 9(2) and we prove that
G has a minimizer we W 9(Q) such that u — uye Wi 1(Q).
Let us observe that the condition
p—1 1

1+—+a(1——)<p
m n

ensures that q > 1. Furthermore (2.1) implies

-1 -1
1+p—<p<n(1+p—);
m m

this condition on p together with the summability assumption on 1/a imply
that the weighted Sobolev space W!'?(a) is embedded in the Sobolev space
WP (Q) with 1/1=1+ (p — 1)/m (see, e.g., [MS]). Moreover it results g <
pt, so that Wb P7(Q) is included into W 7(Q). Thus the functional G(v) is well
defined.

We prove the following existence result (see also [BO])

THEOREM 2.1. — Let us assume conditions (1.2), (2.1)-(2.4). Then G has a
minimizer we Wb 9(Q) such that w —uye W ().

Proor. — By classical results, it is sufficient to prove that G is both coercive
and weakly lower semicontinuous in the class of functions v belonging to
W1 4(Q) such that v —uye Wi 1(Q).

We begin by proving the coerciveness of the functional G, i.e. we prove
that, for every ve W 9(Q) such that v — uye Wi 9(R), it results

2.5) G) =Pl ,* -,
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where c¢ is a positive constant depending only on n, m, p, v, |2|, a, B,
1
= s 611l 1011k Mol s V220 [, and gll;-
a m/(p—1)

From now on ¢ will denote a positive constant depending only on data,

whose value may change at each appearence.

From assumption (1.2), we have

P
2.6) G = | Yl a@) dx—fbl(x)|v|ﬂ1dx—fg1(x) dz.
o

o (1+ |v])” P

Now we evaluate the integrals on the right-hand side in (2.6).
By Hoélder inequality, we have

q qg (p—1)

|Vo|P al) )7 1 Pom
2.7 VWw|ldx < —d —d
2.1 J| V| m<(9 A+ ol x f x X

S a(x)m/(p -1

9 a
x(f<1+|v|)q*dx)“*,
Q

since

g
p p m pqr
On the other hand, since v — uy e W{' 1(2), by Sobolev embedding theorem, we
deduce

@9 Jaspprarsen +halor 9]+ do -l <
Q

Sc+d[Vw—uplli” <
<S¢+ ¢|Volli” + ¢l[Vu 2.
From (2.8), if [[Vv], is large enough, we deduce

(2.9) f(l + o) da < of[Vol|7".
Q

Combining (2.7) and (2.9), we have

|Vo|?alx)

2.10) _
( o (1+ |v])*

du = || Vol .

Furthermore, since condition (2.2) holds true, we can use Hoélder inequality
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and Sobolev embedding theorem obtaining

(2.11)

fbl(x)|v|ﬁ1dac+fg1(x) de <
Q Q

Scfbl(oc) |v—u0|ﬁ1doc+cfb1(9c) |uo |P1dac + [|gy ||, <
Q Q

< sl o = uollgr 121" 72+ [laag |4 Ny s + llg fh <

<dVw—u)llfr + ¢ <

< d[Vollfr +¢.

Combining (2.6), (2.10) and (2.11), we have

G() = d||[Vof|p~* = ¢[Vo]|fr — ¢

Since p — a > B, if ||Vo|, is large enough, we have

G(v) = d[Vol[p~*—c.

Finally, we get

(2.13)

Wl = dIvall, + lloll, )~ <
< e[ Volls = + ello — w157 + elluo 1~ <
<cVolp e+ e <

sc(Gw) +1),

from which we obtain (2.5).

Finally, assumption (1.2) on f allows to apply classical semicontinuity theo-

rems for integral functionals (see, e.g., [DG], [GD.

REMARK 2.1. — Let us observe that if a + 8, =p, then G is coercive in the
class of functions » belonging to W' 7(2) such that v — uye W 1(Q) for every
a satisfying (2.1) and b, satisfying (2.2) with [|b, [|,, small enough. Indeed, look-

ing carefully at inequality (2.11), the following estimate holds

[ o) o171 de + [ gy@) da < ey, [ 217 @D wap=< 4+ ¢,
Q 0

where c is a constant depending only on §; and c; is a constant depending only

on 11, |21, By [yl [B1llr, leto [l s Vo]l and [lgll;.
Hence, using (2.6) and (2.10), we have

G() = c(1~|[py [, | @7~ = @D |[gylp- e — .
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In this way we again obtain (2.5), if we assume

1
| fe) |p/n -1/ —(p-1)/m *

b1 [1,, <

REMARK 2.2. — If p > n(l + —) WL P(a) is embedded in L * () (see,
m

e.g. [MS]), so that, if a + 8, <p, then F is coercive on W' ?(a) for every b, e
LY(RQ). Indeed using (1.2), for every ve W ?(a) such that v —uye W' ?(a),
we get

f|Vv|pa(ac) dx—fbl(x)|v|/’1dx—fgl(m) da .

2.15) F(v) = —a
+ [loll)*
Moreover, it results
(2.16) ol < [l = 2ol + [feto [ <

<[V —ug)lly, o + o ||« <
<c|Vol,, . +c.

Substituing (2.16) in (2.15), it results

F(v) = Ioll5, o = llos [ ol = llga Il =

C
(Ivell,, o + 1)
= c|[Vollf o = ello [ Vo5 0 = llga i,

for every v such that ||V1)||,,,a is large enough.
Since p — a > 51, the last inequality gives

F(v)=d||Volp . —c,

for every v such that ||Vv||p, « is large enough. By proceeding as in the proof of
Theorem 2.1, we get again (2.5).

3. — Main result.

In this Section we will assume that the functional G has a minimizer u e
W 4(Q) such that u — uye W¢ (2) and we will prove that such a minimizer is
bounded. From this result we will deduce that » is in W' ?(a) and thus « is a
minimizer of F. We recall that conditions which assure the existence of u are
given by Theorem 2.1.
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THEOREM 3.2. — Let us assume that conditions (1.2), (1.3), (2.1) are satis-
fied and that uye WP (a) N L =. Moreover, assume

3.1) bieL(Q), =1
with
1 -1
e R Y
7 m n
3.2) gelh(Q), k=1
with
-1
L L R
k; m n
3.3) a+pfi<p, i=1,2.

Then any minimizer u of G on W' 1(Q) such that uw —uye Wi 1(2) is bound-
ed and belongs to W' P(a) . Thus u is a minimizer of F in the class of func-
tions belonging to WP (a) such that u — uge WP (a).

PROOF. — Let % be a minimizer of G on W 9(R) such that u — u, e W 1(Q).
We have

Gu) <GW),

for any ammissible function .
By the assumptions, the functions

t, t<u(x),
v(x) =< u(x), —-t<ulx)<t,
—t, w(x) < —t,

are ammissible, if the interval ] —¢, {[ with £ =0 includes the range of the
boundary datum. Moreover, since F(v) < + o, then G(v) = F(v).
In this way, we obtain

f S, u, Vu) de < f flx, t signu, 0) dz .

|ul >t |u| >t
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By assumptions (1.2) and (1.3)

p
f Mde fbl(x)|u|51dx+ fgl(ac)dam—

(3.4)
> (1 Ju]) ul >t u| >t

+tPe f by () do + fgz(x)doc,

Ju| >t Ju| >t

for any ¢ such that ¢ > ess sup |u|.
Since

-1
ki (1 T A i) -1,
p m q*

by (3.4), using Holder inequality, we get

p—1

| Vo |P a() % 1 %
(3.5) f |V’M|qs ( f mdﬁ) (ur[t de) X

|ul >t |u] >t

aq

x( f<1+|u|)q*dx)“"s

|ul >t

S[ fbl(ac)|u|51dac+ f g, (x) doe + P2 f by () da +
\

ul >t |u| >t |u| >t

alp
+ f g2() dx]

|u| >t

aq

" ( f(1+|u|)q*dx)ﬁ.

P =Dy >

alx)

Now, we evaluate each integral in the right-hand side of (3.5).
Observe that the condition L +2-1 <2 js equivalent to p—a<
" m n
(1 — l) q*, so that, from (3.3) it follows that
A1
1
Bi1< (1 - —) q*.
!

By Holder inequality and Sobolev embedding theorem, we get

(3.6) fbl(ac)|u|ﬂ1dac$c f by(x) |u—t|frdx + cth f by (x) doe <

|ul >t |u] >t |u| >t

. Bilg* .
SCHbl”rl( f |u_t|q'd%‘) lu(t)l_l/rl—/ﬁ/q +

|u| >t
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+l[by [],, t7r (@)~ <

Bilg .
$C( f |Vu|q) lu(t)l—l/m*[ﬁ/q +Ctﬁ1‘u(t)1’1/’"1,

|u| >t

where ¢ is a positive constant which depends only on 8, %, m, p, a and ||, ],
Moreover

37 [ o) de <lbs ey =,
|u| >t
3.8) f(1+|u|)q*dec(1+t)q*u(t)+cf |lu—t|?" dw <
|u| >t |u| >t

. q*/q
Sc(1+t)q,u(t)+c( f|Vu|qdoc) .

|u] >t

Taking into account (3.6)-(3.8), from (3.5), we get

B1
-1-4a 5w
69 [ Vuprde<ani ”1)[( f|V%|qu)p+tqplﬂ(t)’q’qi]x

[u] >t |u| >t

X[ (X +8)r u(t)r +( f |Vu|qdac) +

|u| >t

8 1 « o =
vt uctys ! Tz)l(1+t)%ﬂ(t)#+( f|v%|qu)”]+

|| >t

+c[( [ dx)h(w [ g dx)%]x

ul >t >t

= e

x[(l )ty + ( [ |Vu|qdm)

Jul >t

].

Now, we want to evaluate the terms

B1
_1_ B — b1
Ilzclu(t)%(1 " T)[( f |Vu|qu) » +tqﬁ1/pﬂ(t);q*] %

|u| >t

x[(1+t>fm/w(t)qa/m*+( f|Vu|qdac);:|,

Jul >t
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B2q

L=t u®)»

9 ~

S )[(1+t)q—§ﬂ(t)ﬁ+(

i |Vu|qu)%],

|u] >t

a

v L 0

= [ awae) | avoFuem e ([ vupa)
|u| >t | lu| >t

d P :

14=( fgz(ac)dac) (1+t)w(t)m*+( f|Vu|qdac)
[u] >t | |u| >t

Let us consider I;,. We can write

1 B 1 —a a+p
wtyr ) =y U ) e (5,
and since
—(a+
@ B polery
p p p
we can apply Young inequality
a(1-L _p=2
(3.10) Il$cﬂ(t)§(1 I pq*) (__}-ﬁ) f | Vo |9 dac +
p p |u] >t
b,

135

+[p—(a+ﬁ1) +

g -
< ey

Now we evaluate I,. Since a + 5 <

W %) = w5

p

p

1+ 21 +t)q] y(t)"/"*} <
P

-5) [(1 O u(t)? +

f |Vu|qu].

|| >t

< p, then we can write

) uctyn ey ),

and we can apply Young inequality, that is

1

(3.11)

L<a =

2

p—a

=) p—(a+pBs)
p

ﬂ(t)q/q* + @

|u| >t

f | Vo |9 doe +

i(j- L _p-e .
$qu(t)?(1 = q*>[(1+t)qﬂ(t)q/q +

p

[ vuteas].

|u| >t

[&tu —(1 +t)‘1] u(t)q/‘I*} <
p
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In analogous way, we get

3.12) lgscugluzﬁ"ﬂ(t)%(l‘ﬁ‘l_*”)[(ut)m(t)q/qw f |Vu|‘1dx],
jul >t

and

(3.13) 14<c||gz||g/fﬂ(t)%(17§2—*“)[(1+t)qﬂ(t)q/q*+ f |Vu|qu].
jul >

Therefore, combining (3.9)-(3.13), we have

I N L A U

|u| >t

+/1(t)7q)(lfﬁ qu;) +ﬂ(t)%(1772 pq_()il [(1 + t)qy(t)q/’i* + f |Vu|"dac] .
|u| >t
Let us set & = min {r, 13, k1, ks }. We can assume that
(3.15) wt)y <1, t=t,

for a suitable ¢,. In this way it results

1 - 1 p-1

p-1 p-1 1- L

‘u(t)%(l_q T ) +‘u(t)%(l_g T ) +‘u(t)%( /:1 _%) +

1

+/,4(t)%(1’%2’ m )scﬂ(t)%(“%*%),
Hence, from (3.14) we get
L(1-L-rs) o+
f |Vu|fde < cu(t)r\ = o T (1 +)Tu(@)? + |V |9de |
|u| >t |u| >t

Now, for ¢ such that ess sup |uy| < <ess sup |u|, we have

p—a

4(p_1_r-«
(3.16) M=1-cu@®: "7 %) >0,

Therefore, we get

M [ |Vulrdr< et + oruey (T

|u| >t
that is

1 Va C 1/1 | p-1
3.17 — f Vu qdm) < —A+tut)y 575 ),
(3.17) ﬂ(tW’f(.M' | TR
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for every t = L, where L is the greatest lower bound of levels greater then 1
satisfying (3.15) and (3.16).

On the other hand, the following inequality holds true ([T]; see also [M],
Lemma 4.1 and proof of Theorem 2.1)

+ oo
f /,L(T)l/k -1/ dr <

q/ )1/(]' nw}n/n
ROLE oK

3.18 “q(l— -
(3.18) ¢ X

1/q
( f |Vu|qu) ,

|ul >t

for some k < q, where w,, denotes the measure of the ball of R" having radius
equal to 1, ¢’ and k' denote the Holder congiugate exponent of ¢ and k,
respectively.

Combining (3.17) and (3.18), we get

(3.19) — = — ,

for every t = L.
Now, let us denote

1 1/1 —
___(_+p_1)
h m

Since (3.1) holds true, it results 6 < 1. Moreover, from (3.19) we get

ess sup |u| ess sup |u| + o 1-6

(3.20) f L < © f 4 f u@VE Vg | .
Joave” T mMa-e f 0 )

Using (3.19) we can majorize the right hand-side in (3.20) obtaining (see also

[T])

ess sup|u|

0 1 1/1 -1
(3.21) f (lit)édts(%) (116)#@)7;(%*’77)_
. _

Since

+ o

1
f -dt = + o,
2o+

(3.21) yields that « belongs to L ().
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From (1.2) and (1.3) we deduce that u belongs to W' ?(a). Indeed

[ ey ) de <l s,

0
| Vo |? doe
- VulPdx < — <
<1+||u||w>agf“('”)' ulrdz Qf“(”) L+ ]

SF(u)Jrfbl(x) |u|ﬁ1+fgl(9c) dx <
Q Q

< GQu) + [lby [, el + lgn [l < c .
Finally, we get that « is a minimizer of F. Indeed
F(u)zinf{F(v): ve W"?(a) st. v—uye W} ?(a)} =
=min {G(v): ve W"?(a) st. v—uye Wy ?(a)} =

= G(u) = F(u).

REMARK 3.1. — Let us observe that, if || is small enough, ie. |2| <
min {1, 1/2c}, then (3.14) and (3.16) hold true for every ¢ = ess sup |uy| and
(3.20) gives the following apriori bound for |u|

o
1

—a T4 1 p—
ess sup |u| < ess sup |uo| +(c-1—c|9|%(17%7pq_*)) ’ |Q|é(27(%+pm ).

REMARK 3.2. — If we choose a = 0 and a(«) constant in 2, Theorem 3.1 gives
the classical results for coercive functionals on Wi ?(Q) (see, for example,
[LUD.
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