BOLLETTINO UNIONE MATEMATICA ITALIANA

J. Chaber, R. Pol

Note on the Wijsman hyperspaces of completely metrizable spaces

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **5-B** (2002), n.3, p. 827–832.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_3_827_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Note on the Wijsman Hyperspaces of Completely Metrizable Spaces.

J. Chaber - R. Pol

Sunto. – Consideriamo sugli spazi CL(X) dei sottoinsiemi chiusi e non vuoti di uno spazio X completamente metrizzabile la topologia di Wijsman τ_{W_d} . Se X è separabile, mostriamo che, per ogni metrica d, e su X, ogni insieme chiuso e numerabile in $(CL(X), \tau_{W_e})$ ha punti isolati in $(CL(X), \tau_{W_d})$. Se d = e, questo implica il teorema di Costantini sulla completezza topologica di $(CL(X), \tau_{W_d})$. Per X non-separabili, rispondiamo ad una questione sollevata da Z silinszky, mostrando che in molti casi gli spazi $(CL(X), \tau_{W_d})$ contengono copie chiuse dei razionali.

Summary. – We consider the hyperspace CL(X) of nonempty closed subsets of completely metrizable space X endowed with the Wijsman topologies τ_{W_d} . If X is separable and d, e are two metrics generating the topology of X, every countable set closed in $(CL(X), \tau_{W_e})$ has isolated points in $(CL(X), \tau_{W_d})$. For d = e, this implies a theorem of Costantini on topological completeness of $(CL(X), \tau_{W_d})$. We show that for nonseparable X the hyperspace $(CL(X), \tau_{W_d})$ may contain a closed copy of the rationals. This answers a question of Zsilinszky.

1. - Introduction.

Our terminology and notation follows Beer [1]. Given a topological space X, we denote by CL(X) the collection of nonempty closed sets in X. Let X be a metrizable space and $\mathcal{O}(X)$ be the family of metrics on X generating the topology. For each $d \in \mathcal{O}(X)$, the Wijsman topology τ_{W_d} on CL(X) is the weakest topology making all functionals $A \to \operatorname{dist}_d(z,A)$ continuous, where $z \in X$ and $\operatorname{dist}_d(z,A) = \inf \{d(z,x) : x \in A\}$.

If X is separable metrizable, so are the spaces $(CL(X), \tau_{W_d})$, cf. [1, Theorem 2.1.5]. Costantini [2] proved that for completely metrizable separable X, the hyperspaces $(CL(X), \tau_{W_d})$ are completely metrizable. Zsilinszky [7] showed that for any completely metrizable X, $(CL(X), \tau_{W_d})$ are strongly Choquet. In presence of separability, this yields the Costantini's result, and in general case one still concludes that the Wijsman hyperspaces are Baire. Zsilinszky asked if the space $(CL(X), \tau_{W_d})$ is hereditarily Baire, provided X is completely metrizable.

In this note we give two results concerning the topic. Theorem 1.1 contains a result from which the Costantini's theorem follows easily by a classical Hurewicz's theorem. Theorem 1.2 provides an answer to the question of Zsilinszky.

THEOREM 1.1. – Let X be a separable completely metrizable space, let d, e be metrics generating the topology of X, and let τ_{W_a} , τ_{W_e} be the corresponding Wijsman topologies on the hyperspace CL(X). If $\mathfrak{C} \subset CL(X)$ is a countable set that has no isolated points, with respect to τ_{W_a} , then \mathfrak{C} is not closed with respect to τ_{W_e} .

Letting in this theorem d=e, we see that for completely metrizable separable X, the space $(CL(X), \tau_{W_d})$ contains no closed copy of the rationals. Since τ_{W_d} is a subfamily of the Effros Borel structure on CL(X), the Wijsman hyperspace is absolutely Borel, and in effect, by Hurewicz's theorem, completely metrizable, cf. [6], Theorem 12.6 and Corollary 21.21.

In the next result, $\mathbb{N}^{2^{\aleph_0}}$ is the Tychonoff product of 2^{\aleph_0} copies of natural numbers \mathbb{N} .

Theorem 1.2. – Let X be a metrizable space such that the set of points in X without any compact neighborhood has weight 2^{\aleph_0} . Then for any metric d generating the topology of X, $\mathbb{N}^{2^{\aleph_0}}$ embeds as a closed subspace in $(CL(X), \tau_{W_d})$. In particular, the Wijsman hyperspace contains a closed copy of the rationals.

This gives also an alternative justification of Costantini's result [3] that the Wijsman hyperspace of the complete metric space may not be Čech complete.

2. - Proof of Theorem 1.1.

Let *X* be a separable completely metrizable space. Let us make first a few remarks.

REMARK A. – For any $e \in \mathcal{D}(X)$ there is a totally bounded $e^* \in \mathcal{D}(X)$ such that for any $z \in X$, $A \in CL(X)$ and r > 0, if $\operatorname{dist}_e(z, A) > r$, then $\inf\{e^*(x, y) : x \in A, e(z, y) \leq r\} > 0$.

Indeed, let C be a countable dense set in X and let Ω be the set of all triples $\omega=(c,\,p,\,q)$ with $c\in C$, and 0< p< q rational. For each triple ω , let $f_\omega\colon X\to [0,\,1]$ be a continuous map such that $f_\omega(x)=0$ if $e(c,\,x)\leqslant p$ and $f_\omega(x)=1$ if $e(c,\,x)\leqslant q$. Then for any injection $\nu:\Omega\to\mathbb{N}$, the metric $e^*(x,\,y)=\sum_{\omega\in\Omega}2^{-\nu(\omega)}\left|f_\omega(x)-f_\omega(y)\right|$ has the required properties.

REMARK B. – Let q, e, $e^* \in \mathcal{O}(X)$, where q is complete and e^* is the metric associated with e in Remark A. Let B_1 , B_2 , ... be in CL(X) and, for $i \ge 1$, let F_i be a finite 2^{-i} -net in B_i with respect to e^* (i.e., $F_i \subset B_i$ and for any $x \in B_i$ there is $y \in F_i$ with $e^*(x, y) < 2^{-i}$). Furthermore, assume that for any $x \in F_i$ there is $y \in F_{i+1}$ with $q(x, y) + e^*(x, y) < 2^{-i}$, and let $K = \bigcap_{n=1}^{\infty} (\overline{F_n \cup F_{n+1} \cup \ldots})$. Then $B_i \to K$ in $(CL(X), \tau_W)$.

To see this, let us consider any open sets V, U in X with $V \cap K \neq 0$ and $\inf\{e^*(x, y): x \in K, y \notin U\} > 0$. Then all but finitely many B_i hit V and are contained in U. The connection between e and e^* described in Remark A makes it clear that $B_i \to K$ with respect to τ_{W_a} .

REMARK C. – Let d, $e \in \mathcal{O}(X)$, A, $B \in CL(X)$ and $A \neq B$. Then there exist $\mathcal{U} \in \tau_{W_d}$ and $\mathcal{V} \in \tau_{W_e}$ such that $A \in \mathcal{U}$, $B \in \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \emptyset$.

If there is $z \in A \setminus B$, we set r = 1/2 inf $\{e(z, x) : x \in B\}$ and we let $\mathcal{U} = \{E \in CL(X) : E \text{ hits the ball } \{x : e(z, x) < r\}\}$, $\mathcal{V} = \{E \in CL(X) : \operatorname{dist}_e(z, E) > r\}$. Notice that $\mathcal{U} \in \tau_{W_d}$ for any $d \in \mathcal{O}(X)$, and $\mathcal{V} \in \tau_{W_e}$. If there is $z \in B \setminus A$, we proceed similarly, changing the role of e and d.

Now, passing to the proof of Theorem 1.1, let d, e and \mathcal{C} be as in this theorem, and let us assume that \mathcal{C} has no isolated points with respect to τ_{W_d} . Let e^* be the totally bounded metric associated with e in Remark A, and let A_1, A_2, \ldots be the elements of \mathcal{C} listed without repetitions. We shall fix a complete metric $q \in \mathcal{O}(X)$.

Any $\mathcal{U} \in \tau_{W_d}$ hitting \mathcal{C} contains infinitely many A_i . Therefore, using Remark C, one can pick inductively $\mathcal{U}_i \in \tau_{W_d}$, $\mathcal{V}_i \in \tau_{W_e}$, n(i) > i, and finite sets $F_i \subset A_{n(i)}$ such that

(1)
$$A_{n(i)} \in \mathcal{U}_i, \quad A_i \in \mathcal{V}_i, \quad \mathcal{U}_i \cap \mathcal{V}_i = \emptyset$$

$$\mathcal{U}_1 \supset \mathcal{U}_2 \supset \dots,$$

(3)
$$F_i$$
 is a 2^{-i} -net in $A_{n(i)}$ with respect to e^* ,

(4) for any
$$x \in F_i$$
 there is $y \in F_{i+1}$ with $q(x, y) + e^*(x, y) < 2^{-i}$.

By Remark B, conditions (3) and (4) guarantee that $A_{n(i)} \to K$ in $(CL(X), \tau_{W_e})$. On the other hand, by (1) and (2), $K \neq A_i$ for all i. Therefore K is not in \mathcal{C} 1, but it is in the closure of \mathcal{C} 1 with respect to τ_{W_e} 2, which completes the proof.

3. - Proof of Theorem 1.2.

Let $d \in \mathcal{O}(X)$ and let $\operatorname{dist}(z,A)$ denote the distance function given by d. The assumptions about X yield r > 0, and $S \subset X$ of cardinality 2^{\aleph_0} such that

(1),
$$d(s, t) > r \text{ for } s, t \in S, \quad s \neq t$$
,

and no $s \in S$ has a compact neighborhood.

For $s \in S$ we set

(2)
$$B_s = \{x : d(s, x) < r/4\}, \quad E_s = \{x : d(s, x) \le r/5\}.$$

The neighborhood E_s of s is not compact, hence it contains a countable closed discrete set M_s . We write

(3)
$$M_s = \{a_{s, n} \colon n \in \mathbb{N}\} \subset E_s, \qquad M = \bigcup_{s \in S} M_s,$$

where $a_{s,n} \neq a_{s,m}$ for $n \neq m$.

Let \mathbb{N}^S be the space of functions $u: S \to \mathbb{N}$ with the pointwise topology, i.e., topologically – the Tychonoff product $\mathbb{N}^{2^{\aleph_0}}$. We shall define $F: \mathbb{N}^S \to CL(X)$ by the formula, cf. (2), (3),

(4)
$$F(u) = \{a_{s, u(s)} \colon s \in S\} \cup (X \setminus \bigcup_{s \in S} B_s).$$

We claim that

(5)
$$\mathcal{F} = F(\mathbb{N}^S) \text{ is closed in } (CL(X), \tau_{W_d})$$

and

(6)
$$F: \mathbb{N}^S \to \mathcal{F} \text{ is a homeomorphism,}$$

where \mathcal{F} is considered with the relative Wijsman topology.

To check (5), let us notice that, cf. (2), (3),

$$\mathcal{U} = \left\{ A \in CL(X) : \left(X \setminus \bigcup_{s \in S} B_s \right) \setminus A \neq \emptyset \right\} \cup$$

$$\bigcup_{s \in S} \left\{ A \in CL(X) : \left| A \cap B_s \right| > 2 \right\} \cup$$

$$\bigcup_{s \in S} \left\{ A \in CL(X) : \left| A \cap B_s \right| > 2 \right\} \cup$$

$$\bigcup_{s \in S} \left\{ A \in CL(X) : A \cap (B_s \setminus M_s) \neq 0 \right\}$$

belongs to τ_{W_d} . The complement of \mathcal{U} consists of the sets $A \in CL(X)$ that contain $X \setminus \bigcup_{s \in S} B_s$ and hit each B_s in exactly one point, and the point is in M_s . This means that $\mathcal{F} = CL(X) \setminus \mathcal{U}$, confirming (5).

To verify (6), let us fix $u \in \mathbb{N}^S$. Basic neighborhoods of F(u) in $(CL(X), \tau_{W_d})$ are of the form $\mathcal{W} = \{A \in CL(X) : A \cap W_i \neq \emptyset, i = 1, ..., k \text{ and } \operatorname{dist}(z_j, A) > r_j, j = 1, ..., l\}$, where W_i are open and $r_j > 0$. Since $F(u) \in \mathcal{W}$ and we concentrate on $\mathcal{W} \cap \mathcal{F}$, one can demand in addition that $W_i \cap F(u) = \{a_{s(i), u(s(i))}\} = W_i \cap M, i = 1, ..., k$, cf. (3), (4). Moreover, by (4), $F(u) \in \mathcal{W}$ implies that $z_j \in B_{t(j)}$, and increasing k, we can assume that $\{t(1), ..., t(l)\} \subset \{s(1), ..., s(k)\}$. From (1), (2) and (3), $d(z_j, a_{t(j), u(t(j))}) < \operatorname{dist}(z_j, \bigcup_{s \neq t(j)} M_s)$. In effect, we see that for the restricted basic neighborhood \mathcal{W} of F(u), $F(v) \in \mathcal{W}$ if, and only if, v(s(i)) = u(s(i)), i = 1, ..., k. Therefore, F takes the neighborhoods of u in \mathbb{N}^S onto neighborhoods of F(u) in \mathcal{F} equipped with the relative Wijsman topology, which proves (6).

Finally, the space of rationals \mathbb{Q} embeds onto a closed subspace of \mathbb{N}^S , cf. [5] (for the smallest cardinality κ such that \mathbb{Q} embeds as a closed subset of \mathbb{N}^{κ} see [4], Theorems 8.15 and 8.16). Therefore, the hyperspace $(CL(X), \tau_{W_d})$ contains a closed copy of \mathbb{Q} .

REMARK 3.1. – Costantini [3] demonstrated that the Borel structure of the Wijsman hyperspaces on the non-separable completely metrizable space X depends on the choice of a metric on X. The reasoning in the proof of Theorem 1.2 can also be used to that effect. To that end, let us consider the discrete space X of cardinality \aleph_1 . Let e be the discrete metric on X, and let d be a metric on X generating the discrete topology such that one can find in the metric space (X, d) sets with the properties (1), (2) and (3). Then \mathbb{N}^{\aleph_1} embeds onto a closed subset H of $(CL(X), \tau_{W_d})$. On the other hand, $(CL(X), \tau_{W_e})$ can be identified with the Cantor Cube $\{0, 1\}^{\aleph_1}$ without the point having all coordinates zero. Since H is a Baire space without any dense Čech complete subspace, H can not be embedded as a Borel set into any compact space. In effect, H is closed with respect to τ_{W_d} but not Borel with respect to τ_{W_e} .

REFERENCES

- G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Publishers, Dordrecht, 1993.
- [2] C. COSTANTINI, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc., 123 (1995), 2569-2574.
- [3] C. Costantini, On the hyperspace of a non-separable metric space, Proc. Amer. Math. Soc., 126 (1998), 3393-3396.

- [4] E. VAN DOUWEN, *The integers in topology*, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.) North Holland, Amsterdam 1984, 116-167.
- [5] R. ENGELKING S MRÓWKA, On E-compact spaces, Bull. Acad. Pol. Sci., 6 (1958), pp. 429-439.
- [6] A. S. Kechris, Classical Descriptive Set Theory, Springer Verlag, New York, 1994.
- [7] L. ZSILINSZKY, Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc., 126 (1998), pp. 3763-3765.

Department of Mathematics, Warsaw University, Poland e-mail: chaber@mimuw.edu.pl, pol@mimuw.edu.pl

Pervenuta in Redazione il 27 dicembre 2000