BOLLETTINO UNIONE MATEMATICA ITALIANA

MABROUK BEN NASR, NOÔMEN JARBOUI

Intermediate domains between a domain and some intersection of its localizations

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **5-B** (2002), n.3, p. 701–713.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_3_701_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2002.

Intermediate Domains between a Domain and Some Intersection of Its Localizations.

Mabrouk Ben Nasr - Noômen Jarboui

Sunto. – In questo lavoro vengono studiati gli anelli compresi tra un dominio integro R ed un suo sopranello T, definito tramite una intersezione di localizzazioni di R. In particolare, vengono studiate le coppie (R, R_d) ed (R, \tilde{R}) dove $R_d = \cap \{R_M | M \in Max(R), htM = \dim R\}$ ed $\tilde{R} = \cap \{R_M | M \in Max(R), htM \ge 2\}$. Si dimostra che, se R è un dominio di Jaffard, allora (R, $R_d[n]$) è una coppia di Jaffard; tale risultato generalizza [5, Théorème 1.9]. Si dimostra anche che, se R è un S-dominio, allora (R, \tilde{R}) è una coppia residualmente algebrica (i.e. per ogni dominio intermedio S tra R e \tilde{R} e per ogni ideale primo Q di S, il dominio quoziente S/Q è algebrico su R/(Q ∩ R)). Inoltre, la coppia (R, \tilde{R}) è \mathcal{P} se e soltanto se R è \mathcal{P} , per una qualche proprietà \mathcal{P} . Infine, viene data una risposta affermativa ad una questione sollevata in [7] da D. F. Anderson e D. N. Elabidine: se R è un dominio locale di Jaffard con ideale massimale M, allora il dominio $R^{\parallel} = \cap \{R_p | p \in M\}$ è un dominio di Jaffard.

Summary. – In this paper, we deal with the study of intermediate domains between a domain R and a domain T such that T is an intersection of localizations of R, namely the pair (R, T). More precisely, we study the pair (R, R_d) and the pair (R, \tilde{R}), where $R_d = \bigcap \{R_M \mid M \in Max(R) \text{ and } htM = \dim R\}$ and $\tilde{R} = \bigcap \{R_M \mid M \in Max(R) \text{ and } htM = \dim R\}$ and $\tilde{R} = \bigcap \{R_M \mid M \in Max(R) \text{ and } htM \ge 2\}$. We prove that, if R is a Jaffard domain, then (R, $R_d[n]$) is a Jaffard pair, which generalize [5, Théorème 1.9]. We also show that if R is an S-domain, then (R, \tilde{R}) is a residually algebraic pair (that is for each intermediate domain S between R and \tilde{R} , if Q is a prime ideal of S, then S/Q is algebraic over $R/(Q \cap R)$). Moreover, the pair (R, \tilde{R}) is \mathcal{P} if and only if R is \mathcal{P} , for some properties \mathcal{P} . Lastly, we answer in the positive a question raised in [7] by D. F. Anderson and D. N. Elabidine: we show that if R is a Jaffard local domain with maximal ideal M, then the domain $\mathbb{R}^{\ddagger} = \cap \{R_p \mid p \in M\}$ is a Jaffard domain.

0. - Introduction.

This paper is a sequel to [8]. As in [8], we adopt the conventions that each ring considered is commutative, with unit and an inclusion (extension) of rings signifies that the smaller ring is a subring of the larger and possesses the same multiplicative identity. Throughout this paper, qf(R) denotes the quotient field of an integral domain R and for an

extension of integral domains $R \subseteq S$, tr. deg[S:R] is the transcendence degree of qf(S) over qf(R).

We recall that a ring R of finite Krull dimension is a *Jaffard ring* if its valuative dimension, (the limit of the sequence $(\dim R[X_1, \ldots, X_n] - n, n \in \mathbb{N})$), $\dim_v R$, is equal to $\dim R$. R is said to be a *locally Jaffard ring* (resp., a *totally Jaffard ring*) if R_p (resp., R/p) is a Jaffard ring (resp., a locally Jaffard ring) for each prime ideal p of R. For instance Prüfer domains and Noetherian domains are totally Jaffard domains. We assume familiarity with these concepts as in [3, 10].

When working with maximal ideals it will frequently be necessary to distinguish those of rank 1 from those with higher rank; we will call the former «low maximals» and the latter «high maximals». In this paper, we study the domains contained in between R and \tilde{R} , namely the pair (\tilde{R}, \tilde{R}) , where R is an integral domain with dim $R \ge 2$, and $\tilde{R} = \cap R_M$, where the intersection is taken over all the high maximal ideals M of R [20, Definition 2]. Recall from [8] that a pair of rings (R, S) where $R \in S$ is said to be Jaffard (resp., locally Jaffard) if all intermediate rings between R and S are required to be Jaffard (resp., locally Jaffard). Much of the motivation for this paper comes from the result of A. R. Wadsworth [20, Theorem 8] which states that for any Noetherian domain R the pair (R, \tilde{R}) is Noetherian. Our purpose is to determine necessary and sufficient conditions for the pair (R, R) to provide a \mathcal{P} -pair (that is each domain in between R and \hat{R} satisfies \mathcal{P}), where \mathcal{P} denotes respectively Jaffard, locally, (totally) Jaffard, S-domain, (stably) strong S-domain. In [5, Théorème 1.9 (i)] A. Avache and P.-J. Cahen proved that if R is a Jaffard domain, then (R, R[n]) is a Jaffard pair. In Section 1, this result is sharpened in Theorem 1.1, with the aid of the following result: If R is a Jaffard domain, then (R, R_d) is a Jaffard pair, where $R_d = \cap \{R_M \mid M \in Max(R) \text{ and } htM = \dim R\}$. Notice that always we have $\widetilde{R} \subseteq R_d$ and if dim R = 2, then $\widetilde{R} = R_d$. We show also that (R, \tilde{R}) is a \mathcal{P} -pair if and only if R is a \mathcal{P} domain or also if and only if \overline{R} is \mathcal{P} , where \overline{R} denotes the integral closure of R in \widetilde{R} . In [20, Theorem 10], it was shown that if (R, S) is a Noetherian pair with dim $R \ge 2$, then $S \subset \tilde{R}^*$, where R^* denotes the integral closure of R in S. However, it is easy to use pullback constructions in order to produce an example of a \mathcal{P} -pair (R, S) for which the previous condition fails to hold. Hence, this section is ended with the study of pairs (R, S) where $S \in \widetilde{R^*}$. We give necessary and sufficient conditions for such pairs to yield a \mathcal{P} -pair, where \mathcal{P} ranges over the above cited properties. Section 2 explores consequences of Lemma 2.1 which presents a sufficient condition that the pair (R, R) is residually algebraic, namely that R is an S-domain. Perhaps the most surprising of these consequences, Theorem 2.2, indicates, that if R is an integral S-domain which is integrally closed in \hat{R} , then for any ring T in between R and \widetilde{R} , $T = \widetilde{R} \cap (\cap \{R_p \mid p \in \mathcal{C}\})$ where \mathcal{C} is a collection of low maximals of R. Section 3 deals with examples and counterexamples illustrating our results and showing their limits. In the Appendix, we answer in the positive a question raised by D. F. Anderson and D. Nour Elabidine [7, Question 3.2]. We show that if R is a Jaffard local domain, then R^{\ddagger} is a Jaffard domain.

Any unexplained terminology is standard, as in [15] and [16].

1. – Jaffard pairs.

Let $R \in S$ be any extension of rings. Following [8], (R, S) is said to be a *Jaffard pair* (resp., a *locally Jaffard pair*) if any ring T in between R and S is Jaffard (resp., locally Jaffard). In [5] A. Ayache and P.-J. Cahen proved that if R is a Jaffard domain, then (R, R[n]) is a Jaffard pair. In what follows we generalize this result.

THEOREM 1.1. – Let R be a Jaffard domain. Then:

(i) $(R, R_d[n])$ is a Jaffard pair;

(ii) for each ring T in between R and $R_d[n]$, dim $T = \dim R + \text{tr. deg}[T:R]$.

To prove this theorem, we need the following lemmas.

LEMMA 1.2. – Let R be an integral domain and $R_d = \cap \{R_M | M \in Max(R) and htM = \dim R\}$. If R is a Jaffard domain, then (R, R_d) is a Jaffard pair. Moreover, for each ring T in between R and R_d , dim $T = \dim R$.

PROOF. – Let T be a ring such that $R \subseteq T \subseteq R_d$. By definition of the valuative dimension, since T is an overring of R and on the other hand, since R is a Jaffard domain, we have

(1) $\dim_v T \leq \dim_v R = \dim R$

Now let M be a maximal ideal of R such that dim R = htM. We have the containments $R \subseteq T \subseteq R_d \subseteq R_M$. The extension $R \subseteq R_M$ satisfies INC, so does $T \subseteq R_M$. Thus dim $R_M \leq \dim T$. Hence

(2)
$$\dim R \leq \dim T$$

From (1) and (2), it follows that $\dim_v T = \dim T = \dim R$. Thus T is a Jaffard domain.

LEMMA 1.3. – Let $R \subset S$ be an extension of integral domains and T a domain contained in between R and S[n]. If qf(S) is a finite qf(R)-vectorial space, then $ht((X_1, \ldots, X_n) S[n] \cap T) = \text{tr.deg}[T : R]$.

PROOF. – The proof [5, Proposition 1.8] adapts easily. By localization of R in the multiplicative subset complement of $\{0\}$ in R, we can assume that R is a field. Under these assumptions, the domain A = qf(S)[n] is a Noetherian finitely generated domain over T. Hence the extension $T \subseteq A$ satisfies the altitude inequality formula [5, Théorème 1.2]. In particular if $Q = (X_1, \ldots, X_n)A$, then we have:

(1)
$$htQ + tr.deg[A/Q:T/P] \le htP + tr.deg[A:T]$$

where $P = Q \cap T$. One check easily that Q is of height n, $T/P \subseteq A/Q$ is an algebraic extension and tr.deg [A : T] = n - tr.deg [T : R]. By (1), we conclude that tr.deg $[T : R] \leq htP$. On the other hand since T_P contains the field qf(R), then we have $htP \leq \dim_v T_P = ht_v P \leq \text{tr.deg} [T : R]$ [4, Lemme 1.1].

PROOF OF THEOREM 1.1. – We proceed as in [5]. Since R is a Jaffard domain, then so is R_d and dim $R_d = \dim R$ [Lemma 1.2]. Thus dim_v $R_d[n] = \dim_v R_d + n = \dim_v R + \operatorname{tr.deg}[R_d[n]: R]$. Hence, dim_v $T = \dim_v R + \operatorname{tr.deg}[T: R] = \dim R + \operatorname{tr.deg}[T: R]$ for each ring T in between R and $R_d[n]$ [8, Lemma 1.2]. To obtain the desired conclusion, it suffices to show that dim $T \ge \dim R + \operatorname{tr.deg}[T: R]$. Set $P = (X_1, \ldots, X_n) R_d[n] \cap T$. We have $R \subseteq T/P \subseteq R_d$ and dim $T/P = \dim R$ [Lemma 1.2]. Hence dim $T \ge \dim T/P + htP \ge \dim R + htP$. By Lemma 1.3, $htP = \operatorname{tr.deg}[T: R]$. It follows that dim $T \ge \dim_v T$ and clearly T is a Jaffard domain.

REMARK 1.4. – It may be that R_d is a Jaffard domain, while R is not (Example 3.1(b)).

Let R be a domain. Following [16], we say that R is an S-domain if, for each height 1 prime ideal P of R, the extended prime P[X] has height 1 in the polynomial ring R[X]; and R is said to be a strong S-domain if R/P is an S-domain for each prime ideal P of R. Despite the above material, the class of strong Sdomains is not very stable, for instance with respect to polynomial extension. Following [17], we say that R is stably strong S-domain if $R[X_1, \ldots, X_n]$ is a strong S-domain for each nonnegative integer n.

We introduce now a useful terminological device. If \mathcal{P} is a property which may be possessed by ring (extensions), we say that \mathcal{P} is a «good» property if it satisfies the following conditions:

(i) \mathcal{P} is a local property: That is R is a ring satisfying \mathcal{P} if and only if R_p satisfies \mathcal{P} for each prime ideal p of R.

- (ii) If R satisfies \mathcal{P} , then it is an S-domain.
- (iii) If $R \subseteq S$ is an integral extension and S is \mathcal{P} , then so is R.
- (iv) For a one dimensional ring, the properties \mathcal{P} and S-domain are

equivalent. For instance $\mathcal{P} = \text{locally}$ (totally) Jaffard, S-domain, (stably) strong S-domain.

In the following we determine necessary and sufficient conditions for the pair (R, \tilde{R}) to provide a \mathscr{P} -pair, where \mathscr{P} is a good property.

THEOREM 1.5. – Let \mathcal{P} be a good property and R an integral domain with dim $R \ge 2$, then the following statements are equivalent.

- (i) (R, \tilde{R}) is a *P*-pair;
- (ii) \overline{R} is \mathcal{P} , where \overline{R} is the integral closure of R in \widetilde{R} .
- (iii) R is \mathcal{P} .

To prove this theorem we need the following lemma.

LEMMA 1.6. – Let R be an integral domain with dim $R \ge 2$ and T a domain in between R and \tilde{R} . Then for each high maximal ideal M of R, $T_M = R_M = \tilde{R}_M$.

PROOF. – If *T* is an intermediate ring between *R* and \widetilde{R} and *M* is a high maximal ideal of *R*, we have $R_M \subseteq T_M \subseteq \widetilde{R}_M \subseteq (R_M)_M = R_M$. Hence $T_M = R_M = \widetilde{R}_M$.

PROOF OF THEOREM 1.5. – $(i) \Rightarrow (ii) \Rightarrow (iii)$. Trivial.

 $(iii) \Rightarrow (i)$. Let *T* be a ring in between *R* and \tilde{R} . Our task is to show that, for any nonzero prime ideal *q* of *T*, T_q is \mathcal{P} . Set $p = q \cap R$, there exists a maximal ideal *M* of *R* containing *p*. If $htM \ge 2$, then $p_M = q_M$ since $R_M = T_M$ [Lemma 1.6]. Thus $T_q = R_p$ which is \mathcal{P} .

If $htM \leq 1$, then M = p since $p \neq (0)$. Hence htp = 1. But R is an S-domain. Thus $ht_v p = 1$. On the other hand the extension $R \in T$ always satisfies the valuative altitude inequality formula [4, Théorème 1.3]. Therefore

 $1 \leq htq + tr.deg[T/q: R/p] \leq ht_vq + tr.deg[T/q: R/p] \leq ht_vp = 1$.

Hence $htq = ht_v q = 1$. Thus T_q is a one dimensional Jaffard domain, so an S-domain [3].

REMARK 1.7. – We construct an example of a domain R such that R and R_d are \mathcal{P} domains for $\mathcal{P} = \text{locally}$ (totally) Jaffard, strong S or stably strong S and the pair (R, R_d) is not \mathcal{P} (Example 3.2).

As in Remark 1.4, if \tilde{R} is a \mathscr{P} domain, R may be not \mathscr{P} (Example 3.1. (b)).

COROLLARY 1.8. – Let \mathcal{P} be a good property and R an integral domain with dim $R \ge 2$ such that R is \mathcal{P} (resp., Jaffard). Let C be the set of all elements of R which are contained in no high maximal ideal. Then for any multiplicative subset N of R such that $N \subseteq C$, the pair $(R, N^{-1}R)$ is \mathcal{P} (resp., Jaffard).

PROOF. – Let M be a high maximal ideal of R, and let $\frac{r}{s}$ be an element of $N^{-1}R$. Since $N \subseteq C$, then $s \in R \setminus M$. Thus $N^{-1}R \subseteq R_M$. Hence $N^{-1}R \subseteq \tilde{R}$ and $(R, N^{-1}R)$ is a \mathcal{P} -pair (resp., a Jaffard pair) by the previous theorem (resp., by Lemma 1.2).

REMARK 1.9. – We claim that there exists a domain R and a multiplicative subset N of R such that $(R, N^{-1}R)$ is a \mathcal{P} -pair where \mathcal{P} is a good property and $N \notin C$, where C is the set of all elements of R which are contained in no high maximal ideal (see Example 3.3).

It was shown in [20] that if (R, S) is a Noetherian pair (that is any domain $A, R \subseteq A \subseteq S$ is Noetherian) and R^* is the integral closure of R in S then $S \subseteq \widehat{R^*}$. Contrary to this fact, there exists a \mathscr{P} -pair (R, S) (for \mathscr{P} = locally (totally)) Jaffard, S-domain, (stably) strong S-domain) such that $S \notin \widehat{R^*}$. For this, let K be a field, and X, Y two indeterminates over K and let L = K(X, Y). Consider the domains $V_1 = K(X) + M_1$ and $V_2 = K + M_2$. V_1 is a rank 1 (discrete) valuation domain of L, with maximal ideal $M_1 = YK(X)[Y]_{(Y)}$ while V_2 is a rank 2 valuation domain of L, with maximal ideal $M_2 = XK[X]_{(X)} + YK(X)[Y]_{(Y)}$. V_1 and V_2 are incomparable. Thus $S = V_1 \cap V_2$ is a Prüfer semi local domain with $M'_1 = M_1 \cap S$ and $M'_2 = M_2 \cap S$ as maximal ideals. Let $R = \{x \in S \mid \overline{x} = x + M'_1 \in K[X]\}$. According to [8, Theorem 2.2], (R, S) is a \mathscr{P} -pair. On the other hand, R is integrally closed in S. Hence $R^* = R$. Since any maximal ideal of R is of height ≥ 2 , then $\widetilde{R} = R = \widetilde{R^*}$. Thus $S \notin \widetilde{R^*}$.

THEOREM 1.10. – Let \mathcal{P} be a good property and let $R \subseteq S$ be an extension of integral domains such that $S \subseteq \widetilde{R}^*$ and dim $R \ge 2$. Then, the following hold:

(a) If R^* is \mathcal{P} , then (R, S) is a \mathcal{P} -pair.

(b) If the integral closure R' of R has no low maximals and S is \mathcal{P} (resp., Jaffard), then (R, S) is a \mathcal{P} -pair (resp., a Jaffard pair).

PROOF. – (a) By Theorem 1.5, $(R^*, \widetilde{R^*})$ is a \mathscr{P} -pair. So is (R^*, S) since $S \subseteq \widetilde{R^*}$. Let *T* in between *R* and *S*. Then T^* (the integral closure of *T* in *S*) is contained between R^* and *S* and $T \subseteq T^*$ is an integral extension. Therefore *T* is \mathscr{P} .

(b) Let $(R^*)'$ the integral closure of R^* and R' that of R. Suppose that R^* has a low maximal N. Since $(R^*)'$ is integral over R^* there is a prime p' of $(R^*)'$ lying over N, and p' must also be a low maximal. By the going-down theorem [19, 10.13], $p' \cap R'$ is a low maximal of R', contradicting the hypothesis. Thus R^* can have no low maximal. It then follows that $\widetilde{R^*} = R^*$. Thus $S = R^*$. We complete the proof by using assertion (a).

REMARK 1.11. – In Theorem 1.10, we claim that if we assume only that R is \mathcal{P} , the pair (R, S) may be not \mathcal{P} , for \mathcal{P} = locally Jaffard, totally Jaffard. For this, consider an integral extension $R \subset S$ such that R is \mathcal{P} and S is not \mathcal{P} . Clearly, we have $S \subseteq \tilde{R} = \tilde{R}^*$ while (R, S) is not a \mathcal{P} -pair.

2. - Residually algebraic pairs.

Recall from [12] that a ring extension $R \subseteq S$ of integral domains is said to be residually algebraic if for any prime ideal Q of S, S/Q is algebraic over $R/(Q \cap R)$. A pair of rings (R, S) is said to be *residually algebraic* if for any intermediate ring T in between R and S, the extension $R \subseteq T$ is residually algebraic [6].

In [11], E. Davis proved that if R in an integrally closed Noetherian domain, then for each ring T in between R and \tilde{R} , $T = R \cap (\cap \{R_p | p \in C\})$ where C is a collection of low maximals of R. In Theorem 2.2, we show that it is enough to suppose that R is an S-domain integrally closed in \tilde{R} . But first a key lemma.

LEMMA 2.1. – If R is an integral S-domain with dim $R \ge 2$, then (R, \tilde{R}) is a residually algebraic pair.

PROOF. – By [6, Proposition 2.4] and Lemma 1.6, it suffices to show that (R_M, \tilde{R}_M) is a residually algebraic pair for each low maximal ideal M of R. Let T_1 be a ring such that $R_M \subseteq T_1 \subseteq \tilde{R}_M$, then $T_1 = T_M$, where T is such that $R \subseteq T \subseteq \tilde{R}$. Let q_1 be a nonzero prime ideal of T_1 , then $q_1 = q_M$, where $q \in \text{Spec}(T)$. We have $q_M \cap R_M = MR_M$. By the valuative altitude inequality formula, we deduce that $ht_v q_M + \text{tr.deg}[T_M/q_M: R_M/MR_M] \leq ht_v MR_M + \text{tr.deg}[T_M: R_M] = 1$. Hence $\text{tr.deg}[T/q: R(q \cap R)] = \text{tr.deg}[T/q: R/M] = 0$.

THEOREM 2.2. – Let R be an integral S-domain with dim $R \ge 2$ such that R is integrally closed in \tilde{R} , then for each ring T in between R and \tilde{R} , $T = \tilde{R} \cap (\cap \{R_p | p \in \mathbb{C}\})$ where \mathbb{C} is a collection of low maximals of R.

PROOF. – By Lemma 2.1, the pair (R, \tilde{R}) is residually algebraic. Since R is integrally closed in \tilde{R} , then for any ring T in between R and \tilde{R} , $T = \bigcap_{i \in I} T_{M_i}$ where $\{M_i, i \in I\}$ is the set of maximal ideals of R [6, Lemma 3.1]. Denoting by $I_1 = \{i \in I \mid htM_i \ge 2\}$ and $I_2 = \{i \in I \mid htM_i = 1\}$. Then $T = (\bigcap_{i \in I_1} T_{M_i}) \cap (\bigcap_{i \in I_2} T_{M_i})$. But for each $i \in I_1$, we have $T_{M_i} = R_{M_i}$ [Lemma 1.6]. By [6, Theorem 2.5], for each $i \in I_2$, there exists a divided ideal Q_i of R contained in M_i such that $T_{M_i} = R_{Q_i}$. Since $htM_i = 1$, then either $Q_i = M_i$ or $Q_i = (0)$. Therefore $T = \tilde{R} \cap (\cap \{R_{Q_i} \mid Q_i \subseteq M_i, i \in I_2\})$.

REMARK 2.3. – If R is not an S-domain, then (R, R) may be not a residually algebraic pair (Example 3.1(a)).

If R is an S-domain, even stably strong S, the pair (R, R_d) may be not residually algebraic (Example 3.2).

The following proposition gives another kind of residually algebraic pairs. Recall that for a given ring R, the Nagata ring R(X) is equal to $N^{-1}R[X]$, where $N = R[X] \setminus \bigcup \{M[X] | M \in Max(R)\}$ [18].

PROPOSITION 2.4. – Let R be an integral S-domain with dim $R \ge 2$, then $(R(X), \tilde{R}(X))$ is a residually algebraic pair.

PROOF. – First we prove that $\widetilde{R}(X) \subseteq \widetilde{R(X)}$. Indeed we have $\widehat{R(X)} = \cap \{R(X)_{M(X)} | M \in \operatorname{Max}(R) \text{ and } htM(X) \ge 2\}$. Since R is an S-domain, then $htM(X) \ge 2$ if and only if $htM \ge 2$. Hence $\widetilde{R(X)} = \cap \{R(X)_{M(X)} | M \in \operatorname{Max}(R) \text{ and } htM \ge 2\}$. We have $\widetilde{R}(X) \subseteq R(X)_{M(X)} = R[X]_{M[X]}$ for each high maximal ideal M of R. Indeed, let M be a high maximal ideal of R and $f_1 \in \widetilde{R}(X)$. Then $f_1 = \frac{g_1}{h_1}$ with $g_1 \in \widetilde{R}[X]$, and $h_1 \in \widetilde{R}[X] \setminus \bigcup \{m[X] \mid m \in \operatorname{Max}(\widetilde{R})\}$. But $\widetilde{R}[X] = \cap \{R_M[X] \mid M \in \operatorname{Max}(R) \text{ and } htM \ge 2\}$. Hence $g_1 = \frac{1}{s}g$, where $g \in R[X]$ and $s \in R \setminus M$. Moreover, $h_1 = \frac{1}{s'}h$, where $h \in R[X]$ and $s' \in R \setminus M$. We verify that $h \notin M[X]$. Indeed, let $q = MR_M \cap \widetilde{R}$. Then $htq = htM \ge 2$ and $q \in \operatorname{Max} \widetilde{R}$. Therefore $h_1 \notin MR_M[X]$. Thus $h \notin M[X]$. Now by Lemma 2.1, the pair $(R(X), \widetilde{R(X)})$ is residually algebraic since R(X) is always an S-domain with dim $R(X) \ge 2$. Thus $(R(X), \widetilde{R}(X))$ is a residually algebraic pair because $\widetilde{R}(X) \subseteq \widetilde{R(X)}$.

For the polynomial case, the previous proposition fails to be true. Indeed, we establish that $(R[X], \tilde{R}[X])$ is a residually algebraic pair if and only if $R \subseteq \tilde{R}$ is an integral extension. More generally, we have the following.

PROPOSITION 2.5. – An extension $R \subseteq S$ of integral domains is integral if and only if (R[X], S[X]) is a residually algebraic pair.

PROOF. – Of course the «only if» half is immediate, since $R[X] \subseteq S[X]$ is an integral extension. For the «if» half, we can assume that R is local and integrally closed in S. Then by [15, Theorem 10.7], R[X] is integrally closed in S[X]. Our task is to show that S = R. Consider the ring T = R + XS[X], we have $R[X] \subseteq T \subseteq S[X]$. Denote by M the maximal ideal of R, then Q = M + XS[X] is a prime ideal of T. Let $P = Q \cap R[X]$, we have P = M + XR[X]. Let $a \in S$, the element $aX \in T_Q$. By [6, Theorem 2.10], $T_Q = R[X]_P$. Thus there exist $f \in R[X]$ and $g \in R[X] \setminus P$ such that $\frac{f}{g} = aX$. Write $f = \sum_{i=0}^{n} a_i X^i$ and $g = \sum_{j=0}^{m} b_j X^j$. The equality f = aXg shows that n = m + 1 and $a_1 = ab_0$. But

 $b_0 \in R \setminus M$. Hence b_0 is a unit in R. Therefore $a = a_1 b_0^{-1} \in R$. Hence S = R.

Now, we turn our attention to compute the number of domains between a given domain R and \tilde{R} . First, recall from [8], that for an extension of integral domains $R \subseteq S$, if we set [R, S] to be the set of all intermediate domains between R and S, then |[R, S]| denotes the cardinal of the set [R, S].

PROPOSITION 2.6. – Let R be a semilocal integral S-domain with maximal ideals M_1, \ldots, M_r such that dim $R \ge 2$ and R is integrally closed in \tilde{R} . Then $|[R, \tilde{R}]| \le 2^s$ where $s = \text{card } \{M_i | htM_i = 1\}$.

PROOF. – By Lemma 2.1, (R, \tilde{R}) is a residually algebraic pair. Thus for each $i \in \{1, \ldots, r\}$, there exists a prime ideal q_i of R such that $q_i \subseteq M_i$ and $R_{q_i} = \tilde{R}_{M_i}$ [6, Theorem 2.10]. Set $h_i = ht(M_i/q_i)$, $i \in \{1, \ldots, r\}$. If $htM_i \ge 2$, then $\tilde{R}_{M_i} = R_{M_i}$ [Lemma 1.6]. Thus $R_{M_i} = R_{q_i}$ which gives $q_i = M_i$. Therefore $h_i = r_0$. Evidently, if $htM_i = 1$, then $h_i \le 1$. By [6, Theorem 3.3 (i)], $|[R, \tilde{R}]| \le \prod_{i=1}^{r} (h_i + 1) \le 2^s$ where $s = \operatorname{card} \{M_i \mid htM_i = 1\}$.

REMARK 2.7. – Notice that if there exists a high maximal ideal M of R which is not Jaffard (In particular, if R is not Jaffard), then by Lemma 1.6, for each Tin between R and \tilde{R} , $T_M = R_M$ which is not Jaffard. Thus there is no locally Jaffard domain in between R and \tilde{R} . Example 3.4 shows that the last result holds, even if R is a Jaffard domain.

3. – Examples and counterexamples.

This section is concerned with examples showing limits of the results established in the previous sections. First, recall some terminology from [3], [9] and [10]. Specifically, let *S* be an integral domain, *I* a nonzero ideal of *S*, $\varphi: S \rightarrow S/I$ the natural epimorphism, *D* a subring of *S/I* and $R = \varphi^{-1}(D)$ the pullback of the following diagram:

$$\begin{array}{ccc} R & \to & D \\ \downarrow & & \downarrow \\ S & \to & S/I \end{array}$$

We say that R is the ring of the (S, I, D) construction ([9]).

We next recall a few wellknown properties about pullbacks to be used in examples throughout this paper (they may easily be proved directly, or see [3], [9], [10] and [14]). First, I is a common ideal to both R and S, and $R/I \cong D$. For each $p \in Spec(R)$ with $I \notin p$, there is a unique $q \in Spec(S)$ such that $q \cap R = p$. If in addition $I \in Max(S)$ and $p \in Spec(R)$ such that $I \subseteq p$, then there is a

unique $q \in \text{Spec}(D)$ such that $\varphi^{-1}(q) = p$; and moreover $\varphi^{-1}(D_q) = R_p$. *R* is local if and only if *D* is local and $I \subseteq RadS$ (the Jacobson radical of *S*).

As stated before, if we leave out the assumption «R is an S-domain» in Lemma 2.1, the following example shows, among other facts, that (R, \tilde{R}) may be not residually algebraic.

EXAMPLE 3.1. – This example provides:

- (a) A domain R such that (R, \tilde{R}) is not a residually algebraic pair.
- (b) A non Jaffard domain T but such that T_d is Jaffard.

Let K be a field, $S_1 = K[X, Y]$ the polynomial ring in two indeterminates over K, $M_1 = XS_1$ and $M_2 = (X - 1, Y - 1) S_1$. If N_1 is the multiplicative subset complement of $M_1 \cup M_2$, then $S_2 = N_1^{-1}S_1$ is a two-dimensional semilocal domain with two maximal ideals, $M'_1 = N_1^{-1}M_1$ and $M'_2 = N_1^{-1}M_2$ such that $htM_1 = 1$, $htM_2 = 2$ and $S_2/M_1 \cong K(Y)$. Let R be the ring of the (S_2, M_1, K) construction. The rings R and S_2 share the ideal M'_1 . We have dim R = $\dim_v R = 2$, $\dim R_{M_1} = 1$ and $\dim_v R_{M_1} = 2$. In this example $\widetilde{R} = R_{M_2 \cap R} =$ $(S_2)_{M_2}$. Since $S_2 \in [R, \tilde{R}]$ and $R \subseteq S_2$ is not a residually algebraic extension, then the pair (R, R) is not residually algebraic. On the other hand R is a Jaffard domain. Hence the condition «R is an S-domain» in Lemma 2.1 can not be omitted or replaced by $\ll R$ is a Jaffard domain. Now consider the multiplicative subset of R, $N = R \setminus (M'_2 \cap R)$. Then the set of all elements of R which are contained in no high maximal ideal is C equal to N. The pair $(R, N^{-1}R) =$ (R, \tilde{R}) is not \mathcal{P} because R is not a \mathcal{P} -domain (for \mathcal{P} = locally (totally) Jaffard, stably strong S). Thus the condition «*R* is \mathcal{P} » is essential in Corollary 1.8. By [8, Proposition 1.3], (R, S_2) is a Jaffard pair. Since $R/M_1 \cong K$ is integrally closed in $S_2/M'_1 \cong K(Y)$, then the integral closure of R in S_2 is equal to R. Also we have $S_2 \subseteq (S_2)_{M_0} = \widetilde{R^*} = \widetilde{R}$. But (R, S_2) is not a \mathscr{P} -pair. Notice that R is integrally closed and has M'_1 as a low maximal, while S_2 is not integral over R. This shows that the condition $\langle R' \rangle$ has no low maximals in Theorem 1.10 (b) can not be deleted.

(b) We assume now that *K* is of the form $k(x_1, x_2, ...)$ where *k* is a field and $x_1, x_2, ...,$ are countably many indeterminates over *k*. We have $S_2/M'_1 \cong K(Y) \cong k(Y, x_1, x_2, ...)$. Consider the *k*-monomorphism

$$\theta: K = k(x_1, x_2, \dots) \to S_2/M_1' = k(Y, x_1, x_2, \dots) = k(Z_1, Z_2, \dots).$$
$$x_n \to Z_{n+2}.$$

Let $D = \theta(K)$. Then the ring T of the (S_2, M'_1, D) construction is semilocal with maximal ideals M'_1 and $M'_2 \cap T$. We have $ht(M'_2 \cap T) = ht_v(M'_2 \cap T) = 2$, $ht_T M'_1 = 1$ and $\dim_v T M'_1 = 3$. Thus $\dim T = 2 < \dim_v T = 3$. Hence T is not a Jaffard domain, while $T_d = T_{M'_2 \cap T}$ is a Jaffard domain. Notice that T is not an S-domain, a fortiori T is not a \mathcal{P} domain for $\mathcal{P} = \text{locally}$ (totally) Jaffard, stably (strong) S-domain. However T_d is \mathcal{P} , since $T_d = (S_2)_{M\delta}$.

The next example supplies a stably strong S-domain R but such that the pair (R, R_d) is neither residually algebraic nor locally Jaffard.

EXAMPLE 3.2. – Let K be a field and S be a semilocal Prüfer domain with two maximal ideals M and N such that htM = 1, $htN \ge 4$ and S/M is isomorphic to the field $K_1 = K(X, Y)$ where X, Y are two indeterminates over K. Let D =K[X, Y], T = K[X, Y/(X + 1)], Q = (X + 1)T and consider the ring D_1 of the (T_Q, QT_Q, K) construction. Notice that $D_1 = K[X, Y] + QT_Q$. Thus D_1 is an overring of D which is not Jaffard (since dim $D_1 = 1 < \dim_v D_1 = 2$ [3]). Denoting by $\varphi : S \rightarrow S/M$ the natural epimorphism and let $R = \varphi^{-1}(D)$ and $R_1 =$ $\varphi^{-1}(D_1)$. We have $R_d = R_{N \cap R} = S_N$, since N does not contain M. R and R_d are stably strong S-domains, so \mathcal{P} domains. However (R, R_d) is not a locally Jaffard pair. Hence (R, R_d) is not a \mathcal{P} -pair, since R_1 is in between R and R_d and R_1 is not a locally Jaffard domain. Since D' is not a Prüfer domain, then by [6, Proposition 5.1] the pair (R, S) is not residually algebraic, a fortiori the pair (R, R_d) is not residually algebraic.

EXAMPLE 3.3. – Consider two incomparables valuation domains V and W such that dim V and dim W are greater than 2. Let M_1 and M_2 respectively the maximal ideals of V respectively W. The ring $R = V \cap W$ is Prüfer with $M'_1 = M_1 \cap R$ and $M'_2 = M_2 \cap R$ as maximal ideals. Denoting by $N = R \setminus M'_1$ a multiplicative subset of R. It is obvious that the pair $(R, N^{-1}R)$ is \mathcal{P} for $\mathcal{P} =$ Jaffard, locally Jaffard, totally Jaffard and stably strong S, whereas $N \notin C$ since $C = R \setminus (M'_1 \cup M'_2)$.

EXAMPLE 3.4. – We construct an integral domain R such that (R, \tilde{R}) is a Jaffard pair and $|[R, \tilde{R}]_{l,J}| = 0$.

Let K be a field, X, Y, Z three indeterminates over K. $S_0 = K[X, Y, Z]$, $M = XS_0$, $N = (X - 1, Y) S_0$ and $N' = (X - 1, Y - 1, Z - 1) S_0$. Consider the multiplicative subset of $S_0: N_0 = S_0 \setminus (M \cup N \cup N')$. Let $S = N_0^{-1}S_0$. Set $M' = N_0^{-1}M$, $M'' = N 0^{-1}N$, $N'' = N_0^{-1}N'$ and R the ring of the (S, M'', K) construction. One shows easily that R is a 3-dimensional Jaffard domain. Hence (R, \tilde{R}) is a Jaffard pair [Theorem 1.1]. Notice that R is an integrally closed S-domain and M'' is a high maximal ideal of R such that htM'' = 2 and $ht_v M'' = 3$. By Remark 2.7, there is no locally Jaffard domain in between R and \tilde{R} .

We close this section by an example showing that if $(\tilde{R})'$ is a Prüfer domain, then R' may be not.

EXAMPLE 3.5. – Let *K* be a field, *X* and *Y* two indeterminates over *K*. Set $V_1 = K + M_1$ and $V_2 = K + M_2$, where $M_1 = YK(X)[Y]_{(Y)}$ and $M_2 = XK[X]_{(X)} + (Y+1) K(X)[Y]_{(Y+1)}$. Consider the ring $R = V_1 \cap V_2$. *R* is semilocal with $M'_1 = K + M_1$.

 $M_1 \cap T$ and $M'_2 = M_2 \cap T$ as maximal ideals. Moreover we have $R_{M'_1} = V_1$ and $R_{M'_2} = V_2$. Thus $\tilde{R} = V_2$ is a valuation domain. Hence $(\tilde{R})'$ is a Prüfer domain. The ring $R_{M'_1} = V_1$ is a one dimensional non Jaffard domain [3, Proposition 2.5], hence $R_{M'_1}$ is not an S-domain [3, Theorem 1.10] and so is R. Therefore R' is not a Prüfer domain.

Appendix.

Let R be an integral domain with quotient field K.

 $R^{\sharp} = \cap \{R_x | x \text{ is a nonzero non unit of } R\}$. If R is not local, then $R^{\sharp} = R$; and $R^{\sharp} = K$ when R is a 1-dimensional local integral domain [2, Theorem 1.2]. Hence, we will be interested in the case where R is a local integral domain with maximal ideal M and dim $R \ge 2$. In the local case, $R^{\sharp} = \cap \{R_p | p \in \text{Spec}(R) \setminus \{M\}\}$ [2, Proposition 1.3]. We pause to answer a question which was left open in [7]: If R is a Jaffard domain is R^{\sharp} a Jaffard domain? However, it is still open the question: If R is a Jaffard domain is (R, R^{\sharp}) a Jaffard pair?

THEOREM. – Let R be a local Jaffard domain, then R^{\sharp} is a Jaffard domain.

PROOF. – By [7, Corollary 2.2 and Proposition 3.1], we have dim $R - 1 \leq \dim R^{\sharp} \leq \dim R$. If dim $R^{\sharp} = \dim R$, then dim_v $R^{\sharp} \leq \dim_v R = \dim R = \dim R^{\sharp}$. Thus R^{\sharp} is a Jaffard domain. If dim $R^{\sharp} = \dim R - 1$, then we get $MR^{\sharp} = R^{\sharp}$ since if not (that is if $MR^{\sharp} \neq R^{\sharp}$), then dim $R^{\sharp} \geq \dim R$ by [2, page 27]. In this case $R^{\sharp}_q = R_{q \cap R}$ for each $q \in \operatorname{Spec}(R^{\sharp})$. Hence dim_v $R^{\sharp}_q = ht_v q = ht_v (q \cap R) \leq \dim_v R - 1 = \dim R - 1 = \dim R^{\sharp}$. Therefore

$$\dim_v R^{\sharp} = \sup\{ht_v q \mid q \in \operatorname{Spec}(R^{\sharp})\} \leq \dim R^{\sharp}$$

Thus R^{\sharp} is a Jaffard domain.

REFERENCES

- D. D. ANDERSON D. F. ANDERSON M. ZAFRULLAH, Rings between D[X] and K[X], Houston, J. Math., 17 (1991), 109-129.
- [2] D. F. ANDERSON A. BOUVIER, Ideal transforms and overrings of a quasilocal integral domain, Ann. Univ. Ferrara, Sez. VII, Sc. Math., 32 (1986), 15-38.
- [3] D. F. ANDERSON A. BOUVIER D. E. DOBES M. FONTANA S. KABBAJ, On Jaffard domains, Expo. Math., 5 (1988), 145-175.
- [4] A. AYACHE P.-J. CAHEN, Anneaux vérifiant absolument l'inégalité ou la formule de la dimension, Boll. Un. Math. Ital. B(7) 6, n-1 (1992), 39-65.

- [5] A. AYACHE P.-J. CAHEN, Radical valuatif et sous-extensions, Comm. Algebra., 26 (9) (1998), 2767-2787.
- [6] A. AYACHE A. JABALLAH, Residually algebraic pairs of rings, Math. Z., 225 (1997), 49-65.
- [7] D. F. ANDERSON D. NOUR EL ABIDINE, Some remarks on the ring R[♯], Lect. Notes.
 Pure. App. Math. M. Dekker, New York, 185 (1997), 33-44.
- [8] M. BEN NASR O. ECHI L. IZELGUE N. JARBOUI, Pairs of domains where all intermediate domains are Jaffard, J. Pure. Appl. Algebra, 145 (2000), 1-18.
- [9] P.-J. CAHEN, Couples d'anneaux partageant un idéal, Arch. Math., 51 (1988), 505-514.
- [10] P.-J. CAHEN, Construction B, I, D et anneaux localement ou residuellement de Jaffard, Arch. Math, vol. 54 (1990), 125-141.
- [11] E. DAVIS, *Integrally closed pairs*, Conf. comm. Alg. Lec. Notes. Math, vol. 311, Springer- Verlag, Berlin and New York, (1973), 103-106.
- [12] E. DOBBS M. FONTANA, Universally incomparable ring homomorphisms, Bull. Austral. Math. Soc., 29 (1984), 289-302.
- [13] O. ECHI, Sur les hauteurs valuatives, Boll. Un. Mat. Ital. (7) 9-B (1995), 281-297.
- [14] M. FONTANA, Topologically defined classes of commutative rings, Ann. Math. Pura. Appl., 123 (1980), 331-355.
- [15] R. GILMER, Multiplicative ideal theory, Marcel Dekker, New-York (1972).
- [16] I. KAPLANSKY, Commutative rings, The University of Chicago press (Revised edition) (1974).
- [17] S. MALIK J. L. MOTT, Strong S-domains, J. Pure. Appl. Alg., 28 (1983), 249-264.
- [18] M. NAGATA, A general theory of algebraic geometry over Dedekind domains I, Am. J. Math., 78 (1956), 78-116.
- [19] M. NAGATA, Local rings, Interscience Tracts in Pure. Appl. Math, no. 13, Interscience, New York, (1962). MR 27 # 5790.
- [20] A. R. WADSWORTH, Pairs of domains where all intermediate domains are Noetherian, Tran. Amer. Math. Soc., 195 (1974), 201-211.

Mabrouk Ben Nasr: Faculty of sciences, Department of Mathematics 3018 Sfax, B. P. 802, Tunisia Fax: 2164274437. E-mail: mabnaceur@hotmail.com

Noômen Jarboui: Faculty of sciences, Department of Mathematics 3018 Sfax, B. P. 802, Tunisia. Fax: 2164274437. E-mail: noojarboui@hotmail.com

Pervenuta in Redazione il 12 marzo 2001