BOLLETTINO UNIONE MATEMATICA ITALIANA

N. DE GRANDE-DE KIMPE, J. KĄKOL, C. PEREZ-GARCIA, W. H. SCHIKHOF

Weak bases in *p*-adic spaces

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.3, p. 667–676.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_3_667_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2002.

Bollettino U. M. I. (8) 5-B (2002), 667-676

Weak Bases in P-adic Spaces.

N. DE GRANDE-DE KIMPE - J. KĄKOL C. PEREZ-GARCIA (*) - W. H. SCHIKHOF

Sunto. – Si studiano spazi polari localmente convessi su un non trivialmente valutato campo completo non archimedeo con una debole base topologica. Dimostriamo due teoremi di completezza e un teorema tipo Hahn-Banach per spazi localmente convessi con una debole base di Schauder.

Summary. – We study polar locally convex spaces over a non-archimedean non-trivially valued complete field with a weak topological basis. We prove two completeness theorems and a Hahn-Banach type theorem for locally convex spaces with a weak Schauder basis.

0. - Introduction and preliminary facts.

Throughout K denotes a non-archimedean non-trivially valued complete field with a valuation |.|. For general properties of locally convex spaces (lcs) over K we refer to [15] and [13]. If E is a lcs, E' and E^* denote its *topological* and *algebraic* dual, respectively, and $\sigma(E, E')$ and $\sigma(E', E)$ the weak topology of E and E', respectively. A metrizable and complete lcs is called a *Fréchet space*. By $\mathcal{F}(E)$ we denote the set of all (non-archimedean) continuous seminorms on E; following [13] we shall require that $p(x) \in \overline{|K|}$ (the closure of the set |K|), $x \in E$, $p \in \mathcal{F}(E)$.

Let $E = (E, \tau)$ be a lcs. A sequence (x_n) in E is called a (topological) basis of E if every $x \in E$ can be written uniquely as $x = \sum_n t_n x_n$ with $t_n \in K$, $n \in \mathbb{N}$. (x_n) is called *regular* if there exists a continuous seminorm p on E such that $\inf_n p(x_n) > 0$. If the coefficient functionals $f_n: x \to t_n$, $n \in \mathbb{N}$, are continuous, (x_n) is called a *Schauder basis*. As in the real or complex case one proves that every basis in a Fréchet space is a Schauder basis. Clearly every lcs E with a basis is (strictly) of countable type, i.e. there is a countable set whose K-linear span is dense in E. Conversely, any infinite dimensional Banach space of countable type is linearly homeomorphic to the space c_0 of all sequences in K

(*) Research partially supported by DGICYT PB98-1102.

converging to zero (with the sup-norm topology), hence it has a Schauder basis, cf. [12]. It is unknown whether a Fréchet space of countable type (or equivalently strictly of countable type) has a Schauder basis. Nevertheless, as we proved in [3] every non-Montel Fréchet space has an «orthogonal» basic sequence. Very recently Sliwa has proved [14] that every infinite-dimensional Fréchet space has an «orthogonal» basic sequence. A basis (x_n) is called «orthogonal» [1] if the topology of E can be determined by a subfamily \mathcal{U} of $\mathcal{F}(E)$ such that $p(x) = \max_n p(f_n(x) x_n), p \in \mathcal{U}, x = \sum_n f_n(x) x_n \in E$. For a lcs E, a basis (x_n) is «orthogonal» iff the maps $T_n: x \to f_n(x) x_n, x \in E$, form an equicontinuous family, cf. [3].

Recall, cf. [3], that

(*) if (x_n) is an *«orthogonal»* basis in a lcs E, then it is an *«orthogonal»* basis in any lcs containing E as a dense subspace. This conclusion fails when *«orthogonal»* is replaced by *«Schauder»*.

Recall that for a lcs E with a Schauder basis in $\sigma(E, E')$ we say that the *weak basis theorem holds* if every weak Schauder basis, i.e. a Schauder basis in the weak topology $\sigma(E, E')$, is a Schauder basis in the original topology. If K is spherically complete, the weak basis theorem holds for any lcs over K, cf. [8]. If K is not spherically complete, the space l^{∞} of all bounded sequences in K with the sup-norm topology has a weak Schauder basis (the unit vectors (e_n)) but l^{∞} is not even of countable type. Nevertheless, the vectors $e_n, n \in \mathbb{N}$, form a basic sequence in l^{∞} , i.e. (e_n) is a Schauder basis in the closed linear span of the $\{e_1, e_2, \ldots\}$ in l^{∞} .

It turns out, see [9], that a in polar Fréchet space every weak Schauder basis is an «orthogonal» basic sequence. Hovewer, it seems to be unknown if a Fréchet space with a weak Schauder basis for which every weak Schauder basis is a basic sequence is polar.

In this note we prove two completeness theorems (extending Kalton's [6] Webb's [16] and Kamthan-Gupta's [7] results to the p-adic case) and a Hahn-Banach type theorem for lcs with a weak Schauder basis.

1. – A Hahn-Banach type theorem.

It is known that the unit vectors (e_n) in the space l^{∞} (if K is not spherically complete) form a sequence which weakly converges to zero in l^{∞} [13] and (clearly) is regular in the original norm. We start with the following purely non-archimedean

THEOREM 1.1. – Let $E = (E, \tau)$ be a lcs with a weak Schauder basis (x_n) and its associated sequence (f_n) of coefficient functionals. Let G be the closed linear span of the x_n , $n \in \mathbb{N}$. Then the following assertions are equivalent.

(a) (x_n) is a Schauder basis.

(b) E is of countable type.

(c) E has the Orlicz-Pettis property ((OP)-property, [11]), i.e. every weakly convergent sequence in E converges in E.

(d) Every weak Schauder basis in E is a Schauder basis.

(e) *E* is polar and $f_n(x) x_n \rightarrow 0, x \in E$.

(f) E is polar and has the Hahn-Banach property.

(g) E is polar and the closed linear span of any regular «orthogonal» basic sequence in E is a Hahn-Banach subspace of E.

(h) E is polar and G is a Hahn-Banach subspace of E.

If in addition E is a normed l^{∞} -barrelled space, i.e. every $\sigma(E', E)$ bounded sequence in E' is equicontinuous, then properties (a) \rightarrow (h) are equivalent to

(i) $\lim_{n} g_n(x) y_n = 0$ in E for all $x \in E$ and for every weak Schauder basis (y_n) of E with coefficient functionals (g_n) in E'.

Recall that a subspace F of a lcs E is a *Hahn-Banach subspace* (HB-subspace) of E if every continuous linear functional over F can be extended to a continuous linear functional over E. A lcs E has the Hahn-Banach property (HB-property) if every subspace of E is a HB-subspace of E. If K is spherically complete, then every lcs over K has the HB-property, cf. [15], [2]. Note also that every Fréchet space (or even barrelled space) is l^{∞} -barrelled; cf. [10].

PROOF. – Clearly (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e). Now we prove (e) \Rightarrow (a): It is enough to show that $x = \sum_{n} f_n(x) x_n$ in E for all $x \in E$. Observe that, since $\lim_{n} f_n(x) x_n = 0$, there exists y in the completion Y of E such that $y = \sum_{n}^{n} f_n(x) x_n$ in Y for all $x \in E$. Since $x = \sum_{n} f_n(x) x_n$ weakly, then f(x) = f(y) for any continuous linear functional f on Y. But Y is polar [13], 5.5, and hence is dual-separating. So x = y and the conclusion follows.

(b) \Rightarrow (f): *E* is of countable type, so it has the HB-property, cf. [13]. (f) \Rightarrow (g): Obvious. (g) \Rightarrow (c): Assume that (c) fails. Let (z_n) be a sequence in *E* which weakly converges to zero in *E* and $p(z_n) \ge c > 0$, $n \in \mathbb{N}$, for some c > 0and $p \in \mathcal{F}(E)$. By 3.2 of [3] there exists a subsequence (y_n) of (z_n) which is an «orthogonal» basic sequence in *E*. Let *F* be the closed linear span of elements y_1, y_2, \ldots in *E*. By (g) the subspace *F* has the HB-property and consequently $\sigma(F, F') = \sigma(E, E') | F$, cf. [2], 2.3. Hence $\lim_n y_n = 0$ in $\sigma(F, F')$. On the other hand, since *F* is of countable type, $\lim_n y_n = 0$, a contradiction.

 $(f) \Rightarrow (h)$: Obvious. $(h) \Rightarrow (e)$: Similarly as $(g) \Rightarrow (c)$. We conclude the proof by showing $(i) \Rightarrow (e)$: Let $E = (E, \|.\|)$ be a normed l^{∞} -barrelled space. It is

enough to show that E is polar. Suppose E is not polar. We can assume that $\lim_{n \to \infty} ||x_n|| = 0$. Let τ_p be the polar topology on E associated with the norm topology defined by $\|.\|$ and let $\|.\|_p$ be a polar norm on *E* defining τ_p . Then $(E,\|.\|_p)$ is a polar normed space for which (x_n) is a weak Schauder basis with coefficient functionals (f_n) and $\lim_{x \to \infty} ||f_n(x) x_n||_p = 0$, $x \in E$. By $(e) \Rightarrow (a)$, (x_n) is a Schauder basis in (E, τ_p) . Since (E, τ_p) is l^{∞} -barrelled, (x_n) is an «orthogonal» basis in τ_p , see 3.3 below. By (*) (x_n) is an «orthogonal» basis of the completion Y of (E, τ_p) having as coefficient functionals the canonical extensions $g_n, n \in \mathbb{N}$, of $f_n, n \in \mathbb{N}$, to Y with their canonical norms $||g_n||_p, n \in \mathbb{N}$, as defined in [12]. Since $\tau_{p} < \tau$, given $0 < \alpha < 1$, there exists a sequence (z_{n}) in E such that $||z_n||_p \leq \min \{\alpha ||g_n||_p^{-1}, \alpha^n\}$ for all $n \in \mathbb{N}$ and $\inf_n ||z_n|| > 0$. For each $n \in \mathbb{N}$ put $y_n = x_n + z_n$. Then $||g_n||_p ||y_n - x_n||_p < \alpha$, $n \in \mathbb{N}$, and $\inf_n ||y_n|| > 0$. It follows from [8] that (y_n) is a Schauder basis in Y and hence in (E, τ_p) . Therefore it is a weak Schauder basis in E. Let (h_n) be the sequence of its associated coefficient functionals in E'. By (i) we have $\lim_{n \to \infty} ||h_n(x) y_n|| = 0$ and also $h_n(x) \to 0$ for each $x \in E$. Since (E, τ_p) is l^{∞} -barrelled one gets that $\sup ||h_n||_p < \infty$. On the other hand, since $||z_n||_p \to 0$ and $||x_n||_p \to 0$ we deduce that $||y_n||_p \to 0$. But then $h_n(y_n) \rightarrow 0$, a contradiction since $h_n(y_n) = 1$ for all $n \in \mathbb{N}$.

COROLLARY 1.2. – Let E be a polar lcs with a weak Schauder basis (x_n) . Then (x_n) contains a basic sequence.

PROOF. – If *E* has the (OP)-property, then (x_n) is a Schauder basis in *E*. Assume that *E* does not have the (OP)-property. By 1.1 there exists $x \in E$ such that $y_n = f_n(x) x_n$ does not converge to zero in *E*, where (f_n) is the sequence of coefficient functionals in *E'* associated with (x_n) . But $y_n \to 0$ in $\sigma(E, E')$. By [3] (y_n) contains a subsequence which is an «orthogonal» basic sequence in *E*.

For the rest of the paper we will ASSUME (if nothing more will be mentioned) that $E = (E, \tau)$ is a Hausdorff polar lcs over K and (x_n) is a weak basis (not necessarily Schauder) with its associated sequence (f_n) of coefficient functionals. Since (E, τ) is polar, for every $x \in E$ the set $\{f_n(x) x_n : n \in \mathbb{N}\}$ is $\sigma(E, E')$ -bounded, so it is τ -bounded, [13], 7.5. Following [1] we define $p^*(x) = \sup_n |f_n(x)| p(x_n), x \in E, p \in \mathcal{T}(E)$. Let τ^* be the locally convex topology on E defined by the seminorms $\{p^* : p \in \mathcal{T}(E)\}$.

We will prove that $\tau \leq \tau^*$ and (x_n) is an «orthogonal» basic sequence for (E, τ^*) . If (E, τ) is (sequentially) complete, then so is (E, τ^*) . If (E, τ) is weakly sequentially complete, then (E, τ^*) is complete. We show that $\tau = \tau^*$ if (x_n) is a weak Schauder basis and E is l^{∞} -barrelled. In particular $\tau = \tau^*$ for every polar Fréchet space with a weak basis.

2. – More about the topology τ^* .

Our first result introduces the basic properties of the topology τ^* .

PROPOSITION 2.1. – (a) (E, τ^*) is a polar space.

(b) The coefficient functionals f_1, f_2, \ldots , are τ^* -continuous.

(c) $\tau \leq \tau^*$; in particular (E, τ^*) is Hausdorff.

(d) If E is metrizable, then (E, τ^*) is metrizable.

(e) (x_n) is an *«orthogonal»* basic sequence in (E, τ^*) .

(f) (x_n) is an «orthogonal» basis in τ^* iff (x_n) is a topological basis in E. In this case, τ^* is the smallest locally convex topology on E greater that τ for which (x_n) is an «orthogonal» basis.

(g) Let (x_n) be a weak Schauder basis in E and E' is $\sigma(E', E)$ -sequentially complete. Then τ^* is compatible with the duality $\langle E, E' \rangle$ iff (x_n) is a weak Schauder basis in (E, τ^*) .

(h) If (x_n) is a Schauder basis in E and E' is $\sigma(E', E)$ -sequentially complete, then τ^* is compatible with the duality $\langle E, E' \rangle$.

(i) If E is bornological, then τ^* is compatible with the duality $\langle E, E' \rangle$ iff $\tau = \tau^*$.

PROOF. – Properties (a), (b) and (d) follow from the definition of τ^* .

(c) Let p be a polar τ -continuous seminorm on E and let $f \in E^*$ be such that $|f| \leq p$. Since $x = \sum_n f_n(x) x_n$ weakly, $x \in E$, one gets $f(x) = \sum_n f_n(x) f(x_n)$. Then

$$|f(x)| \leq \sup_{n} |f_{n}(x)| |f(x_{n})| \leq \sup_{n} |f_{n}(x)| p(x_{n}) = p^{*}(x)$$

Hence $|f| \leq p^*$ as soon as $|f| \leq p$. Then $p = \sup\{|f| : f \in E^*, |f| \leq p\} \leq p^*$ and consequently p is τ^* -continuous.

(e) Let *D* be the linear span of the elements x_n , $n \in \mathbb{N}$. Take $x \in D$. Then $x = \sum_{j=1}^{n} f_j(x) x_j$ for some $n \in \mathbb{N}$ and for all $p \in \mathcal{F}(E)$ $p^*(x) = \sup_m |f_m(x)| p(x_m) = \sup_{1 \le m \le n} |f_m(x)| p^*(x_m)$.

Since the expression of each $x \in D$ as $\sum_{n} t_n x_n$ is unique, this proves that (x_n) is an «orthogonal» basis in (D, τ^*) . Now (*) (from the Introduction) completes the proof.

(f) First assume that (x_n) is an «orthogonal» basis for (E, τ^*) . Since $\sigma(E, E') \leq \tau \leq \tau^*$, the coefficient functionals are the f_n and every $x \in E$ can be written uniquely as $x = \sum_n f_n(x) x_n$ in τ . For the converse, it is enough to prove

(by (e)) that $x = \sum_{n} f_n(x) x_n$ in τ^* , $x \in E$. Since (x_n) is a basis in τ , for $x \in E$, $m \in \mathbb{N}$ and $p \in \mathcal{F}(E)$ one has $p^*(x - \sum_{n=1}^{m} f_n(x) x_n) = \sup_{n > m} |f_n(x)| p(x_n) \to 0$. Now we prove the second part of (f). Let τ_0 be a locally convex topology on E, $\tau \leq \tau_0$, such that (x_n) is an «orthogonal» basis for τ_0 (with coefficient functionals (f_n)) and let $\mathcal{F}_0(E)$ be a basis of τ_0 -continuous seminorms on E for which x_1, x_2, \ldots , are orthogonal. For every $p \in \mathcal{F}(E)$ there exists $p_0 \in \mathcal{F}_0(E)$ such that $p \leq p_0$ and hence $p^* \leq p_0$, so $\tau^* \leq \tau_0$.

(g) The «only if» is obvious. In order to show the «if» suppose that (x_n) is a weak Schauder basis for τ^* . Clearly $(E, \tau)' \in (E, \tau^*)'$. By Lemma 3 of [1] the coefficient functionals (f_n) associated to (x_n) form a Schauder basis of $(E, \tau^*)'$ (endowed with the canonical weak* topology). Since $f_n \in E'$ for all $n \in \mathbb{N}$ and E' is $\sigma(E', E)$ -sequentially complete we conclude that $(E, \tau^*)' \in (E, \tau)'$.

(h) It follows directly from (f) and (g).

(i) If τ^* is compatible with the duality $\langle E, E' \rangle$ and (E, τ) is bornological, then $\tau^* \leq \tau$, [13], 7.9.

It seems to be natural to ask whether (x_n) is a weak Schauder basis for (E, τ^*) . If K is spherically complete, the answer is «yes». Indeed, since E has the (OP)-property, cf. [11], it is a basis for E. Finally 2.1 (f) completes the proof.

EXAMPLE 2.2. – Let c_{00} be the subspace of c_0 consisting of all sequences (ξ_n) such that $\xi_n = 0$ for large $n \in \mathbb{N}$. Let $\alpha \in K$, $0 < |\alpha| < 1$, $E = c_{00}$. Put $x_n := (1, \alpha, \alpha^2, ..., \alpha^{n-1}, 0, 0, ...)$, $n \in \mathbb{N}$. It is easy to see that (x_n) is a Schauder (Hamel) basis of E but not «orthogonal». (a) This shows that not every Schauder basis is «orthogonal». (b) The topology τ^* on E associated with (x_n) on E is defined by the norm $||x||^* = \sup_n |(\alpha \xi_n - \xi_{n+1}) \alpha^{-n}|$, $x = (\xi_n)$, not equivalent to the original one of E. Therefore (by 2.1 (i)) the topology τ^* is not compatible with the duality $\langle E, E' \rangle$. This example shows that if E' is not $\sigma(E', E)$ -sequentially complete, then properties (g) and (h) of 2.1 are not true in general.

It turns out that for a wide class of lcs with a weak Schauder basis the equality $\tau = \tau^*$ holds.

PROPOSITION 2.3. – Let (x_n) be a weak Schauder basis for an l^{∞} -barrelled space (E, τ) with its associated sequence (f_n) in E'. Then $\tau = \tau^*$.

PROOF. – By 2.1 we need only to show that $\tau^* \leq \tau$. Take $p \in \mathcal{F}(E)$. Since $p(x_n) \in \overline{|K|}$, for each $n \in \mathbb{N}$, there exists a sequence $(t_m^n)_m$ in K such that $|t_1^n| \leq |t_2^n| \leq \ldots$ and $\sup_m |t_m^n| = \lim_m |t_m^n| = p(x_n), n \in \mathbb{N}$. Hence for each $x \in E$ one gets $p^*(x) = \sup_{n,m} |f_n(x) t_m^n|$. Then $(t_m^n f_n)_{n,m}$ is a pointwise bounded se-

quence in E'. By assumption this sequence is τ -equicontinuous. Hence p^* is τ -continuous, so $\tau^* \leq \tau$.

3. – Two completeness theorems.

Theorem 3.2 below extends (to the p-adic case) results of [7], 2.5, 2.6. We need the following simple

LEMMA 3.1. – Let $(y_t)_{t \in T}$ be a Cauchy net in (E, τ^*) . Then $z_n := \lim_t f_n(y_t)$ exists for every $n \in \mathbb{N}$.

Now we are ready to prove the following

THEOREM 3.2. – (a) If (E, τ) is (sequentially) complete, then so is (E, τ^*) .

(b) If (E, τ) is weakly sequentially complete, then (E, τ^*) is complete.

PROOF. – (a) Assume that (E, τ) is complete and let $(y_t)_{t \in T}$ be a Cauchy net in (E, τ^*) . Since $\tau \leq \tau^*$, $y := \lim_t y_t$ exists in τ . It is enough to prove that if a τ^* -Cauchy net $(y_t)_{t \in T}$ converges to zero in τ , then it converges to zero in τ^* . Let z_n be as in 3.1, $n \in \mathbb{N}$. We show that $z_n = 0$, $n \in \mathbb{N}$. To prove this it is enough to show that $\sum_n z_n x_n = 0$ weakly. Let $f \in E'$. For each $m \in \mathbb{N}$, $t \in T$ we have

$$\left|\sum_{n=1}^{m} z_n f(x_n)\right| \le \max\left\{ \left| f(y_t) \right|, \left| f(y_t) - \sum_{n=1}^{m} f_n(y_t) f(x_n) \right|, \left| \sum_{n=1}^{m} (f_n(y_t) - z_n) f(x_n) \right| \right\}.$$

Let $\varepsilon > 0$. There exists $t_0 \in T$ such that for all $t, r \ge t_0, n \in \mathbb{N}$ one gets $|f_n(y_t) - f_n(y_r)| |f(x_n)| < \varepsilon$; note that $|f|^*$ is a polar τ^* -continuous seminorm. Take $t \ge t_0$ such that $|f(y_t)| < \varepsilon$. Then $\left|\sum_{n=1}^m (f_n(y_t) - z_n) f(z_n)\right| \le \varepsilon$, $m \in \mathbb{N}$ since $y_t = \lim_m \sum_{n=1}^m f_n(y_t) z_n$ weakly we have

$$f(y_t) = \lim_m \sum_{n=1}^m f_n(y_t) f(x_n).$$

Therefore

$$\left|f(y_t) - \sum_{n=1}^m f_n(y_t) f(x_n)\right| < \varepsilon$$

for sufficiently large $m \in \mathbb{N}$. Hence $\sum_{n} z_n f(x_n) = 0$, so $z_n = 0$, $n \in \mathbb{N}$. Finally we prove that $y_t \to 0$ in τ^* . Take $p \in \mathcal{J}(E)$, $\varepsilon > 0$. There exists t_0 in T such that for $t, r \ge t_0$ we have

$$|f_n(y_t) - f_n(y_r)| p(x_n) \le p^*(y_t - y_r) < \varepsilon$$
,

674 N. DE GRANDE-DE KIMPE - J. KĄKOL - C. PEREZ-GARCIA - W. H. SCHIKHOF

 $n \in \mathbb{N}$. Then $|f_n(y_t) - z_n| p(x_n) \leq \varepsilon, t \geq t_0, n \in \mathbb{N}$. Hence $p^*(y_t) = \sup_n |f_n(y_t)| p(x_n) \leq \varepsilon$

for $t \ge t_0$.

(b) Assume that (E, τ) is weakly sequentially complete. Let $(y_t)_{t \in T}$ be a Cauchy net in (E, τ^*) . By 3.1, $z_n := \lim_t f_n(y_t)$ exists for $n \in \mathbb{N}$. We show that $\sum_n z_n x_n$ exists in $\sigma(E, E')$. By weak sequential completeness this is the same as showing that $z_n x_n \to 0$ weakly. For $t \in T$ and $n \in \mathbb{N}$ we note the following

$$|z_n f(x_n)| \le \max \{ |(z_n - f_n(y_t)) f(x_n)|, |f_n(y_t) f(x_n)| \},\$$

 $f \in E'$. Let $\varepsilon > 0$. There exists $t_0 \in T$ such that for $t, r \ge t_0$ we have $|(f_n(y_t - y_r)) f(x_n)| < \varepsilon$, $n \in \mathbb{N}$. Choose $t \ge t_0$. There exists $n_0 \in \mathbb{N}$ such that $|f_n(y_t) f(x_n)| < \varepsilon$ for all $n \ge n_0$. Therefore $|z_n f(x_n)| \le \varepsilon$ for $n \ge n_0$. Let $a := \sum_n z_n x_n$ in $\sigma(E, E')$. We show that $a = \lim_t y_t$ in τ^* . Let $p \in \mathcal{F}(E), \varepsilon > 0$. Then

$$p^{*}(a - y_{t}) = p^{*}\left(\sum_{n} z_{n} x_{n} - \sum_{n} f_{n}(y_{t}) x_{n}\right) = \sup_{n} |z_{n} - f_{n}(y_{t})| p(x_{n}).$$

Since $(y_t)_{t \in T}$ is τ^* -Cauchy, the last expression can be made less than $\varepsilon > 0$ for enough large $t \in T$.

We complete with the following conclusions.

COROLLARY 3.3. – Let (E, τ) be a polar lcs with a weak basis (x_n) . Assume that $\tau = \tau^*$. Then

- (a) (x_n) is a weak Schauder basis.
- (b) (x_n) is an *«orthogonal»* basic sequence in τ .
- (c) If (E, τ) is weakly sequentially complete, then (E, τ) is complete.
- (d) If (x_n) is a basis in (E, τ) , it is an *«orthogonal»* basis.

The next conclusion extends (to the p-adic case) Kalton's result of [6], Corollary 2, cf. also [7], [16].

COROLLARY 3.4. – Let (E, τ) be a lcs with a topological basis. If $\tau = \tau^*$ and (E, τ) is sequentially complete, then (E, τ) is complete.

PROOF. – By assumption (E, τ) is of countable type, so it is polar and has the (OP)-property. Hence the space (E, τ) is weakly sequentially complete and 3.3 applies.

3.4 suggests the following

EXAMPLE 3.5. – Let K_0 be the linear subspace of the product space K^K of the elements $x = (x_t)_{t \in K}$ such that $\{t \in K : x_t \neq 0\}^{\#} \leq \aleph_0$, where $A^{\#}$ denotes the cardinality of a set A. Then K_0 is a sequentially complete non-complete subspace of K^K of countable type (without a weak Schauder basis) and K_0 is l^{∞} -barrelled. Indeed, following as in [4], the space K_0 is the inductive limit of the Fréchet spaces K^J for all countable subsets J of K. Then the inductive limit space K_0 is l^{∞} -barrelled, cf. [10].

Applying 2.1, 3.2 and the closed graph theorem of [5], 2.2, one deduces also the following

COROLLARY 3.6. – If (E, τ) is a polar Fréchet space with a weak basis, then $\tau = \tau^*$.

REFERENCES

- N. DE GRANDE-DE KIMPE, On the structure of locally K-convex spaces with a Schauder base, Indag. Math., 34 (1972), 396-406.
- [2] N. DE GRANDE-DE KIMPE C. PEREZ-GARCIA, Weakly closed subspaces and the Hahn-Banach extension property in p-adic analysis, Indag. Math., 91 (1988), 253-261.
- [3] N. DE GRANDE DE KIMPE J. KAKOL C. PEREZ GARCIA, W. H. SCHIKHOF, Orthogonal sequences in non-archimedean locally convex spaces, Indag. Math. N.S., 11 (2000), 187-195.
- [4] S. DIEROLF, The barrelled space associated with a bornological space need not be bornological, Bull. London Math. Soc., 12 (1980), 60-62.
- [5] T. GILSDORF J. KAKOL, On some non-archimedean closed graph theorems, In: Proc 4th Intern. Conf. on p-adic Functional Analysis, Nijmegen, The Netherlands, Marcel Dekker, **192** (1997), 153-159.
- [6] N. J. KALTON, Schauder decomposition and completeness, Bull. London Math. Soc., 2 (1970), 34-36.
- [7] P. K. KAMTHAN M. GUPTA, Weak Schauder bases and completeness, Proc. Roy. Irish Ac., 78 (1978), 51-54.
- [8] J. KAKOL, The weak basis theorem for K-Banach spaces, Bull. Soc. Math. Belg., 45 (1993), 1-4.
- [9] J. KAKOL T. GILSDORF, On the weak basis theorems for p-adic locally convex spaces, In: Proc. 5th Intern. Conf. on p-adic Functional Analysis, Poznań, Poland, Marcel Dekker, 207 (1999), 149-167.
- [10] C. PEREZ-GARCIA W. H. SCHIKHOF, p-Adic barrelledness and spaces of countable type, Indian J. Pure Appl. Math., 29 (1998), 1099-1109.
- [11] C. PEREZ-GARCIA W. H. SCHIKHOF, The Orlicz-Pettis property in p-adic analysis, Collect. Math., 43 (1992), 225-233.

676 N. DE GRANDE-DE KIMPE - J. KĄKOL - C. PEREZ-GARCIA - W. H. SCHIKHOF

- [12] A. C. M. VAN ROOLJ, Non-archimedean functional analysis, Marcel Dekker, New York (1978).
- [13] W. H. SCHIKHOF, Locally convex spaces over nonspherically complete valued fields, Bull. Soc. Math. Belg., 38 (1986), 187-224.
- [14] W. ŚLIWA, Every infinite-dimensional non-archimedean Fréchet space has an orthogonal basic sequence (to appear in Indag. Math.).
- [15] J. VAN TIEL, Espaces localement K-convexes, Indag. Math, 27 (1965), 249-289.
- [16] J. H. WEBB, Schauder decompositions in locally convex spaces, Camb. Phil. Soc., 76 (1974), 145-152.

N. De Grande-De Kimpe: Department of Mathematics Vrije Universiteit Brussels, Belgium; e-mail: ndegrand@pop.vub.ac.be

J. Kąkol: Faculty of Mathematics and Informatics A. Mickiewicz University Poznan, Poland; e-mail: kakol@amu.edu.pl

C. Perez-Carcia: Departamento de Matematicas, Facultad de Ciencias Universidad de Cantabria, 39071 Santander, Spain e-mail: perezmc@matesco.unican.es

W. H. Schikhof: Department of Mathematics University of Nijmegen, The Netherlands; e-mail: schikhof@sci.kun.nl

Pervenuta in Redazione il 20 luglio 2000