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Hausdorff Fréchet Closure Spaces
with Maximum Topological Defect.

RICCARDO GHILONI

Sunto. – È noto che il difetto topologico di ogni spazio di chiusura di Fréchet é minore
o uguale al primo ordinale non numerabile v 1 . Nel caso di spazi di chiusura di
Hausdorff Fréchet si ottengono alcune condizioni generali sufficienti affinché il di-
fetto topologico sia pari a v 1 . Alcuni risultati classici e recenti sono dedotti dal no-
stro criterio.

Summary. – It is well-known that the topological defect of every Fréchet closure space
is less than or equal to the first uncountable ordinal number v 1 . In the case of
Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so
that the topological defect is exactly v 1 . Some classical and recent results are de-
duced from our criterion.

Dedicated to Roberto Ghiloni and Giuseppina Gavazzi

Introduction.

One of the most important topological notions is undoubtedly the one of
convergence of sequences. It not only satisfies Analysis’s necessities, but has
also been the main guide-idea for the foundation of General Topology (see
[Fré]).

From this notion it seems natural to infer a closure operation in the follow-
ing way. Let X be a topological space and let A be a fixed subset of X . One de-
fines the sequential closure of A as the subset cl (A) of X formed by all limit
points of sequences ranging in A . Such closure operation fulfils the properties
cl (¯)4¯ , A% cl (A) for each A%X , cl (ANB)4 cl (A)Ncl (B) for each A , B%
X but in general it’s not idempotent as it’s required for the closure operations
derived from some topological structure for X .

To understand how this sequential closure operation is «near» the topology
of X , one may consider the transfinite sequence of iterations of the sequential
closure (this idea go back to Hausdorff [Ha]). It’s well-known that it suffices to
apply the sequential closure at the most v 1 times (where v 1 is the first un-
countable ordinal) to have a topological closure.

In literature there exist examples for which really need v 1 iterations. We
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recall some of these spaces: the set of all real-valued functions on the real line
equipped with the topology of pointwise convergence (remember the existence
of Baire functions of type a but not less than a for each fixed ordinal number a
less than v 1), the space Sv of Arhangel’skiı̆ and Franklin [AF] (this is the first
example of countable homogeneous Hausdorff sequential topological space in
which the topological closure is obtained by precisely v 1 iterations of the se-
quential closure), the rational Féron cross topological plane (see [Gr]) (using
this space G. H. Greco answered affirmatively to a question by Arhangel’skiı̆
and Franklin [AF] about the existence of some countable homogeneous Haus-
dorff sequential topological space different from Sv) and the radiolar topologi-
cal plane (see [Fc̆]).

In this paper, using the language of closure spaces, we obtain a general cri-
terion (see Theorem 6 and Theorem 9) which allows us to single out some type
of such spaces; in particular we find again the space Sv , the rational Féron
cross topological plane and the radiolar topological plane above-mentioned.

We now mention a result (Theorem 11) obtained in a class of closure spaces
which represents a natural ambient to apply our criterion that is the «limited
topological spaces» (see subsection 3.3).

First we quickly recall some basic definitions about closure spaces.
A closure space is a pair (X , u) where X is a set and u is a closure operator

for X that is a map from the family of all subsets of X into itself such that
u(¯)4¯ , A%u(A) for each A%X , u(ANB)4u(A)Nu(B) for each A , B%X .
For each x�X one defines the u-neighborhood filter 8u (x) of x in such way
that x� 1

U�8u (x)
U and, for each fixed A%X , x�u(A) iff (i.e. «if and only if»)

each U�8u (x) intersects A . A base system for u is a map that assigns to
every x�X a base of the filter 8u (x). On the other hand, fixed a base system
B on X (i.e. a map that assigns to every x�X a base of a filter in X) such that
x� 1

U� B(x)
U for each x�X , there exists only one closure operator v for X such

that B is one of its base systems; one may verify that v(A)4]x�XNUOAc¯

(U� B(x)( for each A%X .
We introduce the limited topologies.
Let X be a set with topology t , let 8t (x) be the t-neighborhood filter of x

for each x�X and let D be a map that assigns to each point x�X a subset D(x)
of X in such way that x� D(x) for each x�X . D will be called set distribution
in X . We define a base system B on X putting B(x) »4]UOD(x)(U�8t (x) for
each x�X . In this manner B is a base system for the closure operator t D for X
defined as follows

t D (A) »4]x�XNUOD(x)OAc¯ (U�8t (x)(

for all A%X . t D will be called D-limited topology t . An example of this type of
closure operators is the Féron cross closure operator (see [Gr] just quoted).
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From our criterion follows the next result.

THEOREM 11. – Let (E , y) be a metrizable topological real (or complex) vec-
tor space and let D be a set distribution in E . Put u»4y D . Suppose that D is
invariant under translations and it assigns to the origin 0 of E a finite union of
y-closed vectorial subspaces of E . Only one of the two following situations
must occur: either D(0 ) is a vectorial subspace of E and hence u is a topologi-
cal closure operator for E or D(0 ) is not a vectorial subspace of E and hence it
needs v 1 iterations of u to obtain a topological closure operator for E .

Really we prove some more. In fact we introduce the evolution function evu

of u as the map that assigns to each x�X the smallest ordinal number a
(which always exists) such that 8u a (x)48u a11 (x) and we prove that, in the
case «D(0) is not a vectorial subspace of E», evu is constantly equal to v 1 .

1. – Preliminaries.

In this section, using a more formal language, we introduce the basic ideas
concerning closure spaces which include topological ones; in particular we re-
view some classical definitions and results in terms of closure operators and
we briefly investigate the relationship with the classical ones. The main refer-
ences are [C̆e] (especially sections 14, 15, 16, 17 of Chapter III and sections 31,
33 of Chapter VI), [No1] (section 1) and [DG1]; moreover we point out [Fr1]
and [Fr2] as fundamental works in the study of sequential topological
spaces.

Let X be a set. A closure operator for X is a map u from the family P(X) of
all subsets of X into itself such that: u(¯)4¯ , A%u(A) for each A%X , u(AN
B)4u(A)Nu(B) for each A , B%X . The pair (X , u) will be called closure
space (or pretopological space) and if A%X then u(A) will be called u-clo-
sure of A .

A closure u is said to be finer than a closure v , or v to be coarser than u , if
u(A)%v(A) for each A%X . We write uUv or vTu . Evidently this is an order
on the class of all closure operators for X .

Associated with any closure operator u for X there is the interior operator
intu from P(X) into itself defined by intu »4C i u i C where C is the comple-
ment operator for X . If A%X then intu (A) will be called u-interior of A . A in-
terior operator int for X is characterized by the following property: int(X)4
X , int(A)%A for each A%X , int(AOB)4 int(A)O int(B) for each A , B%X .
Obviously there is a bijective correspondence between the class of all interior
operators for X defined by the former three conditions and the class of all clo-
sure operators for X; so one may define closure spaces by using of interior
operators.
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Let (X , u) be a closure space with associated interior operator int. A subset
A of X will be called u-closed if u(A)4A and u-open if its complement is u-
closed (or equivalently if A4 int(A)). The family of all u-closed subsets of X
has the usual properties of stability with respect to finite unions and arbitrary
intersections, hence the family of all u-open subsets of X is closed under arbit-
rary unions and finite intersections. We point out that a closure operator for X
is not uniquely determined by the corresponding collection of open subsets of
X , namely there may exist different closure operators for X with the same col-
lection of open sets.

A u-neighborhood of a subset A of X is any subset U of X such that A%
int(U). The filter formed by the family of all u-neighborhoods of A will be indi-
cated with 8u (A) and it will be called u-neighborhood filter of A; for conve-
nience we put 8u (x) »48u (]x() for each x�X . The neighborhood system of
u (or «of (X , u)») is the map from X to the family F(X) of all filters in X that
assigns to every x the filter 8u (x); we indicate this filter system with the sym-
bol 8u . If v is another closure operator for X such that uUv (or uTv) then we
have 8uU8v (resp. 8uT8v) where this formula means that the filter 8u (x)
is finer than the filter 8v (x) (resp. «is coarser») for each x�X . If for each x�
X we have a base B(x) of the filter 8u (x) then the correspondent map B is
called base system for u (or «for (X , u)»); moreover we say that a map
C : XK P(X) is a section of 8u (or «of u») if, for each x�X , C(x)�8u (x). It’s
very important to observe that u is completely determined by 8u , in fact it’s
easy to see that a point x�X belongs to the closure of a subset A of X iff (i.e.
«if and only if») each U�8u (x) intersects A; in this way x� int(A) iff there
exists U�8u (x) contained in A .

It is possible (and sometimes very convenient) to define a closure operator
for X by specifying which filters (or filter bases) in X are neighborhood filters
(resp. bases of the neighborhood filters) of points. For example if B is a base
system on X (i.e. a map that assigns to each x�X a base B(x) of a filter in X)
such that x� 1

U� B(x)
U for each x�X then there exactly exists one closure oper-

ator u for X such that B is a base system for u (obviously we have u(A)4]x�
XNUOAc¯ (U� B(x)( for each A%X). In this manner we have another
equivalent description of the closure spaces.
A topological closure operator t for a set X is a closure operator for X satis-
fying the idempotent condition: t i t4t; in this case (X , t) will be called topo-
logical closure space (or briefly topological space) and t will also be called
topology for X . It’s easy to verify that a closure operator u for X is topological
iff the u-closure of each subset of X is u-closed or iff, for each x�X , the family
of all u-open neighborhoods of x is a base of the filter 8u (x). These conditions
ensure that the topological closure operators for X coincide with the usual clo-
sure operators associated with the classical topologies for X . In particular
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every topological closure operator is completely determined by the collection
of its open sets (or closed sets).

Now we define the topological modification of a closure space.
Let (X , u) be a closure space. The topological modification of u is the

finest topological closure operator tu for X coarser than u and the topological
modification of (X , u) is (X , tu). We point out that tu is the unique topology
for X such that the collections of all tu-open subsets (or tu-closed subsets) and
of all u-open subsets (resp. u-closed subsets) of X coincide; in particular it fol-
lows that the operation t preserves the order on the class of all closure opera-
tors for X that is if v is another closure operator for X such that vUu (or
vTu) then tvUtu (resp. tvTtu).

There are further ways to characterize the topological modification of u;
one of these is the following. Let ]u a(a be the transfinite sequence of closure
operators for X defined as follows: for each A%X , u 0 (A) »4A , u a11 (A) »4
u(u a (A) ) and u a (A) »4 0

bEa
u b (A) if a is a limit ordinal. u a will be called a th

power of u . It’s well-known that there exists an ordinal g depending only on
cardinality of X such that u g4u g11 ; the latter equation is equivalent to u g4

u g
i u g and we have tu4u g .
Let Ordg be the segment of all nozero ordinal numbers b such that

bGg .
In the sequel we refer to the ordinal number

td(u) »4min ]b�Ordg Nu b4u b11(

as the topological defect of u (or «of (X , u)»).
We now explain the «neighborhood-version» of the precedent transfinite

sequence and so we define the a th power of the neighborhood system 8u

which will must be equal to the neighborhood system of u a .
First we examine the case a42. Since intu 24 intu i intu we observe that,

for each x�X , it holds

8u 2 (x)4]V%XNx� intu (intu (V) )(4]V%XN intu (V)�8u (x)(

that is V�8u 2 (x) iff intu (V) is a u-neighborhood of x . Fix V�8u 2 (x) for some
x�X and put U»4 intu (V). By definitions and by the latter observation we
have that U%V , U�8u (x) and V�8u (y) for each y�U . If we assign to each
y�U the set Vy »4V then we obtain the following expression of V: V4 0

y�U
Vy

(we emphasize that U�8u (x) and Vy�8u (y) for every y�U). Now let U 8�
8u (x) and, for each y�U 8 , let Vy8�8u (y). Put V 8 »4 0

y�U 8
Vy8 . It’s immediate

to see that U 8% intu (V 8 ) and so intu (V 8 )�8u (x) that is V 8�8u 2 (x). Summa-
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rizing we have obtained the following equation

8u 2 (x) »4] 0
y�U

Vy NU�8u (x), Vy�8u (y) (y�U( .

The latter equation suggests the correct meaning that we must assign to
the following notion in order to define the a th power of 8u .

Let F� F(X) and M : XK F(X) a filter system in X (i.e. a map that assigns
to each point of X a filter in X), we put

Fl M »4 m 0
y�U

Vy NU�F , Vy� M(y) (y�Un ;

it’s easy to see that Fl M � F(X), FUFl M and if x� 1
U�F

U then
M(x)UFl M.

Let u be a closure operator for X , we define the filter system 8u
a for each

nozero ordinal a as follows: 8u
1 »48u , 8u

a11 (x) »48u (x) l8u
a for each x�X ,

8u
a (x) »4 1

bEa
8u

b (x) for each x�X if a is a limit ordinal. One can verify that: if

aGb then 8u
aU8u

b , 8u
a48u a and so 8tu48u

g for some ordinal g depending
only on X (for more details see [DG1], section 3).

Now we furnish two pointwise versions of topological defect.
We define the topological defect function of u , tdu : XKOrdg , and the

evolution function of u , evu : XKOrdg (remember that Ordg is the segment
of all nozero ordinal numbers b such that bGg), putting respectively

tdu (x) »4min ]a�Ordg N8u
a (x)48tu (x)( ,

evu (x) »4min ]a�Ordg N8u
a (x)48u

a11 (x)( .

We have evuGtdu and td(u)4sup
x�X

]tdu (x)(. Moreover u is topological iff evuf1

(or equivalently tduf1 or td(u)41).
We now restrict our attention to the sequential case.
Let X be a set and let u be a closure operator for X . The sequential con-

vergence class U u of u is the relation consisting of all pairs (S , x) such that S
is a sequence in X (i.e. a map from the set N of all nozero natural numbers to
X) converging to x with respect to u (i.e. S is eventually in each u-neighbor-
hood of x). For convenience we write SK

u
x instead of (S , x)�U u . Clearly if S

is the constant sequence ]x(n then SK
u

x and if NK
u

x then every subse-
quences of N converges to x with respect to u . If v is another closure operator
for X such that vUu or vTu then U v%U u , U v&U u respectively (for more de-
tails see section 35 of [C̆e], [Do], [No2], [DG2] and the references of [DG2]).
The sequential modification of u (or sequential closure operator associat-
ed with u) is the closure operator su for X defined as follows

su(A) »4]x�XN)SK
u

x , S(N)%A(
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for each A%X and so we call (X , su) sequential modification of (X , u). The se-
quential modification of u is the finest closure operator v for X such that U v4

U u ; in particular suUu and if v is a closure operator for X finer (or coarser)
than u then sv is finer (resp. coarser) than su . The su-closed (or su-open) sub-
sets of X are traditionally called u-sequentially closed (resp. u-sequentially
open) subsets of X .

Two very important classes of closure operators are the Fréchet closure
operators cl defined by s(cl )4 cl and the sequential topologies y (or ele-
mentary topologies) which are topological closure operators y with the prop-
erty t(sy)4y; we say that (X , cl ) is a Fréchet space and (X , y) is a sequen-
tial topological space. Moreover, fixed x�X , we say that a closure operator
u for X is Fréchet at x iff for every subset A of X such that x�u(A) there
exists a sequence in A which converges to x with respect to u that is x�su(A);
in this way u is a Fréchet closure operator iff it’s Fréchet at each point of X .
Clearly the sequential modification of any closure operator for X is a Fréchet
closure operator and any Fréchet topology for X (i.e. Fréchet topological clo-
sure operator for X) is sequential, while the vice versa is not true (see for
example [DG1], section 7 or Theorem 3, section 2 and section 3 of this paper).
We point out that a topological closure space is sequential iff every sequential-
ly open subset of X is open (or equivalently «iff every sequentially closed sub-
set of X is closed»). For any sequential topology y for X we define the sequen-
tial order of y by td(sy) (in this manner y is Fréchet iff its sequential order is
1). We recall that it’s known that the topological defect of every Fréchet clo-
sure operator and in particular the sequential order of any sequential topology
is less than or equal to the first uncountable ordinal number v 1 (see [Ku],
[Do], [No1], [No2]).

2. – The theorems.

We start this section with some definitions and lemmas. For short in the
sequel of the paper we’ll often use the term «space» to indicate «closure
space».

DEFINITION 1. – Let (X , t) be a topological space. (X , t) is a T3
1-space if it’s

a T3-space and it satisfies the first axiom of countability (in the usual way);
in this case we also say that t is a T3

1-topology for X.

LEMMA 2. – Let (X , cl) be a Fréchet space and let y be a T3
1-topology for X

such that clUy . Also let V be a y-open subset of X , let x be a point not in V
and let ]yn(n be a sequence in V converging to x with respect to cl.

There exists a subsequence ]xk(k of ]yn(n and, for each k , there are three
y-open subsets V k

(1) , V k
(2) and Dk such that
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1. for each k , xk�V k
(1) , y(V k

(1) )%V k
(2) , V k

(1) and V k
(2) are contained in V

(remember that, in our notation, if A%X then y(A) is the closure of A in the
space (X , y) );

2. ]Dk(k is a non-increasing sequence of subsets of X which forms a
base for the y-neighborhood filter of x ;

3. for each k , V k
(2)ODk114¯ and 0

nFk
V n

(2)%Dk (in particular V k
(2)O

V h
(2)4¯ for each kch);

4. g0
k

y(V k
(1) )hN ]x( is y-closed (and hence cl-closed) and it’s the y-clo-

sure (and so the cl-closure) of 0
k

y(V k
(1) ).

PROOF. – Since y is T3
1 and clUy we always have that y is a Hausdorff

Fréchet topology (remember that T3 implies T2 and the first axiom of count-
ability implies that y is Fréchet), cl is Hausdorff (use the usual condition on
neighborhoods to define Hausdorff closure operators and hence Hausdorff
closure spaces) and ]yn(nK

y
x (remember that U cl%U y).

We observe at once that there exists a subsequence ]y 8n (n of ]yn(n with
distinct values; in fact the range of the sequence is necessarily infinite other-
wise there exists a subsequence of ]yn(n constantly equal to some ym which is
different from x because ym�V while x�V . This constant subsequence y-con-
verges both to x and to ym but this contradicts the Hausdorff’s condition on y .
In the sequel of the proof we indicate again ]y 8n (n with the symbol ]yn(n .

Let ]Vn(n be a base for the y-neighborhood system of x such that Vn is y-
open and Vn11%Vn for each n and put nh »4min ]nNym�Vh (mFn( for each
non-negative integer h . Of course the sequence ]nh(h is non-decreasing and
it’s unbounded, otherwise there would exist a bound M and so yM�1

h
Vh4]x(

(remember that T3 implies T1) which is impossible. In this manner there exists
a subsequence ]xk(k of the subsequence ]ynh

(h with distinct values such that
xk�Vn for each kFn .

We now construct by induction two sequences ]Bk(k and ]Ck(k of y-open
subsets of X in such way that, put Sk »4]xn NnFk(N ]x(, it holds: xk�Bk%
V , Sk11%Ck%Vk11 , BkOCk4¯ and Bk11NCk11%Ck for each k .

First we observe that Sk is y-closed for each fixed k; in fact if N is a se-
quence in Sk that y-converges to some y in X then one of the two following sit-
uations must occur. Either the range of N is infinite, in which case N and ]xk(k

have in common a subsequence and hence y4x , or the range of N is finite and
so y4xn for some nFk . In any case y�Sk , therefore Sk is y-sequentially
closed and so it’s y-closed (remember that y is Fréchet and hence it’s a se-
quential topology).

We now start with the induction.
Let k41. Since y is T3 and x1�S2 we can choose two disjoint y-open sub-
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sets B 81 and C 81 such that x1�B 81 and S2%C 81 . We put B1 »4B 81 OV and
C1 »4C 81 OV2 .

Let k4n11. According to the inductive assumption, there are v-open
subsets Bk and Ck of X with k41, 2 , R , n such that xk�Bk%V , Sk11%Ck%
Vk11 , BkOCk4¯ for each k and Bk11NCk11%Ck for each kEn . Since xn11�
Sn12 we can choose again two disjoint y-open subsets B 8n11 and C 8n11 such that
xn11�B 8n11 and Sn12%C 8n11 . We define Bn11 »4B 8n11OVOCn and Cn11 »4

C 8n11OCnOVn12 . In this manner the required properties (which are xn11�
Bn11%V , Sn12%Cn11%Vn12 , Bn11OCn114¯ and Bn11NCn11%Cn) follow
evidently by construction.

Now we put V k
(2) »4BkOVk for every k , D1 »4X and Dk »4Ck21 if kD1.

Using the T3-separation property of y and the relation xk�V k
(2) , we can fix, for

each k , a y-open neighborhood V k
(1) of xk such that y(V k

(1) )%V k
(2) (observe that

V k
(1) may be chosen arbitrarily small about xk).

Conditions 1, 2 and 3 in the terms of this lemma hold by construction of
]Bk(k and ]Ck(k .

Remain to be shown condition 4. Let A»40
k

y(V k
(1) ), x 8�AN ]x( and

let U be a y-neighborhood of x such that x 8�U . Since y is T3 we can suppose
U»4y(Vn ) for some n; it holds that

0
kFn

y(V k
(1) )% 0

kFn
V k

(2)% 0
kFn

Vk4Vn%U ,

ANU4UN 0
kEn

y(V k
(1) ) and so ANU is y-closed. Since y(A)%y(ANU)4

ANU and x 8�ANU we have x 8�y(A); therefore, for each x 8�AN ]x(, x 8�
y(A) and so y(A)%AN ]x(. On the other hand ]xk(k is a sequence in A which
converges to x with respect to y and hence y(A)4AN ]x(. Furthermore we
have A% cl(A)%y(A)4AN ]x( and ]xk(kK

cl
x , therefore cl (A)4AN ]x(.

This completes the proof. r

Before presenting next lemma we recall some general notions.
Let (X , u) be a space and let A be a subset of X . We define the u-derived of

A as the subset Deru (A) of X formed by the points x such that x�u(A0]x().
We now fix another subset B of X and we observe that the map uB from P(B)
into itself that assigns to each A%B the set u(A)OB is a closure operator for
B . uB is called relativization of u to B and (B , uB ) is a subspace of (X , u). By
a straightforward transfinite induction argument (see [Gr], Lemma 1 and
Lemma 2) one can prove the following

LEMMA 3. – Let (X , u) be a space, let a be an ordinal number and let A be a
subset of X .
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It holds

1. u a11 (A)4ANDeru (u a (A) );

2. if B is a u-open subset of X then BOu a (A)4 (uB )a (BOA) and in
particular BOu a (A)%u a (BOA).

DEFINITION 4. – Let (X , u) be a space and let t be a topology for X . A sec-
tion C of 8u is t-locally closed (or t-loc. closed for short) if, for each x�X ,
C(x) is locally closed with respect to t (in the usual way).

DEFINITION 5. – Let (X , u) be a space and let A be a subset of X . We put

¯u (A) »4AOu(CA)

where C is the complement operator for X and we call ¯u (A) proper frontier of
A with respect to u.

Elaborating the transfinite induction idea of G. H. Greco in [Gr] and using
Lemma 2 and Lemma 3 we obtain the main theorem of this paper which we
state and we prove below.

THEOREM 6. – Let (X , cl ) be a Fréchet space and let y be a T3
1-topology for

X such that cl Uy . Assume that there exists a section C y-loc. closed of 8cl

such that, for each fixed x�X , putting Cx »4 C(x) it holds

1. x� cl (¯cl (Cx ) );

2. there exists Vx�8cl (x) such that, for all y�VxO¯cl (Cx ), we have

y� cl (¯cl (Cy )0Cx ) .

Under these conditions the evolution function of cl is constantly equal
to v 1 .

In particular tdclfv 1 , and so the topological defect of cl is v 1 . Further-
more it holds that the sequential order of t(cl) is v 1 and hence t(cl ) is a se-
quential topology for X which is not Fréchet at every point of X .

PROOF. – In order to prove that evcl (x)4v 1 for each x�X , we must show
that, for each x and for each ordinal number aEv 1 , there exists a subset U of
X in such way that U�8cl

a (x)08cl
a11 (x) (because, as we have just recalled, for

all Fréchet closure operators u , it holds evuGv 1 ).
In this way it suffices to prove that, for each x�X and for each ordinal

number aEv 1 , it holds the following property P(x , a): for each y-open sub-
set V of X with x� cl (¯cl (Cx )OV)0V , there exists a subset A of V such that
cla (A)%V and clb (A)0V4]x( for each fixed ordinal number bDa .

Suppose in fact that P(x , a) holds and let V4C]x( (remember that y is T1

and so V is y-open). By hypothesis 1 we have x� cl (¯cl (Cx ) ) and by relation
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Cx�8cl (x) it holds x� cl (C Cx ) and hence x�¯cl (Cx ). From these facts it fol-
lows that cl (¯cl (Cx )OV)0V4cl (¯cl (Cx ) )O ]x(4]x( and so by P(x , a) there
exists A%V such that cla (A)�O x and cl a11 (A)�x or equivalently CA�
8cla (x)08cla11 (x)48cl

a (x)08cl
a11 (x) which is precisely what we need.

We now proceed by transfinite induction to prove P(x , a).
Let a40 and let x�X . Fix a y-open subset V of X such that x�

cl (¯cl (Cx )OV)0V . Since cl is Fréchet there exists a sequence ]xn(n in
¯cl (Cx )OV which cl-converges to x . Put A»40

n
]xn(. By the same argument

used in the Proof of Lemma 2, we see at once that cl (A)4AN ]x( and cl (A)
is cl -closed. Since A%V it holds P(x , 0 ).

Let a be an ordinal number with 0EaEv 1 and let x�X . Since v 1 is the
first uncountable ordinal and aEv 1 there exists a non-decreasing sequence
]b n(n of ordinal numbers strictly less than a such that sup

n
b n4sup ]bNbEa(.

Now fix a y-open subset V of X such that x� cl (¯cl (Cx )OV)0V and let
]yn(n be a sequence in ¯cl (Cx )OV cl-converging to x . By Lemma 2 we can
choose a subsequence ]xk(k of ]yn(n and, for each k , three y-open sets V k

(1) ,
V k

(2) and Dk with the prescribed properties and such that ]xk(k lies in the cl-
neighborhood Vx of x mentioned in hypothesis 2.

For each k we put

Hk »4V k
(1) 0Cx

in such way that Hk is y-open. This choice of ]V k
(1)(k is possible because V k

(1)

may be taken arbitrarily small about xk (see the Proof of Lemma 2) and C is y-
loc. closed. By hypothesis 2, for each k , xk� cl (¯cl (Cxk

)0Cx ) and hence, being
V k

(1) a cl-neighborhood of xk (for it’s a cl-open set containing xk), xk lies in the
cl-closure of (¯cl (Cxk

)0Cx )OV k
(1) . On the other hand (¯cl (Cxk

)0Cx )OV k
(1)4

¯cl (Cxk
)OHk and so

xk� cl (¯cl (Cxk
)OHk )0Hk .

Now by inductive assumption we may apply P(xk , b k ) with Hk obtaining, for
each k , a subset Ak of Hk such that clb k (Ak )%Hk and clb (Ak )0Hk4]xk( for
each fixed bDb k .

We shall prove that the set A»40
k

Ak satisfies P(x , a) with the fixed V .

Clearly x� cla11 (A) in fact xk� clb k11 (Ak )% cla (A) for each k and
]xk(kK

cl
x . By Lemma 2 it holds

(1) clb (A)%y b (A)4y(A)%y g0
k

V k
(1)h%y g0

k
y(V k

(1) )h4

g0
k

y(V k
(1) )hN ]x(% g0

k
V k

(2)hN ]x(%VN ]x(
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for each fixed nozero ordinal number b; in particular clb (A)0V4]x( for each
fixed bDa and hence we have the second part of P(x , a) with V .

Remain to be proved that x� cla (A) in fact by (1) we have cla (A)%VN ]x(
and so we would have cla (A)%V . We observe that cla (A)40

k
clb k11 (A) and

so, in order to prove that x� cla (A), it’s sufficient to show that x� clb k11 (A)
for each k . On the other hand by the first result in Lemma 3 follows that
clb k11 (A)4ANDercl (clb k (A) ) and hence, being x�A , we may merely show
that x�Dercl (clb k (A) ), namely we may prove that, for each fixed k , there exists
U�8cl (x) (depending on k) such that (clb k (A)0]x()OU4¯ .

Fix some k and put U»4 CxODk . By the second result in Lemma 3 we
have

(clb k (A)0]x()OU4 (clb k (AODk )0]x()OU(2)

in fact

(clb k (A)0]x()OU4clb k (A)ODkOC]x(OU% (clb k (AODk )0]x()OU .

Using the equation (2) and the inclusion clb k (AODk )% g 0
nFk

V n
(2)hN ]x(

(which one may easily obtain following the same argument used to prove (1)),
we obtain

(clb k (A)0]x()OU% 0
nFk

(V n
(2)OU)

in fact

(clb k (A)0]x()OU4 clb k (AODk )O (U0]x()% gg 0
nFk

V n
(2)hN]x(hO(U0]x()4

4 0
nFk

(V n
(2)O (U0]x() )4 0

nFk
(V n

(2)OU) .

Now we recall that, for each n , clb n (An )%Hn and HnOCx4¯; moreover
we observe that from Lemma 2 and the definition of A follows the equation
AOV n

(2)4An for each n . Finally we have

(clb k (A)0]x()OU4¯

in fact

(clb k (A)0]x()OU4 (clb k (A)O (U0]x() )O 0
nFk

(V n
(2)OU)4

4 0
nFk

(V n
(2)OUOclb k (A) )%

% 0
nFk

(CxOclb k (AOV n
(2) ) )4
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4 0
nFk

(CxOclb k (An ) )%

% 0
nFk

(CxOclb n (An ) )%

% 0
nFk

(CxOHn )4¯ .

In conclusion we prove the last assertion which we have given in the thesis
of this theorem.

We have just proved that evcl4tdclfv 1 , now we show that this result im-
plies that the sequential order of t(cl) is v 1 completing the proof.

We start by making a general observation.
Let u be a Fréchet closure operator for X with Hausdorff topological

modification.
It holds that s(tu)4u and in particular tu is sequential.
To prove this assertion we observe that u4su (i.e. u is Fréchet) implies

that tu4tsuUts(tu)Utu and hence we have tu4ts(tu) that is tu is sequen-
tial. Putting v»4s(tu) we obtain tv4ts(tu)4tu . Since by hypothesis tu is
Hausdorff we have that u and v are Hausdorff Fréchet closure operators for X
with the same topological modification tu . On the other hand every Hausdorff
Fréchet closure operator u for X is «topologically greatest» that is if v 8 is an-
other closure operator for X such that tu4tv 8 then uUv 8 (see [DG1] section
6, Theorem 6.1 and especially Theorem 6.4). In particular we have uUv and
vUu that is u4v and so u4s(tu) (for another approch see [Do], sec-
tion 14).

The preceding comment applies to our case in fact cl is a Fréchet closure
operator finer than y and hence t(cl)Uy , on the other hand y is a T2-topology
and so t(cl) is a T2-topology too. In this way we have st(cl)4 cl .

Follows that the sequential order of t(cl) is td(cl) that is v 1 (compare the
latter result with Theorem 7.6 in [DG2]). In conclusion we may apply Theorem
7.1 of [DG1] which tells us that t(cl) is not Fréchet at every x of X . This com-
pletes the proof. r

We proceed with some observations about Theorem 6.
Let X , cl and y be as in Theorem 6. We remind that a subset A of X is y-loc.

closed iff there exists a y-closed subset F and a y-open subset G of X such that
A4FOG . Follows that a section C of 8cl is y-loc. closed iff there exists a sec-
tion B of 8cl and a section H of 8y with values in the set of all y-open subsets
of X in such way that

C(x)4y(B(x) )OH(x)

for each x�X . In this manner we have an explicit way to construct y-loc.
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closed section of 8cl from arbitrary sections of 8cl . About condition 2 of the
preceding theorem we may say that, in one sense, «y furnishes the necessary
space to cl so that it can evolve many times (in fact v 1 times)». Condition 1 is a
geometric version of the following one: evclF2 (which is obviously necessary
to obtain evclfv 1), more precisely we have

LEMMA 7. – Let (X , u) be a space and let x be a point of X . It holds:
evu (x)F2 iff there exists U�8u (x) such that x�u(¯u (U) ).

PROOF. – First assume that there exists U�8u (x)08u
2 (x) (i.e. evu (x)F2).

By definition of 8u
2 (x) we have that, for each fixed V�8u (x) contained in U

and for each Vy�8u (y) with y�V , 0
y�V

Vy%O U . In particular there exists y�V

such that, for all Vy�8u (y), Vy%O U that is y�u(CU). In this manner for every
u-neighborhood V of x contained in U we have VO¯u (U)4VOu(CU)c¯

and so x�u(¯u (U) ).
Now suppose x�u(¯u (U) ) for some u-neighborhood U of x . We have

x�u(¯u (U) )%u 2 (CU) therefore U�8u 2 (x)48u
2 (x). This completes the

proof. r

We now present a corollary of Theorem 6 which we’ll use in the third
section.

COROLLARY 8. – Let X be a set, let y be a T3
1-topology for X and let cl and cl8

be two Fréchet closure operators for X such that clU cl8Uy . Suppose that
there exists a y-loc. closed section C of 8cl8 such that, for each x�X , putting
Cx »4 C(x) it holds

1. x� cl (¯cl (Cx ) );

2. there exists Vx�8cl8 (x) such that if y�VxO¯cl8 (Cx ) then

y� cl (¯cl (Cy )0Cx ) .

Each Fréchet closure operator cl* for X such that clU cl*U cl8 fulfils the
conditions of Theorem 6 by section C and hence evcl*fv 1 .

PROOF. – We observe at once that if u and v are two closure operators for X
such that uUv then ¯u (A)%¯v (A) for each A%X and we remember that in this
case 8v (x)%8u (x) for each x�X . Follows that C is also a section for 8cl* and,
for each x�X , Vx�8cl* (x) and ¯cl (Cx )%¯cl* (Cx ), therefore

x� cl (¯cl (Cx ) )% cl*(¯cl* (Cx ) )

and for every y�VxO¯cl* (Cx )%VxO¯cl8 (Cx )

y� cl (¯cl (Cy )0Cx )% cl*(¯cl* (Cy )0Cx ) .
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In this way cl* fulfils the mentioned conditions of Theorem 6 and so the proof
is complete. r

Let X be a set and let u be a closure operator for X . We say that (X , u) is a
perfect closure space if there is not u-isolated points in X (use the usual con-
dition on u-neighborhoods to define u-isolated points in X) or equivalently if
x�Deru (X) for every x�X .

A map D from X to P(X) will be called set distribution in X if x� D(x) for
each x�X (remember that P(X) is the family of all subsets of X); moreover if y
is a topology for X then we say that D is a set distribution of y-loc. closed sub-
sets of X if D is a set distribution in X such that D(x) is a y-loc. closed subset
of X for each x�X .

We now present a very simple and effective version of Theorem 6.

THEOREM 9. – Let (X , cl) be a perfect Fréchet space and let y be a T3
1-topol-

ogy for X such that clUy . Suppose that there exists a set distribution D of y-
loc. closed subsets of X such that

1. intcl (D(x) )4]x( for each x�X .

Then evcl4tdclfv 1 and so both the topological defect of cl and the sequen-
tial order of t(cl) are v 1 .

PROOF. – As we have already seen in the Proof of Theorem 6 it suffices to
prove by transfinite induction that, for each x�X and for each ordinal num-
ber aEv 1 , it holds the following property R(x , a): for each y-open subset V
of X with x� cl (V)0V , there exists A%V such that cla (A)%V and
clb (A)0V4]x( for each fixed ordinal number bDa .

In fact suppose that R(x , a) holds for every aEv 1 and for every x�X . Fix
x�X and let V»4C]x(. Since (X , cl) is perfect we have that x� cl (V)0V and
so we can apply R(x , a) with such V obtaining evcl (x)Fa for each aEv 1 and
hence the thesis.

We start with the transfinite induction.
Let a40 and x�X . One can easily obtain the demonstration following the

corresponding part of the Proof of Theorem 6.
Let a be an ordinal number strictly less than v 1 and let x�X . As in the

Proof of the quoted theorem we fix: a non-decreasing sequence ]b n(n of ordi-
nal numbers strictly less than a such that sup

n
b n4 sup ]bNbEa( and a y-

open subset V of X such that x� cl (V)0V . We observe that hypothesis 1 of
this theorem implies that D(x)�8cl (x). In this manner there exists a se-
quence ]yn(n in VOD(x) cl-converging to x . By Lemma 2 we can choose a
subsequence ]xk(k of ]yn(n and, for each k , three y-open sets V k

(1) , V k
(2) and

Dk with the prescribed properties and such that, putting Hk »4V k
(1) 0D(x) for
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each k , Hk is y-open. On the other hand, for each k , we have xk� cl (Hk )0Hk in
fact

cl (Hk )4 cl (V k
(1)OC D(x) )&V k

(1)Ocl (C D(x) )4V k
(1)OC]x(4V k

(1)�xk

(observe that in the second step of the preceding expression we use Lemma 3
and in the third step we use hypothesis 1 of this theorem). Now we may apply
R(xk , b k ) with Hk and we can conclude the proof as in the Proof of
Theorem 6. r

We underline that the set distribution D in X mentioned in Theorem 9 is a
section of 8cl in fact by condition 1 we have x� intcl (D(x) ) for each
x�X .

The next result is a corollary of Theorem 9 which corresponds to Corol-
lary 8 of Theorem 6.

COROLLARY 10. – Let X be a set, let y be a T3
1-topology for X and let cl and

cl8 be two Fréchet closure operators for X such that clU cl8Uy and (X , cl) is
perfect. Suppose that there exists a y-loc. closed section D of 8cl8 such that,
for each x�X , it holds

1. intcl (D(x) )4]x(.

Each Fréchet closure operator cl* for X such that clU cl*U cl8 fulfils the
conditions of Theorem 9 by the set distribution D and hence evcl*fv 1 .

PROOF. – Since cl*U cl8 the set distribution D is a y-loc. closed section of
8cl* . Since clU cl* we have that (X , cl* ) is perfect and it holds

x� intcl* (D(x) )% intcl (D(x) )4]x(

and so intcl* (D(x) )4]x( for each x�X . r

3. – Some applications.

3.1. The space Sv of Arhangel’skiı̆ and Franklin.

In 1968 Arhangel’skiı̆ and Franklin furnished (see [AF]) the first example
of countable homogeneous Hausdorff sequential topological space, called Sv ,
with sequential order equal to v 1 . For completeness we recall the definition of
Sv (following strictly pp. 314, 315 and 316 of [AF]) and we explain how to ob-
tain the result of Arhangel’skiı̆ and Franklin from Theorem 9. We underline
that all the following topological notions are usual.

Let S»4]0(Nm 1

n Nn�Nn%R with the usual relative topology. For each

n�N , let (Xn )xn
be a T1-topological space with a base point xn�Xn . If X is the
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disjoint topological sum of the spaces Xn then A»4]xn Nn�N( is a closed sub-

space of X and the map f : AKS such that f(xn ) »4 1

n
is continuous. One de-

fines the sequential sum as the adjunction space XNf S .
Now we construct the spaces Sn and we define the level ln (x) for points x of

Sn . Let S0 »4]0(%S and, having just defined Sn21 with base point 0�S , we
put Sn equal to the sequential sum of countably many copies of (Sn21 )0 , choos-
ing 0�S again as a base point. Let l0 (0) »40 and, having just defined ln21 (x)
for each x�Sn21 , we put ln (0) »40 and if x�Sn 0]0( then x lies in one copy of
Sn21 and so we may put ln (x) »4 ln21 (x)11. Now, for all points x of level n in
Sn (which are denumerable in number), take a copy (Sx )0x

of (S)0 and let Y be
the disjoint topological sum of the spaces Sx . If B»4]0x�YNx�Sn , ln (x)4n(
and g : BKSn is defined by g(0x ) »4x then the adjunction space YNg Sn is
homeomorphic to Sn11 . In this manner, for each n , we have a natural embed-
ding f n

n11 : SnKSn11 ; furthermore for each pair of integers m and n such
that mEn we may define f m

n putting f m
n »4f n21

n
iR i f m

m11 and hence we
have an inductive system of spaces Sn and maps f m

n . Finally (Sv , t) is defined
as the inductive limit of this system and so it’s sequential (see [Fr1],
Corollary 1.7).

We now present two equivalent descriptions of the sequential modification
(Sv , st) of (Sv , t) (N.B. The first of these descriptions and the idea to obtain
the second have been essentially extracted from [AF] page 318).

First of all we observe that we may define the level l(x) of a point x in Sv in
fact every Sn is canonically embedded in Sv and we may unambiguously put
l(x) »4 ln (x) where n is a fixed integer such that x�Sn . It’s easy to see that the
subset of Sv formed by the points of level n corresponds bijectively with the
set of all finite sequences of nozero integers of lengh n . In this manner there
is a correspondence between Sv and all finite sequences of nozero integers in-
cluded the empty sequence. A sequence of n nozero integers a1 , R , an will be
indicate with the symbol [a1 , R , an ] and the empty sequence with the symbol
[¯]. The preceding correspondence may be choosen in such way that the con-
vergence of the sequences in Sv can be described as follows. Let ak4

[a1
(k) , R , ank21

(k) , ank
(k) ] for each k . ]ak(k converges if it’s eventually constant or

if it’s not eventually constant but, eventually in k , nk is constantly equal to
some n , each of the first n21 coordinates is constant (suppose ai

(k)4ai with
i41, R , n21) and ank

(k)K1Q if kK1Q . If ]ak(k is eventually equal to
some a then ]ak(kKa , while if ]ak(k converges but it’s not eventually con-
stant then ]ak(kK [a1 , R , an21 ] (use the preceding assumption). This is the
first description we need.

Now we see the second description.
Let (Sv , st) be the above space understood as in the preceding repre-

sentation, let l2 be the Hilbert space of the real-valued sequences x4
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(x1 , R , xn , R) such that VxV2 »4 (!
n

xn
2 )1/2E1Q and let ]en(n be the stan-

dard orthonormal basis for l2 .
We define the map W : SvK l2 putting

W( [¯] ) »40

and

W( [a1 , R , an ] ) »4 !
k41

n g 1

ak
h ek

for each [a1 , R , an ]�Sv 0][¯](. Evidently W is one-to-one and it’s also se-
quentially continuous in fact if ]ak(kKa in Sv (we may suppose a4
[a1 , R , an21 ], ak4 [a1 , R , an21 , an

(k) ] for each k and ]an
(k)(kK1Q) then

VW(ak )2W(a)V24
1

an
(k)

and so ]W(ak )(kKW(a) in l2 . Observe that (Sv , st) and l2 equipped with the
usual metric topology s associated with VRV2 are Fréchet closure spaces, so
the sequential continuity of W and the continuity of W coincide (use the usual
condition on neighborhoods to define the continuity of a map between closure
spaces).

We put Lv »4W(Sv ) and we indicate with the symbol y the relativization of
s to Lv . Using the injectivity of W it’s easy to verify that there exists a (unique)
Fréchet closure operator cl for Lv such that W is a homeomorphism of the clo-
sure space (Sv , st) onto the closure space (Lv , cl) (see also Theorem 35 B.13
in [C̆e]). Moreover, since W is continuous from (Sv , st) to (l2 , s), it follows that
clUy .

We now work with the latter equivalent description of (Sv , st) that is
(Lv , cl).

Suppose a1 , R , an�N , we use the symbol aa1 , R , an b to indicate
W( [a1 , R , an ] ). We define a set distribution D in Lv putting

D(x) »4]ax1 , R , xn , jb�Lv Nj�N(N ]x(

for each x4 ax1 , R , xn b�Lv 0]0( and D(0 ) »4]a jb�Lv Nj�N(N ]0(.
Observe that D(x) is y-closed for every x�Lv because D(x) is clearly a

closed subset of l2 .
We prove that, for each fixed x�Lv , cl (C D(x) )4Lv 0]x( that is

intcl (D(x) )4]x(. Since every sequence cl -converging to ]x( may be eventu-
ally contained in D(x) we have that x� cl (C D(x) ). Suppose x4 ax1 , R , xn b.
Fix j�N and put y»4 ax1 , R , xn , jb, we have that y� D(x)0]x( and the se-
quence ]ax1 , R , xn , j , kb(k is contained in C D(x) and it converges to y with
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respect to cl (similarly if x4 0 then we fix j�N , we put y»4 ajb and we observe
that the sequence ]aj , kb(k lies in C D(0) and it cl-converges to y); in particular
we have the required property.

Summarizing Lv , cl, y and D fulfil the conditions of Theorem 9 and hence
we have td(st)4td(cl)4v 1 . On the other hand by definition td(st) is the se-
quential order of (Sv , t) and so we have obtained again Arhangel’skiı̆ and
Franklin’s result (see [1], Theorem 5.1 page 316).

3.2. Féron cross and radiolar topologies for the Euclidean plane.

Let R2 be the Euclidean plane equipped with the usual Euclidean topologi-
cal closure operator t and with the usual Cartesian coordinates (x , y).

We now define the Féron cross closure operator F (or briefly cross clo-
sure operator F) for R2 given a base system BF for F .

For each positive real number e and for each point p»4 (a , b) of R2 we
put

C(p) »4]x4a(N ]y4b(

and

Ce (p) »4 C(p)OBe (p)

where Be (p) is the usual t-open ball of radius e centered in p . C(p) is called
cross centered in p and Ce (p) is called e-cross centered in p . We define BF

putting

BF (p) »4]C1/n (p)Nn�N(

for each p�R2 and so we have

F(A)4]p�R2NAOC1/n (p)c¯ (n�N(

for each A%R2 . We underline that, for each p�R2 , BF (p) is countable and so
F is a Fréchet closure operator for R2 . The space (R2 , F) is called Féron pre-
topological plane or cross closure plane and the space (R2 , tF) is called
cross topological plane.

In order to define the radiolar topological plane we may first define the
closure operator R 8 and the radiolar closure operator R for R2 .

We fix p�R2 and we say that a subset A of R2 containing p is a p-radiolar
of R2 iff each straight line r through p intersects A in a subset Ar of r such that
p lies in the t r-interior of Ar where t r is the relativization of t to r . For each
p�R2 we define 8R 8 (p) as the collection of all p-radiolars of R2 . It’s immedi-
ate to verify that 8R 8 is a neighborhood system of a (unique) closure operator
R 8 for R2 (observe that 8R 8 is a filter system on R2 such that p� 1

U�8R 8 (p)
U for

each p�R2).



RICCARDO GHILONI660

Now we put the radiolar closure operator R for R2 equal to the sequential
modification of R 8 (i.e. R4sR 8); in particular a sequence S converges to p
with respect to R iff S is eventually in each p-radiolar of R2 . The space (R2 , R)
will be called radiolar closure plane and the space (R2 , tR) will be called ra-
diolar topological plane.

Evidently FURUt and since t is a metric topology for R2 it’s also a T3
1-

topology for R2 .
Now let D»4B1 ( (1 , 0 ) )O ]yF0( (where B1 ( (1 , 0 ) ) is the t-closed ball

centered in (1 , 0 ) with radius 1), for each W� [0 , 2p) let DW be the image of D
under the counterclockwise W-rotation around the origin 0 of R2 , let

S0 »4D0NDp/2NDpND3p/2

and, for each p�R2 , let Sp »4 S01p (i.e. Sp is the image of S0 under the transla-
tion of R2 that assigns to 0 the point p; see Figure 1).

We observe that the set distribution S defined putting S(p) »4 Sp for
each p�R2 is a t-closed section for R in fact Sp is a t-closed p-radiolar
for every p�R2 (remember that RUR 8). From elementary geometric
considerations it’s immediate to establish that, for each p�R2 , it holds

¯F (Sp )4¯R (Sp )4¯t (Sp )0]p( ( see Figure 1),

p�F(¯F (Sp ) )4¯t (Sp )

and for each q�¯R (Sp )

q�F(¯F (Sq )0Sp ) (see Figure 2).

In this manner we may apply Corollary 8 obtaining that the conclusions
of Theorem 6 hold for each Fréchet closure operator cl for R2 such that
FU clUR . In particular we have: td(F)4td(R)4v 1 , both the cross topol-
ogy tF and the radiolar topology tR are sequential but not Fréchet at
every point of R2 and their sequential order is v 1 . We point out that
this subsection may be repeated word for word using the rational plane

Figure 1. – Sp and ¯F (Sp ).
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q

q

p

Figure 2. – q�F(¯F (Sq )0Sp ).

Q2 instead of R2 and hence we have discovered again the results of the
papers [Gr] and [Fc̆].

3.3. Limited topological spaces.

Let (X , y) be a topological closure space and let D : XK P(X) be a set dis-
tribution in X . We define the closure operator y D for X as the unique closure
operator for X having the following base system By

(D) on X as one of its base
system:

By
(D) (x) »4]UOD(x)NU�8y (x)(

for each x�X . The closure operator y D will be called D-limited topology y
for X and the closure space (X , y D ) will be called D-limited topological
space (X , y).

By definition it follows that y DUy and it holds

y D (A)4]x�XNUOD(x)OAc¯ (U�8y (x)(

for every A%X . More precisely in the preceding expression for «y D (A)» we
may replace the neighborhood system 8y with any base system B for y , in
particular if v is a topology for X associated with a distance d and if Be (x) is the
subset ]y�XNd(x , y)Ee( of X then it holds

y D (A)4]x�XNB1/n (x)OD(x)OAc¯ (n�N(

for every A%X . In this way the cross closure operator for R2 is the C-limited
Euclidean plane topology where C is the «cross distribution» in R2 (see
above).

We observe that if (X , y) is a T3
1-topological space then each closure opera-

tor cl for X obtained limiting y (i.e. cl4y D for some set distribution D in X) is
finer than y and it’s a Fréchet closure operator for X because it admits a base
system B such that B(x) is countable for each x�X (remember that y fulfils
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the first axiom of countability). In particular X , cl and y fulfil the preliminary
hypotheses of each results obtained in the preceding section (i.e. (X , cl) is a
Fréchet space, y is a T3

1-topology for X , clUy); furthermore D is always a sec-
tion of 8cl . For these facts the limited topological spaces form a natural ambi-
ent to apply our results.

In this direction we present a theorem and a simple consequence of its
demonstration which study those limited topological spaces «similar to» the
cross closure plane.

THEOREM 11. – Let (E , y) be a metrizable topological real (or complex) vec-
tor space and let D be a set distribution in E . If D is invariant under trans-
lations and it assigns to the origin 0 of E a finite union of y-closed vectorial
subspaces of E then only one of the two following situations must occur:

1. D(0 ) is a vectorial subspace of E and hence y D is a topological clo-
sure operator for E ;

2. D(0 ) is not a vectorial subspace of E and hence evy D
fv 1 .

PROOF. – For convenience we put u»4y D , V»4 D(0 ) (hence V1x4 D(x))
and we use the symbol K to indicate both the set of real numbers and the set of
complex numbers equipped with the usual topologies.

First suppose V equal to a vectorial subspace of E . By definition of u the
collection

](V1x)OUNU is a y-open neighborhood of x(

is a base of the filter 8u (x) for each x�E .
Fix a y-open neighborhood U of 0 and fix a point y�UOV . Since V is a

vectorial subspace of E and U is y-open we respectively have that (V1y)O
U4VOU , (V1y)OU�8u (y) and so y� intu (UOV); in particular UOV4

intu (UOV). Follows that UOV is u-open for each fixed y-open neighborhood
U of 0 and hence the collection of all u-open neighborhoods of 0 is a base of the
filter 8u (0 ). Since D is invariant under translations we have that u is homoge-
neous and so, for each x�E , the collection of all u-open neighborhoods of x is
a base of the filter 8u (x); hence u is topological.

We now prove that if V is not a vectorial subspace of E then (E , u), y and
the section D of 8u fulfil the hypotheses of Theorem 6. By homogeneity of u it
suffices to verify that 0�u(¯u (V) ) and, for each y�¯u (V), y�u(¯u (V1y)0V).
These conditions are respectively equivalent to 0�y(¯u (V) ) and, for each y�
¯u (V), y�y(¯u (V1y)0V). To see this we observe that since uUy it holds
u(¯u (V) )%y(¯u (V) ) and u(¯u (V1y)0V)%y(¯u (V1y)0V) for each y�¯u (V);
in particular 0�u(¯u (V) ) implies 0�y(¯u (V) ) and y�u(¯u (V1y)0V) implies
y�y(¯u (V1y)0V) for each y�¯u (V). On the other hand one has 0�y(¯u (V) )
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iff, for each y-neighborhood U of 0, it holds ¯u (V)OUc¯; now ¯u (V)%V and
so ¯u (V)O (VOU)4¯u (V)OUc¯ for each y-neighborhood U of 0 that is 0�
u(¯u (V) ). Since ¯u (V1y)0V%V1y for each y�¯u (V) we obtain as above that
if y�y(¯u (V1y)0V) then y�u(¯u (V1y)0V).
In this way we must only verify that

0�y(¯u (V) )

and, for each y�¯u (V),

y�y(¯u (V1y)0V) .

First we calculate ¯u (V).
By assumption we may express V as union of some vectorial subspaces

V1 , R , Vn in such way that Vj%O 0
ic j

Vi for each j41, R , n .

We prove that ¯u (V)4V01
j

Vj .

If x�1
j

Vj then Vj1x4Vj for each j therefore V1x40
j

(Vj1x)4V and

so x�¯u (V) in fact x�u(CV). Assume now that x�V01
j

Vj . We may suppose

that x� 0
j41

p

Vj and x� 1
j4p11

n

Vj for some p� ]1, R , n21(. We fix y�V1 0 0
j42

n

Vj

and we observe that, for each j41, p11, R , n and each t�K0]0(,
x1 ty�Vj (otherwise if x1 ty�V1 then since y�V1 it would follow x4x1
ty2 ty�V1 which contradicts our assumptions; in the same way if x1 ty�Vj

for some j4p11, R , n then since x� 1
j4p11

n

Vj it would follow y4 1

t
(x1 ty2

x)�Vj which again contradicts our assumptions). On the other hand the map
g : KKE defined putting g(t) »4x1 ty is continuous (because (E , y) is a

topological vector space), 0
j42

p

Vj is y-closed and g(0)4x� 0
j42

p

Vj therefore

there exists a positive real number e such that if NtNEe then x1 ty� 0
j42

p

Vj .

Follows that, for each fixed t�K0]0( with NtNEe , x1 ty� (V11x)0V% (V1

x)0V4 (V1x)OCV therefore x�u(CV)OV4¯u (V) and hence ¯u (V)4
V01

j
Vj .

Now V1 0 0
j42

n

Vj%¯u (V) and it’s obvious that 0�y(V1 0 0
j42

n

Vj ) therefore
0�y(¯u (V) ).

Remain to be shown that for each y�¯u (V) it holds y�y(¯u (V1y)0V).

We may suppose that y� 0
j41

p

Vj and y� 1
j4p11

n

Vj for some p� ]1, R , n21(;

by the above reasoning we have y�y( (V11y)0V). Since ¯u (V1y)40
j

(Vj1
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y)01
j

(Vj1y) and 1
j

(Vj1y)%Vp11%V we have

¯u (V1y)0V& (V11y)0V

and so y�y(¯u (V1y)0V). r

COROLLARY 12. – Let (E , y) and D be as in the Theorem 11 and let C be a
set distribution in E invariant under translations which assigns to the ori-
gin of E a union of two indipendent straight lines r and s such that D(0 )O
C(0 )4]0(. Let also cl8 be the infimum of ]y D , y C( in the ordered class of all
closure operators for E .

Follows that each Fréchet closure operator cl* for E such that
y CU cl*U cl8 has evolution function constantly equal to v 1 .

PROOF. – First of all we remember that cl8 exists and it’s characterized by
the relation

8cl8 (x)48y D
(x)O8y C

(x)

for each x�E (see [C̆e], section 31) and so it coincides with the (DNC)-limited
topology y for E where DNC is the set distribution in E defined putting (DN
C)(x) »4 D(x)NC(x) for each x�E .

For short we put cl »4y C , V»4 D(0 ) and W»4 (DNC)(0)4VNrNs .
As above we may express V as union of vectorial subspaces V3 , R , Vn such

that Vj%O 0
ic j

Vi for each j43, R , n and so, putting V1 »4r and V2 »4s , we

have W4 0
j41

n

Vj and Vj%O 0
ic j

Vi for each j41, R , n .

Following the same argument used in the Proof of Theorem 11 we see that
¯cl (W)4W0]0( that is intcl (W)4]0(. On the other hand it’s immediate to
verify that E is perfect with respect to cl and DNC is a y-closed section of
8cl8; hence we may apply Corollary 10 and so we conclude the proof. r

Since all applications seen above concern homogeneous closure spaces one
may believe that our results work only in these cases. This is not true as we
can see with the following simple example.

Let C be a set distribution in R2 (equipped with the usual Euclidean topolo-
gy t) defined putting

C(p) »4 (]a(3Q)N (Q3]b()N ]p(

if p4 (a , b)�R2 0]0( and C(0 ) »4 (]0(3R)N (R3]0() (where Q is the
subset of R formed by all rational numbers) and let C be the set distribution
which assigns to each point p of R2 the t-closure of C(p) (i.e. the cross distribu-
tion in R2). It’s easy to prove that (R2 , t C ), t and C fulfil the conditions of The-



HAUSDORFF FRÉCHET CLOSURE SPACES ETC. 665

orem 9 but t C is not homogeneous. Otherwise there would exist a injective map
from a set of the form C(0 )OBe (0 ) (for some eD0) to a set of the form
](a , b)(N (]a(3Q)N (Q3]b() which is impossible for a question of cardi-
nality.

Thanks. I want to thank Professor Alberto Tognoli for his precious indica-
tions and encouragements. I’m also grateful to Pier Carlo Marroni for his help
with the realization of figures and to Patrizia Ghiloni and Elisa Biagiotti for
their linguistic advice.
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