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On the Variety of Linear Series on a Singular Curve.

E. BALLICO - C. FONTANARI

Sunto. – Sia Y una curva proiettiva ridotta e irriducibile con g»4pa (Y)F2. Per ogni
d , r interi positivi sia W r

d (Y)(**) l’insieme di tutti gli L�Picd (Y) con h 0 (Y , L)F
r11 e L generato dalle sezioni globali. In questo lavoro si dimostra che se dGg22,
allora dim (W r

d (Y) (**)Gd23r fatte salve rare eccezioni (essenzialmente il caso in
cui Y sia un rivestimento doppio della retta proiettiva).

Summary. – Let Y be an integral projective curve with g»4pa (Y)F2. For all positive
integers d , r let W r

d (Y)(**) be the set of all L�Picd (Y) with h 0 (Y , L)Fr11 and L
spanned. Here we prove that if dGg22, then dim (W r

d (Y) (**))Gd23r except in a
few cases (essentially if Y is a double covering).

1. – Introduction.

Let Y be an integral projective curve defined over an algebraically closed
field K with char (K)40. Set g»4pa (Y). For all positive integers d , r let
W r

d (Y) (**) be the set of all L�Picd (Y) with h 0 (Y , L)Fr11 and L spanned.
We stress that in the definition of W r

d (Y) (**) we assume that L is both locally
free and spanned. Indeed in general non-locally free rank 1 torsion free
sheaves of degree d are not parametrized by an irreducible d-dimensional va-
riety and if we start from a non-spanned line bundle, L , the subsheaf of L gen-
erated by H 0 (Y , L) may not be locally free. Furthermore, only spanned line
bundles correspond to morphisms into projective spaces and this was the ori-
ginal reason to study line bundles on smooth curves. If Y is smooth and
dGg21 H. Martens proved that dim (W r

d (Y) (**))Gd22r ([9]). For any
L�W r

d (Y) (**), let hL : YKP(H 0 (Y , L) be the associated morphism. We be-
lieve that, even in the case of smooth curves, to get refined informations on
W r

d (Y) (**) it is essential to distinguish between simple linear systems and lin-
ear systems composed with an involution. Hence we introduce the following
notation. If rF2, nF2 and qF0, set A r

d (Y) (**) »4]L�W r
d (Y) (**): hL is bi-

rational(, B r
d (Y) (**) »4]L�W r

d (Y) (**): hL is not birational(, B r
d (Y) (**)(n) »4

]L�B r
d (Y) (**): deg (hL )4n( and B r

d (Y) (**)(n , q) »4]L�B r
d (Y) (**)(n): the

normalization hL (Y) has genus q(. Set B 1
d (Y) (**) »4]L�W 1

d (Y) (**): there
are morphisms f : YKC and h : CKD with deg ( f )F2, deg (h)F2 and
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hL4h i f ( and A 1
d (Y) (**) »4W 1

d (Y) (**)0B 1
d (Y) (**). Take L�B r

d (Y) (**)(n);
by the very definition of hL the curve hL (Y) spans P(H 0 (Y , L) ) and there is
R�Pic (hL (Y) ) such that R�A r

d/n (hL (Y) ) (**), h 0 (hL (Y), R)4h 0 (Y , L) and
L`hL*(R): just take R»4OhL (Y) (1 ).

In section 3 we will prove the following result.

THEOREM 1.1. – Let Y be an integral projective curve and set g»4pa (Y).
Fix integers d and r with 1G2rGdGg22. Then:

(a) dim (W r
d (Y) (**))Gd22r . If Y is not hyperelliptic we have

dim (W r
d (Y) (**))Gd22r21.

(b) If rF2 we have dim (A r
d (Y) (**))Gd23r .

(c) If rF2, nF2, qF1 and the normalization of Y has genus at least 2
then dim (B r

d (Y) (**)(n , q) )Gd23r .

(d) If rF2 and nF3 we have dim (B r
d (Y) (**)(n) )Gd23r .

Theorem 1.1 is related to [3 Th. 3.2.1]. One of the two reasons for our in-
ability to adapt almost verbatim the proof of [3 Th. 3.2.1] is the obvious failure
of de Franchis’ theorem for singular curves. The second reason is studied in
2.7. Assume dim (B r

d (Y) (**)(2) )Fd23r11; we do not claim that for every ir-
reducible component, T , of (B r

d (Y) (**)(2) with dim (T)Fd23r11 there is a
degree 2 morphism u : YKC such that for general L�T there is M�
W r

d/2 (C) (**) with L`u *(M); we only claim that for a general L�T there is a
degree 2 morphism uL : XKCL and ML�A r

d/2 (CL ) (**) with L`u *(ML ); we do
not know if a more general statement is true; our ignorance is related to our
ignorance of any reasonably strong estension to singular curves of de Fran-
chis’ theorem. We discuss this topic in section 2. In section 2 we introduce the
notion of saturated morphism between integral projective curves and of satu-
ration of any morphism f : YKC . We believe that this is the right equivalent
for multiple coverings f : YKC between singular curves of the notion of pass-
ing to the normalization of Y and C when we do not want to change the domain,
Y , of the morphism. Using this notion we prove a finiteness theorem (2.3 and
2.4) which is the exact analogous of de Franchis’ theorem, but with two further
assumptions: we restrict to saturated coverings and we assume that either the
target has geometric genus 2 or the target has geometric genus 1 but we fix
the degree of the morphism. This form of de Franchis’ theorem is used to
prove part (c) of 1.1. We show that the corresponding result is not true if the
target has geometric genus 0, even if we work just with nodal curves (Example
2.6). Then we give a finiteness result which is essential for the proof of parts
(c) and (d) of 1.1 (see Proposition 2.7).

This research was partially supported by MURST (Italy).
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2. – Saturation and de Franchis’ theorem.

The aim of this section is to give the «right» generalization of de Franchis’
theorem to singular curves (see Corollary 2.3). Let Y and C be integral projec-
tive curves. We will say that the morphism f : YKC is saturated (or that C is
saturated for the pair (Y , f )) if for every integral projective curve C 8 , every
birational morphism u : C 8KC and every morphism f 9 : YKC 8 with u i f 94 f
the morphism u is an isomorphism. Notice that if deg ( f )41 f is saturated if
and only if f is an isomorphism. We will say that a pair ( f 9 , u) with f 9 : YKC 8 ,
u : C 8KC with u birational and u i f 94 f is a saturation of f if f 9 is
saturated.

LEMMA 2.1. – Let f : YKC be a morphism between integral projective
curves. Then f has a saturation f 9 : YKC 8 , u : C 8KC which is unique, up to
an automorphism of C 8 .

PROOF. – Since the uniqueness part is obvious, we will check only the exis-
tence part. Let p : XKY and p 8 : DKC the normalization. The morphism
f : YKC induces a morphism f 8 : XKD . Since OY is in a natural way a coher-
ent subsheaf of K-algebras of p*(OX ), we may see f *(OY ) as a subsheaf of
K-algebras of f 8*(OX ). The sheaf f 8*(OX ) is an OD-module. We see OC as a co-
herent subsheaf of OD . The existence of f : YKC shows that OC sends f *(OY )
into itself. Let A be the coherent K-subsheaf Hom ( f *(OY ), f *(OY ) ) of OD .
Thus OC’A’OD . Since there is an inclusion A’OC , it is easy to check that the
sheaf A is a sheaf of local K-algebras which defines a curve, C 8 , birational to C
and a morphism u : C 8KC . The inclusion OC’A shows that f factors through
u . For every pair (C 9 , h) with u 9 : C 9KC birational map and h : YKC 9 mor-
phism with u 9 i h4 f we have OC 9’A because f 8 is the same for f and f 9 . Thus
(C 8 , u , f 9 ) is a saturation of f . r

LEMMA 2.2. – Let Y , C , Z be integral projective curves and p : XKY ,
u : DKC and v : WKZ their normalizations. Take morphisms f : YKC and
h : YKZ and call f 8 : XKD and h 8 : XKW the induced morphisms. If f 84h 8

(up to an isomorphism of D and W) and h is saturated, then f factors through h ,
deg ( f )4 deg (h) and pa (C)Fpa (Z); we have pa (C)4pa (Z) if and only if C`

Z . If f 84h 8 up to an isomorphism of D and W and both f and h are saturated,
then f4h , up an isomorphism of C and Z .

PROOF. – We obviously have deg ( f )4 deg (h). The thesis follows from the
construction of the saturation, f 9 , of f given in the proof of Lemma 2.1 and the
assumption that both f 9 and h are saturated. r

COROLLARY 2.3. – Let Y be an integral projective curve such that its nor-
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malization has genus at least 2. Then there are only finitely many pairs
(C , f ), where C is an integral projective curve with normalization of genus at
least 2 and f : YKC is a saturated morphism.

PROOF. – Just use 2.2. and classical de Franchis’ theorem for smooth
curves.

REMARK 2.4. – Let Y be an integral projective curve such that its normal-
ization has genus at least 2. Fix an integer nF2. By Lemma 2.2 and a general-
ization of the classical de Franchis’ theorem due to Tamme ([10]) there are
only finitely many pairs (C , f ) where C is an integral projective curve with
normalization of genus 1 and f : YKC is a degree n saturated morphism (up
to isomorphisms of C if C is smooth).

REMARK 2.5. – Let f : YKC be a non-constant morphism between integral
projective curves, p : XKY and u : DKC their normalizations. Let ( f 9 , u 8 )
be the saturation of f with f 9 : YKC 8 and u 8 : C 8KC . If X4Y , then ( f 8 , u) is
the saturation of f . We claim that if Y is seminormal in the sense of [11] and
[4], then C 8 is seminormal. The claim follows from the universal property of
seminormalization. Alternatively, the claim is easily checked by applying the
construction of Y from X (i.e. gluing together some points of X) given in [11]
and [4]; indeed, if Q�Sing (Y) is obtained by gluing together P1 , R , Ps�X ,
then f 9 (Q) is obtained by gluing together f 8 (P1 ), R , f 8 (Ps ); in particular,
f 9 (Q)�Sing (C 8 ) if and only if card (] f 8 (P1 ), R , f 8 (Ps )()E1. This descrip-
tion shows that if Y has only ordinary double points as singularities, then C 8

has only ordinary double points as singularities. A similar description holds if
Y has some ordinary cusp; if Q is an ordinary cusp and f 9 : YKC 8 is saturated,
f 9 (Q) is an ordinary cusp if f 8 is unramified at p21 (Q), while f 9 (Q)�C 8reg if f 8 is
ramified at p21 (Q).

In our opinion the following example shows that there is no natural gener-
alization of Corollary 2.3 and Remark 2.4 to the case in which the normaliza-
tion of C has genus 0, even if we assume Y nodal.

EXAMPLE 2.6. – Fix integers q , u , v , n with qF0, nF2, and uFvF0. Let
X be a smooth curve of genus q and Y a nodal curve with p : XKY as normal-
ization and card (Sing (y) )4u . Set ]P1 , R , Pu( »4Sing (Y) and p21 (Pi ) »4
]P 8i , P 9i (, 1G iGu . Let A(v) be the set of all integral nodal curves with P1 as
normalization and exactly v nodes. A(v) is in a natural way the quotient of a
smooth variety of dimension 2v by an action of Aut (P1 ). For any C�A(v) the
set of all degree n saturated morphisms f : YKC may be described in the fol-
lowing way. Let b : P1KC be the normalization, ]Q1 , R , Qv( »4Sing (C) and
]Q 8j , Q 9j ( »4b 21 (Qj ), 1G jGv . Every degree n saturated morphism from Y
onto C is uniquely determined by a degree n morphism h 8 : XKP1 . For any
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degree n morphism f 8 : XKP1 , f 8 descends to a morphism h : YKC if and
only if for every integer i with 1G iGv either f 8 (P 8i )4 f 8 (P 9i ) or there is an
integer j(i) such that f 8 (]P 8i , P 9i ()4]Q 8j(i) , Q 9j(i)(. Assume that h exists. The
morphism h is saturated if and only if it does not factor through a partial nor-
malization of C , i.e. if and only if for every integer j with 1G jGv there exists
an integer i such that f 8 (]P 8i , P 9i ()4]Q 8j , Q 9j (. This description shows that if
there exists a degree n morphisms f 8 : XKP1 , then for any u , v with uFvD0
it is quite easy to construct Y such that for infinitely many C�A(v) there is a
degree n saturated morphism h : YKC with h 8 as associated morphism be-
tween the normalizations. Furthermore, for a general such Y we may even
count the dimension of the set of all such curves C�A(v).

The following result gives a key property of saturated morphisms.

PROPOSITION 2.7. – Let f : XKC be a saturated morphism between inte-
gral projective curves. Then the induced pull-back map a : Pic (C)KPic (X)
has finite kernel.

PROOF. – Let u : UKX and v : VKC be the normalization maps and
w : UKV be the morphism induced by f . It is well known that the pul-back
map b : Pic (V)KPic (U) induced by w has finite kernel because w is a surjec-
tive morphism between smooth projective curves. The connected component
Pic0 (C) (resp. Pic0 (X)) of the locally algebraic group Pic (C) (resp. Pic (X)) con-
taining the trivial line bundle is obtained from the Abelian variety Pic (V) (re-
sp. Pic (U)) by making a finite number of extensions with the multiplicative
group K* and the additive group K . Each of these extensions corresponds to a
partial normalization of a partial normalization of C (resp. X). If a has infinite
kernel, then there is a subgroup of Ker(a) isomorphic to the multiplicative
group K* or the additive group K and we may factorize f through the corre-
sponding partial normalization of C , contradicting the saturatedness of f .

3. – Proof of 1.1.

The algebraic set W r
d (Y) (**) has a natural scheme structure and locally a

determinantal description as in the case of smooth curves. We have the follow-
ing lemma.

LEMMA 3.1. – Fix L�W r
d (Y) (**). Let m L : H 0 (Y , L)7H 0 (Y , v Y7L *)K

H 0 (Y , v Y ) be the cup product. Then Coker (m L ) is isomorphic to the Zariski
tangent space of W r

d (Y) (**) at L .

PROOF. – Notice that the cup product is well-defined because L is locally
free and hence L7 (v Y7L *)`v Y . Let (Yreg )(d) be the symmetric product
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and ud : (Yreg )(d)KPicd (Y) the natural morphism. Fix D� (Yreg )(d) . Use D to
identify Picd (Y) and Pic0 (Y). As in [1. 1.2], with this identification the differen-
tial of ud at D is the coboundary linear map H 0 (Y , OD (D) )KH 1 (Y , OY ) in-
duced by the exact sequence

0KOYKOY (D)KOD (D)K0(1)

Now we take as D a general effective divisor with OY (D)`L; this is admis-
sible because by the spannedness of L at each point of Sing (Y) we may take
D%Yreg . Look at the determinantal description of the variety of special divi-
sors on a smooth curve ([2, p. 154]). Since L is spanned, we may assume D re-
duced; here we use char (K)40. Since D%Yreg , v Y is locally free at each point
of D . Hence for any choice of a basis v 1 , R , v g of H 0 (Y , v Y ) we may form
the Brill-Noether g3d matrix obtained by evaluating each v i at each point
of D; the rank of this matrix does not depend on the choice of local coordinates
at each point of D needed to evaluate each v i . Now just use the relevant
local calculations at each point of D made in [2, Ch. IV, §1, Lemma 1.1 and
Lemma 1.5].

Using Lemma 3.1 the proof of [2, Th. 4.5.1] works verbatim. Now we will
show that this observation gives the following extension of Martens’ theorem
which is the second assertion of part (a) of Theorem 1.1.

PROPOSITION 3.2. – Let Y be an integral projective curve with g»4pa(Y)F3.
Assume Y not hyperelliptic. Then for all positive integers d , r with either 0E
2rGdGg22 or d4g21D2rD0 we have dim (W r

d (Y) (**))Gd22r21.

PROOF. – Fix an irreducible component T of W r
d (Y) (**) with dim (T)Fd2

2r and a general L�T . By Lemma 3.1 we may copy the proof of [2, Th. 5.1],
which uses only the Petri map, the base point free pencil trick and obtain
h 0 (Y , L 72 )Fd11. Now in [2] one uses Clifford’s theorem; we may use the
form of Clifford’s theorem proved in [5, Th. 1 of the Appendix with J. Harris].
Since Y is assumed to be not hyperelliptic (in the usual sense of being a double
cover of P1) we have to exclude just a curve, T( g), with rational normalization
and with a unique singular point; such a curve has no spanned line bundle of
degree d (or even of degree g) by the last Remark in [7]. Hence, as in [2, top of
p. 193], it remains only the case d4g21 and L 72

`v Y . In particular we may
assume Y Gorenstein. Since even in the singular case Y has only finitely many
theta-characteristics and dD2r , we obtain a contradiction.

PROOF OF 1.1. – Since for hyperelliptic curves much more is known by [6],
we may assume dF3 and Y not hyperelliptic. Hence part (a) of 1.1 follows
from 3.2. We assume the existence of an irreducible subvariety, T , of
W r

d (Y) (**) with dim (T)Fd23r11 and take a general L�T .
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(i) Here we assume L�A r
d (Y) (**) and prove part (b) of 1.1. In particular

we have rF2. We want to find a contradiction. We need to solve (in our set-
up) a few exercises from [2]. We will do that in detail to correct a few misprints
contained in the relevant part of [2].

(a) ([2, Ex. IV.E-1]). Fix M�W r
d (Y) (**) with h 0 (Y , M)4r11 and

h 1 (Y , M)c0. We want to check that

dFg2d12r2h 0 (Y , v Y7M *72 ) .(2)

We take a linear subspace V’H 0 (Y , M) with dim (V)42 and V spanning
L . As in the base point free pencil trick V induces an exact sequence

0KOYKM5MKM 72K0(3)

From (3) we obtain 2(h 0 (Y , M) )G11h 0 (Y , M 72 )4112d112g1
h 0 (Y , v Y7M *72 ).

(b) ([2, Ex. III.B-6]). Fix M�A r
d (Y) (**) and N�W x

y (Y) (**). Let
m : H 0 (Y , M)7H 0 (Y , N)KH 0 (Y , M7N) be the multiplication map. We
want to check that if dFh 0 (Y , M)1h 0 (Y , N)2h 0 (Y , N7M *)21, then

dim ( Im (m)Fh 0 (Y , M)12h 0 (Y , N)2h 0 (Y , N7M *)22(4)

The misprint in the corresponding formula in [2] was remarked in [8, lines
between Lemmas 5 and 6]. Notice that in any tensor product appearing in (4)
one of the factors is locally free and we take the dual of a line bundle. We
follow the hint given in [2]. We may assume h 0 (Y , N)F2. Take a general
effective divisor D with OY (D)`M . Hence deg (D)4d and D is the sum of
d distinct regular points of Y; identify D with the corresponding subset of
Yreg . Take B%D with card (B)4r and h 0 (Y , M(2B) )41 and set A»4D0B .
Since hM is birational, we may apply the uniform position principle and
obtain h 0 (Y , N(2A)4max ]h 0 (Y , N7M *), h 0 (Y , N)2d1r(. Since dF
h 0 (Y , M)1h 0 (Y , N)2h 0 (Y , N7M *)21, we have h 0 (Y , N(2A) )4
h 0 (Y , N7M *). We claim that dim ( Im (m) )2dim ( Im (m)(2D) )F
(h 0 (Y , M)2h 0 (Y , M(2B) ) )1 (h 0 (Y , N)2h 0 (Y , N(2A) ) )21, i.e. we claim
that the number of conditions imposed by D on Im (m) is at least the number,
p , of conditions imposed by B on H 0 (Y , M) plus the number, q , of conditions
imposed by A on H 0 (Y , N) minus 1. To check the claim, let B 8’B with
card (B 8 )4p and A 8’A with card (A 8 )4q imposing independent conditions
respectively on H 0 (Y , M) and H 0 (Y , N). We may chose P�B 8 , Q�A 8 and
a�H 0 (Y , M), b�H 0 (Y , N), such that a(P)c0, a(V)40 for every V�
(B 8 0]P(), b(P)c0, b(Q)c0 and b(W)40 for every W� (A 8 0]Q(). Hence
a7b(Z)c0 for every Z� (A 8NB 8 0]P , Q() and a7b(P)c0. Hence the
number of conditions imposed by D on Im (m) is at least (p21)1 (q21)11,
as claimed. The obvious inequality dim ( Im (m)(2D) )Fh 0 (Y , N) allows us ob-
tain (4).
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(c) ([2, Ex. IV.E-2]. By (2) and Rieman-Roch we have dFh 0 (Y , L)1
h 0 (Y , v Y7L *)2h 0 (Y , v Y7L *72 )21. Hence we may apply (b) to the case
M»4L and N»4v Y7L *. By Riemann-Roch we obtain rank (m)F2g22d1
3r212h 0 (Y , v Y7L *72 ). By Lemma 2.1 we obtain in our situation as in [2,
Ex. IV.E-2] dim (T)G2g12d23r111h 0 (Y , v Y7L 72 )4h 0 (Y , L 72 )23rG
d23r (Clifford and assumption dGg22). Thus the case hL birational is over.

(ii) Now we assume hL not birational. Set n»4 deg (hL ). We may assume
that parts (c) and (d) of 1.1 are true for all pairs (r 8 , d 8 ) with 2Gr 8Er and
d 8Ed; if r42 we will use part (a) of 1.1 for the integer r 8 »41. If h 0 (Y , L)D
r11 the generality of L implies the existence of an irreducible subvariety, A ,
of B r

d (Y) (**) with dim (A)D dim (T) and such that a general M�A has
h 0 (Y , M)4r11. Hence it is sufficient to find a contradiction under the
assumption h 0 (Y , L)4r11. Set C»4hL (X)%Pr and R»4OC (1), so that
hL*(R)`L , h 0 (C , R)4r11 and n4d/deg (C). Take a general Q�Yreg

and set P»4hL (Q). We have P�Creg and P is general in C . We have
h 0 (C , R(2P) )4r and hL

21 (P)%Yreg . Thus L 8 »4L(2hL
21 (P) ) is locally free,

h 0 (Y , L 8 )4r and deg (L 8 )4d2n . Since char (K)40 and P is general,
R(2P) is spanned by the trisecant lemma. Thus L 8 is spanned, i.e. L 8�
W r21

d2n (Y) (**). We claim that the rational map from T into W r21
d2n (Y) (**) send-

ing L to L 8 is finite. Since hL (Q) is smooth , the saturations of the morphisms
hL and hL8 are the same. Let f : YKZ be the common saturation. Every ele-
ment in T comes from at least one element of W r d/n(Z) (**) through the mor-
phism a : W r

d/n (Z) (**)KW r
d (Y) (**) induced by f . Since hL (Q) is a smooth point

of C and hence of Z and R(2P) is spanned by the trisecant lemma, we have a
natural injective map from W r

d/n (Z) (**) into W r21
d/n21 (Z) (**) induced by the pro-

jection from P . We have also a morphism b : W r21
d/n21 (Z) (**)KW r21

d2n (Y) (**) in-
duced by f . From Proposition 2.7 it follows that b is finite. Hence the claim is
proved. By the claim there is an irreducible subvariety, G , of W r21

d2n (Y) (**)
with dim (T)G dim (G) and such that a general element of G corresponds to a
degree n covering. By the inductive hypothesis (or, if r42, by Proposition 3.2)
we have dim (G)Gd2n23(r21), which is absurd if nF3. If T’
B r

d (Y) (**)(n , q) we use 2.3 (case qF2) and 2.4 (case q41) and apply this
forms of de Franchis’ theorem to the saturation of the morphisms hL : YK

hL (Y), L�B r
d (Y) (**)(n , q). Hence we may repeat the proof of [3. Th. 3.2.1],

case not simple at p. 254, taking as C 8 the target of the saturation u : YKC 8

of the morphism hL . As in [3, part (ii) at p. 254] we need to apply the weaker
form of part (a) corresponding to classical H. Martens’ theorem
dim (A r

d/n (C 8 ) (**))Gd/n22r to the curve C 8 if pa (C 8 )F2 and, taking R�
Pic (C 8 ) with u *(R)`L and h 0 (C 8 , R)4h 0 (Y , L), we have h 1 (C 8 , R)D0.

Hence we have proved parts (c) and (d) of 1.1.
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