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Bollettino U. M. I.
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Exponential Decay
to Partially Thermoelastic Materials (*).

JAIME E. MUÑOZ RIVERA - VANILDE BISOGNIN - ELENI BISOGNIN

Sunto. – Studiamo il sistema termoelastico per materiali che siano parzialmente ter-
moelastici. Consideriamo cioè un materiale diviso in due parti, una delle quali sia
un buon conduttore di calore, in modo che ivi esistano fenomeni termoelastici.
L’altra parte materiale è un cattivo conduttore di calore e quindi non esiste il flus-
so di calore. In questo lavoro dimostriamo che per tali modelli la soluzione decade
esponenzialmente a zero quando il tempo tende all’infinito. Studiamo anche il caso
non lineare.

Summary. – We study the thermoelastic system for material which are partially ther-
moelastic. That is, a material divided into two parts, one of them a good conductor
of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of
heat so there is not heat flux. We prove for such models that the solution decays ex-
ponentially as time goes to infinity. We also consider a nonlinear case.

1. – Introduction.

Asymptotic stability for the n-dimensional thermoelastic system was study
by C. Dafermos [1], who proved that the solution in general goes to zero when
time goes to infinity, and depending on the domain operators and boundary
conditions the solution may converge to a undamping function. For the one di-
mensional case, thanks to the work of [4], [8], [14] [15] among others, it is weel
known by now that the solution allways decays to zero exponentially as time
goes to infinity. This means that the dissipation given by the thermal differ-
ence is strong enough to produce uniform rate of decay, but not so strong to
prevent blow up in a finite time as was proved by Hrusa and Messauodi [3].
They proved, for thermoelastic material which occupies the whole line, that

(*) Supported by a grant of CNPq.
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there are smooth initial data for which the solution will develop singularities in
finite time.

In this paper we consider the thermoelastic equation for mixed materials.
That is, materials divided into two parts. One of them is a bad conductor of heat
so there is not flux of heat along this part. The other part is a good heat conduc-
tor, therefore we have a thermoelastic phenomenon. Mathematically we can con-
sider the above problem as a locally distribuited thermal dissipation.

Locally distribuited dissipation was study for several authors and the com-
mon point in all the works cited below, is that they consider such dissipations
as an external source acting either in a part of the boundary (see for example
[2], [5], [6], [7], [9], [12], [16], [20]), or in a part of the material (see [10],
[11],[21]). The main difference between the above works and ours is that the
local thermal mechanism appears not due to any external source of dissipative
type, but due the structure of the material we are stuying.

Since we are reducing the effect of the thermal difference to only a small
part of the material [L1 , L], we may ask if such dissipation is strong enough to
produces uniform rate of decay for the solution. The constitutive laws corre-
sponding to mixed materias are given by

s4bux2au

q42ku x

e4u1aux

where s is the stress, q is the heat flux, and e is the internal energy. We are de-
noting by u the displacement, by u4Ta2t 0 the thermal difference, where Ta

is the absolute temperature and t 0 is the reference temperature which we will
assume to be constant. Finally by a we are denoting a non decreasing C 2 func-
tion such that a(x)40 for x� [0 , L1 ] and a(x)D0 for xDL1. In that follows
we will assume that exists CD0 such that

Na xN
2GCa , Na xxN

2GCa for x� [L1 , L11d] .
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For dD0 a small number. In this work a is a function that has the following
behaviour,

The corresponding motion equations are given by

utt2buxx1 (au)x40 in ]0 , L[3]0 , Q[ ,(1.1)

u t2ku xx1auxt40 in ]L1 , L[3]0 , Q[ ,(1.2)

u(x , 0 )4u0 (x), ut (x , 0 )4u1 (x), u(x , 0 )4u 0 in ]0 , L[ .(1.3)

Supporting the following boundary conditions.

u(0 , t)4u(L , t)4u(0 , t)4u(L , t)40 for tD0 .(1.4)

The main result of this paper is to prove that this weak dissipation, given by
the thermal difference, also produce exponential rate of decay of the solution
as time goes to infinity. As an application of this result we also prove that
there exist a global attractor for the quasi linear problem. Finally we show
that the Kirchhoff’s model for locally distribuited thermal dissipation, is well
possed for small data.

To prove the exponential decay we explore the dissipative properties to
construct a Liapunov functional whose derivative is negative proportional to
itself. The main difficulty is that the dissipation only works in [L1 , L] and we
need estimates over the whole domain [0 , L]. We overcome this problem in-
troducing suitables multiplicators which allows us to control the energy only
estimating u over [L1 , L]. See Lemmas 3.2-3.5 below.

2. – Existence for the linear system.

In this section we will use the semigroup approach to show the existence as
well as the regularity of the solution to system (1.1)-(1.2). To do this we will in-
troduce the following operator:

A 4u 0

b(Q)xx

0

I

0

2a(x)(Q)x

0

2[a(x)(Q) ]x

k(Q)xx

v .
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With domain

D(A)4 [H0
1 (0 , L)OH 2 (0 , L) ]3H0

1 (0 , L)3 [H0
1 (L1 , L)OH 2 (L1 , L) ] .

Let us denote by H the space

H 4H0
1 (0 , L)3L 2 (0 , L)3L 2 (L1 , L)

which is a Hilbert space with the inner product

(U , V)H4bs
0

L

ux
1 vx

1 dx1s
0

L

ux
2 vx

2 dx1s
L1

L

ux
3 vx

3 dx

where U4 (u 1 , u 2 , u 3 ) and V4 (v 1 , v 2 , v 3 ). So, system (1.1)-(1.2) is equiva-
lent to

Ut4 A U

U(0)4U0

To show the existence of solutions we use the Lummer Phillips Theorem. It is
not difficult to show that A is dissipative. In fact

(A U , U)H4bs
0

L

ux vx dx1bs
0

L

uxx v dx2s
0

L

(au)x v dx2s
0

L

avx u dx1ks
L1

L

u xx u dx

4ks
L1

L

Nu xN
2 dx

Now we will show that A is maximal monotone, let us take F4 ( f1 , f2 , f3 )� H,
and consider the equation,

U2A U4F

which is equivalent to

u2v4 f1

v2buxx1 (au)x4 f2

u2avx2ku xx4 f3 .

Note that we can eliminate v in the above system, so we get

u2buxx1 (au)x4 f21 f1 »4g1

u2aux2ku xx4 f31af1 »4g2 .

Now we introduce the spaces:

V »4H0
1 (0 , L)3H0

1 (L1 , L)
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and the bilinear form:

a(V , W)4s
0

L

uw1bux wx1 (au)x w dx1s
L1

L

uc1u x c x1aux c dx ,

where V4 (u , u), W4 (w , c). It is easy to see that a(Q , Q) is a continuous coer-
cive bilinear form. Denoting by G4 (g1 , g2 ) we conclude that there exists only
one solution U to the equation

a(U , W)4s
0

L

g1 w dx1s
L1

L

g2 c dx .

For any W� V. Using the elliptic regularity our conclusion follows.

3. – Exponential decay.

In this section we study the asymptotic behaviour of the linear equation
(1.1)-(1.2). To do this, we define the following functionals

E1 (t ; u ; u)4E1 (t)4
1

2
s
0

L

NutN
21bNuxN

2 dx1s
L1

L

NuN2 dx

E2 (t ; u , u)4E2 (t)4
1

2
s
0

L

NuttN
21bNuxtN

2 dx1s
L1

L

Nu tN
2 dx

E3 (t ; u , u)4E3 (t)4
1

2
s
0

L

NuxtN
21bNuxxN

2 dx1s
L1

L

Nu xN
2 dx .

Let us multiply equation (1.1) by ut and (1.2) by u and summing up the product
result we have

d

dt
E1 (t ; u , u)42ks

L1

L

Nu xN
2 dx .

Assuming regular data, and since ut and u t have the same boundary condi-
tions, we get

d

dt
E2 (t ; u , u)42ks

L1

L

Nu xtN
2 dx .(3.1)

To get the above identity we use essentially the fact that ut and u t have the
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same boundary condition than u and u. But this is not the case for ux and u x .
This is the point where the tipical difficulty for boundary conditions of Dirich-
let-Dirichlet type appears. Let us see in detail this fact. Multiplying equation

(1.1) by 2uxxt and (1.2) by 2
a

b
u xx we get

d

dt
{ s

0

L

NuxtN
21bNuxxN

2 dx}4
d

dt
{ s

L1

L

Nu xN
2 dx}4

s
0

L

(au)x uxxt dx

2ks
L1

L

Nu xxN
2 dx1s

L1

L

auxt u xx dx

Summing up we get

(3.2)
d

dt
E3 (t ; u , u)42ks

L1

L

Nu xxN
2 dx1a(L) u x (L , t) uxt (L , t)2

s
0

L

]a xx u22a x u x( uxt dx .

Note that

Na(L) u x (L , t) uxt (L , t)NG
a(L)2

2e
Nu x (L , t)N21

e

2
Nuxt (L , t)N2 .(3.3)

From Gagliardo-Niremberg’s inequality we get:

Nu x (x , t)N2Gc{ s
L1

L

Nu xN
2 dx}

1/2{ s
L1

L

Nu xN
21Nu xxN

2 dx}
1/2

which implies

Nu x (x , t)N2Gces
L1

L

Nu xN
2 dx1

e 2

a(L)2
s

L1

L

Nu xxN
2 dx .

Inserting the above inequality into (3.3) we get

Na(L) u x (L , t) uxt (L , t)NGCes
L1

L

Nu xN
2 dx1

e

2
s

L1

L

Nu xxN
2 dx1

e

2
Nuxt (L , t)N2 .
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So, identity (3.2) implies

(3.4)
d

dt
E3 (t)G2

k

2
s

L1

L

Nu xxN
2 dx1ces

L1

L

Nu xN
2 dx1

e

2
Nuxt (L , t)N22s

0

L

]a xx u22a x u x( uxt dx

G2
k

2
s

L1

L

Nu xxN
2 dx1ces

L1

L

Nu xN
2 dx1

e

2
Nuxt (L , t)N21es

0

L

aNuxtN
2 dx .

The derivative of E3 has a pointwise term involving second order derivatives,
which is not possible to bound using the Sobolev’s inequalities. To overcome
this difficulty we will use the following Lemma.

LEMMA 3.1. – Let us suppose that v belongs to W 2, Q (a , b ; H v 2) and satis-
fies the equation:

vtt2bvxx4 f .

Then for any q�C 1 (a , b) we have,

(3.5) 2
d

dt
s
a

b

q(x) vt vx dx42
q(x)

2
[Nvt (x , t)N21bNvx (x , t)N2]x4a

x4b

1
1

2
s
a

b

q 8 (x)]NvtN
21bNvxN

2( dx2s
a

b

q(x) vx f dx .

PROOF. – Note that

2
d

dt
s
a

b

q(x) vt vx dx42s
a

b

q(x) vtt vx dx2s
a

b

q(x) vt vxt dx(3.6)

42s
a

b

q(x) vtt vx dx

���
»4I1

2y q(x)

2
Nvt (x , t)N2z

x4b

x4b

1
1

2
s
a

b

q 8 (x)Nvt (x , t)N2 dx .
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On the other hand

I142bs
a

b

q(x) vxx vx dx2s
a

b

q(x) f (x , t) vx dx

42
b

2
[q(x)NvxN

2]x4a

x4b
1

b

2
s
a

b

q 8 (x)NvxN
2 dx2s

a

b

q(x) f (x , t) vx dx .

Going back to identity (3.6) formula (3.5) follows. The proof is now com-
plete. r

LEMMA 3.2. – There exist a positive constant C such that

d

dt
s
0

L

uuxt dxG2
1

2
s
0

L

aNuxtN
2 dx1Cds

L1

L

Nu xxN
21Nu xN

2 dx1dE2 (t) .

PROOF. – Multiplying equation (1.2) by uxt we get

d

dt
s
0

L

uuxt dx4s
0

L

u t uxt dx1s
0

L

uuxtt dx

4s
0

L

u xx uxt dx2s
0

L

aNuxtN
2 dx2s

0

L

(au)x uxx dx1s
0

L

(au)x u x dx

GCds
L1

L

Nu xxN
21Nu xN

2 dx2s
0

L

aNuxtN
2 dx1

d

2
s
0

L

NuxxN
21NuxtN

2 dx .

From where our conclusion follows. r

LEMMA 3.3. – Let us denote by a 2 the C 2-function given by

a 2 (x)4
.
/
´

0

1

for 0ExEL1

L2d 0ExEL

where d 0 is such that L1EL2d 0 . In this conditions we have

2
d

dt
s
0

L

a 2 ut uxx dxGc0 s
L2d 0

L

NuxtN
2 dx2

b

2
s
0

L

a 2 NuxxN
2 dx1Cs

L1

L

Nu xN
2 dx .
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PROOF. – Differentiating the expression a 2 ut uxx and using the equation
(1.1) we get

d

dt
s
0

L

a 2 ut uxx dx4s
0

L

a 2 utt uxx dx1s
0

L

a 2 ut uxxt dx

4s
0

L

a 2 NuxxN
2 dx2s

0

L

(a 2 )x ut uxt dx2s
0

L

a 2 NuxtN
2 dx

2s
0

L

a 2 (au)x uxx dx .

From where it follows that

2
d

dt
s
0

L

a 2 ut uxx dxGc0 s
L2d 0

L

NuxtN
2 dx2

b

2
s
0

L

a 2 NuxxN
2 dx1Cs

L1

L

Nu xN
2 dx .

The proof is now complete. r

LEMMA 3.4. – Let us take d 0EL2L12s and let us denote by a 3 a C 2 func-
tion such that supp (a 3 )%]L2d 0 , L[ and a 3 (L)D0. In this conditions we
have,

2
d

dt
s
0

L

a 3 uxt utt dxG2
a 3 (L)

2
Nux (L , t)N21

c s
L2d 0

L

(NuxxN
21bNuxtN

2) dx1s
L1

L

Nu xtN
2 dx .

PROOF. – Using Lemma 3.1 for q4a 3 and v4ut , we have

2
d

dt
s
0

L

a 3 uxt utt dx42
a 3 (L)

2
Nux (L , t)N21

s
0

L

a 38 (NuxxN
21bNuxtN

2) dx1s
0

L

a 3 uxt (au t )x dx .

From where our conclusion follows. r
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Using Lemma 3.2 and Lemma 3.3

d

dt
{ s

L1

L

uuxt dx2
1

2c
s

L2d

L

a 2 ut uxx dx}G2
b

4C
s

L2d

L

NuxxN
2 dx2

1

4
s

L1

L

aNuxtN
2 dx1

Cds
L1

L

Nu xxN
21Nu xN

2 dx1dE2 (t) .

From Lemma 3.4 we arrive at

d

dt
{ s

L1

L

uuxt dx2
1

8c
s

L2d

L

a 2 ut uxx dx1
g

c1

s
0

L

a 3 uxt utt dx}
���

»4 F(t)

G

2
b

4
s

L2d

L

NuxxN
2 dx2

1

4
s
0

L

aNuxtN
2 dx2

a 3 (L)

2
Nux (L , t)N21

Cds
L1

L

Nu xxN
21Nu xN

21Nu tN
2 dx1dE2 (t)

where g4
1

8
min]1, b(. Denoting by L the functional

L(t)4N1 E1 (t)1N1 E2 (t)1NE3 (t)1F(t)

we conclude that

(3.7)
d

dt
L(t)G2

b

4
s

L2d

L

NuxxN
2 dx2

1

4
s
0

L

aNuxtN
2 dx2

a 3 (L)

2
Nux (L , t)N2

2g kN

2
2Cdhs

L1

L

Nu xxN
2 dx2g kN1

2
2Cdhs

L1

L

Nu xN
21

Nu xtN
2 dx1dE2 (t) .

To prove the exponential decay we will use the following Lemma.
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LEMMA 3.5. – There exists a positive constant C such that

g12 2L

Tkb
hs

0

T

E2 (t) dtGCs
0

T

s
0

L

aNuxtN
2 dx dt1

Cs
0

T

s
L1

L

Nu xtN
2 dx dt1

L

2
s
0

T

Nuxt (L , t)N2 dt ,

for TD
2L

kb
.

PROOF. – Using Lemma 3.1 for q4x and v4ut we arrive at

1

2
s
0

L

NuttN
21bNuxtN

2 dx4
bL

2
Nuxt (L , t)N22

d

dt
s
0

L

xutt uxt dx2s
0

L

xuxt (au t )x dx .

Integrating over [0 , T] and summing up the term s
L1

L

Nu tN
2 dx we get that

s
0

T

E2 (t) dt4
L

2
bs

0

T

Nuxt (L , t)N2 dt2

u s
0

L

xutt uxt dxv
t40

t4T

2s
0

T

s
0

L

xuxt (au t )x dx dt1
1

2
s
0

T

s
L1

L

Nu tN
2 dx dt .

Since

E2 (t)4E2 (0)2ks
0

T

s
L1

L

Nu xtN
2 dx dt , s

0

T

E2 (t) dtFTE2 (T),

Ns
0

L

xutt uxt dxNG L

kb
E2 (0) .

It follows that

s
0

T

E2 (t) dtG
Lb

2
s
0

T

Nuxt (L , t)N2 dt1
2L

kb
E2 (0)2s

0

T

s
0

L

xuxt (au t )x dx dt

G
Lb

2
s
0

T

Nuxt (L , t)N2 dt1
2L

kb
E2 (T)1

2kL

kb
s
0

T

s
L1

L

Nu xtN
2 dx dt
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2s
0

T

s
0

L

xuxt (au t )x dx dt

G
Lb

2
s
0

T

Nuxt (L , t)N2 dt1
2L

Tkb
s
0

T

E2 (t) dt1
2kL

kb
s
0

T

s
L1

L

Nu xtN
2 dx dt

2s
0

T

s
0

L

xuxt (au t )x dx dt .

Finally using the inequality

s
0

L

xuxt (au t )x dx4s
L1

L

xuxt (au t )x dx

Gcs
0

L

a(x)NuxtN
2 dx1cs

L1

L

Nu xtN
2 dx

our conclusion follows. The proof is now complete r

Let us introduce the following functionals

8(t)4s
0

L

aNuxtN
2 dx1 s

L2d 0

L

NuxxN
2 dx1s

L1

L

Nu xN
21Nu xx N

2 dx1Nuxt (L , t)N2 .

We are now able to show the main result of this section.

THEOREM 3.1. – Under the above notations, the energy associated to the
thermoelastic system (1.1)-(1.2) decays exponentially. That is, there exist po-
sitive constants C , g such that

E2 (t)GCE2 (0) e 2gt .

PROOF. – It is not difficult to see that there exists positive constants such
that

C0 E2 (t)G L(t)GC1 E2 (t) ,(3.8)

for N large enough. Recalling the definition of 8 and using (3.7) we get

d

dt
L(t)G2c8(t)1dE2 (t) .
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Lemma 3.5 implies that

s
0

T

E2 (t) dtGcs
0

T

8(t) dt

and taking d small enough after an integration we have

L(T)G L(0)2
c

2
s
0

T

8(t) dt .

Using Lemma 3.5 once more, we conclude that

L(T)G L(0)2c3s
0

T

E2 (t) dt

G L(0)2c3 TE2 (T) dt

G L(0)2c4 T L(T) dt

which implies

(11c4 T) L(T) dtG L(0) .

Finally from the semigroup property our conclusion follows. The proof is now
complete r

COROLLARY 3.1. – Under conditions of Theorem 3.1 if

(u0 , u1 , u 0 )�H0
1 (0 , L)3L 2 (0 , L)3L 2 (L1 , L) ,

then, there exist positive constants C and g such that the first order energy
decays exponentially

E1 (t)GCE1 (0) e 2gt .

PROOF. – Let us denote by

v(Q , t)4s
0

t

u(Q , t) dt1x 1 , c(Q , t)4s
0

t

u(Q , t) dt1x 2 .

In this condition the couple (v , c) satisfies

vtt2u12bvxx2bx 1, xx1 (au)x1 (ax 2, x )40 in ]0 , L[3]0 , Q[,

c t2u 02kc xx2kx 2, xx1avxt1au0, x40 in ]L1 , L[3]0 , Q[,

v(x , 0 )4x 1 (x), ut (x , 0 )4u0 (x), c(x , 0 )4x 2 in ]0 , L[

v(0 , t)4v(L , t)4c(L1 , t)4c(L , t)40 for tD0.



JAIME E. MUÑOZ RIVERA - VANILDE BISOGNIN - ELENI BISOGNIN618

Choosing x 1 and x 2 such that

2bx 1,xx1ax 2,x

4kx 2,xx

4u1

42au0, x1u 0

x 1 (0)4x 1 (L)4x 2 (L1 )4x 2 (L)40 .

The couple (v , c) satisfies system (1.1)-(1.2) for the initial data

v(x , 0 )4x 1 , vt (x , 0 )4u0 , c(x , 0 )4x 2 .

From Theorem 3.1 we conclude that E2 decays for v and c instead of u and u.
Since

C1 E1 (t , u , u)GE2 (t ; v , c)GC0 E1 (t , u , u)

then our conclusion follows. The proof is now complete r

4. – Global attractor.

In this section we will show, as a consequence of the exponential decay, the
existence of a global attractor to the non linear system

utt2buxx1 (au)x1g(u)4 f1 in ]0 , L[3]0 , Q[,(4.1)

u t2ku xx1auxt4 f2 in ]L1 , L[3]0 , Q[,(4.2)

u(x , 0 )4u0 (x), ut (x , 0 )4u1 (x), u(x , 0 )4u 0 in ]0 , L[

u(0 , t)4u(L , t)4u(0 , t)4u(L , t)40 for tD0 .

To do this we will assume that

g�C 1 (R), g(s) sF0.(4.3)

In this conditions it is not difficult to show that there exists only one solution
to the system (4.1)-(4.2). This will be summarized in the following theo-
rem:

THEOREM 4.1. – Under the above notations, if g satisfies condition (4.3)
then for any initial data

(u0 , u1 , u 0 ) in H0
1 (0 , L)3L 2 (0 , L)3L 2 (L1 , L), f1�L 2 (0 , L), f2�L 2 (L1 , L)
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there exist only one solution satisfying

u�C 0 ( [0 , T]; H0
1 (0 , L) )OC 1 ( [0 , T]; L 2 (0 , L) ) ,

u�L 2 ( [0 , T]; H0
1 (L1 , L) )OC 0 ( [0 , T]; L 2 (L1 , L) ) .

Moreover if

(u0 , u1 , u 0 ) in H0
1 (0 , L)OH 2 (0 , L)3H0

1 (0 , L)3H0
1 (L1 , L),

then the solution satisfy:

u�C 0 ([0, T]; H0
1 (0, L)OH 2 (0, L))OC 1 ([0, T]; H0

1 (0, L))OC 2 ([0, T]; L 2 (0, L)) ,

u�L 2 ( [0 , T]; H0
1 (L1 , L)OH 2 (L1 , L) ) C 0 ( [0 , T]; H0

1 (L1 , L) ).

In this conditions we are able to show the existence of a global attractor to sys-
tem (4.1)-(4.2).

THEOREM 4.2. – Under the above conditions the dynamical system defined
by the system (4.1)-(4.2) supplemented by the Dirichlet boundary condition
possesses a global attractor C which is compact, connected, and maximal in
H0

1 (0 , L)3L 2 (0 , L)3L 2 (L1 , L). Moreover C is included in H0
1 (0 , L)O

H 2 (0 , L)3H0
1 (0 , L)3H0

1 (L1 , L).

PROOF. – Let us denote by S(t) the semigroup associated with the dynami-
cal sistem (4.1)-(4.2) and let us decompose it into two parts:

S(t)4S1 (t)1S2 (t) ,

where by S1 we are denoting the semigroup associated with the linear homoge-
neous part. By S2 we are denoting the semigroup associated by the dynamical
system S2 (t)]u0 , u1 , u 0(4]u×, u×t , u×( where u×, u×t , u× is the solution of

u×tt2bu×xx1 (au×)x4 f12g(u) in ]0 , L[3]0 , Q[ ,

u×t2ku×xx1au×xt4 f2 in ]L1 , L[3]0 , Q[ ,

u×(x , 0 )4u×t (x , 0 )4u×(x , 0 )40

u×(0 , t)4u×(L , t)4u×(0 , t)4u×(L , t)40 .

Thanks to Theorem 4.1, it is not difficult to show that S2 is uniformly compact
in H0

1 (0 , L)3L 2 (0 , L)3L 2 (L1 , L). On the other hand, since

VS1 (t)VL(H)Gc0 e 2gt .

Using Theorem 1.1 of Chapter 1 of [18] our conclusion follows. The proof is
now complete. r
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5. – Small solutions.

In this section we will study the existence of solutions for the locally dis-
tribuided thermoelastic system of Kirchhoff type

utt2Mu s
0

L

NuxN
2 dxv uxx1 (au)x40 in ]0 , L[3]0 , Q[ ,(5.1)

u t2ku xx1auxt40 in ]L1 , L[3]0 , Q[ ,(5.2)

u(x , 0 )4u0 (x), ut (x , 0 )4u1 (x), u(x , 0 )4u 0 in ]0 , L[

u(0 , t)4u(L , t)4u(0 , t)4u(L , t)40 for tD0,

where

M�C 2 (R1 ), M(s)Fm0D0 .(5.3)

The main result of this section is the global existence of solutions to system
(5.1)-(5.2) provided the initial data is small. As a consequence of the prove we
also conclude that the solution of the nonlinear system decay exponentially as
time goes to infinity. The proof is based on the following local existence result,
which is proved by standard fixed point argument.

THEOREM 5.1. – Let us suppose that the initial data satisfies

(u0 , u1 , u 0) in [H0
1 (0, L)OH 2 (0, L)]3H0

1 (0, L)3[H 2 (L1 , L)OH0
1 (L1 , L)] .

Then there exist TD0 and a solution u , u of system (5.1)-(5.2) satisfying:

(5.4) u�C 0 ( [0 , T]; H0
1 (0 , L)OH 2 (0 , L) )O

C 1 ( [0 , T]; H0
1 (0 , L) )OC 2 ( [0 , T]; L 2 (0 , L) ) ,

u�L 2 ( [0 , T]; H0
1 (L1 , L)OH 2 (L1 , L) ) C 0 ( [0 , T]; H0

1 (L1 , L) ).(5.5)

Moreover given TD0 there exist eD0 such that for any initial data
(u0 , u1 , u 0 ) satisfying

Vu0, xx V
21Vu1, x V

21Vu 0, xx V
2Ee ,

there exist only one solution (u , u) satisfying condition (5.4) and (5.5).

Note that the last part of the above Theorem, T4T(e)EQ. Here we will
show that for e small enough, T does not depent on e , that is T4Q , which
means that the solution is global in time. Which is equivalent to say that the
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second order derivatives are uniformly bounded for any tD0. Let us denote by

M14 sup{M(s); s� y0,
E1 (0)

m0

z} .

From the local existence Theorem we have that for TD
2L

kM1

there exists
eD0, such that for any initial data satisfying

E2 (0)1E3 (0)Ge

there exist only one solution (u , u) solution of (4.1)-(4.2), defined on [0 , T].
Let us take e 0Ee and let us take initial data such that

E2 (0)1E3 (0)Ge 0 .(5.6)

By the continuity of the solutions there exists a positive T2DT such
that

E2 (t)1E3 (t)Gde 0 , (t� [0 , T2 ] ,(5.7)

where dD1 is a positive constant to be fixed later. Let us denote by

T *4 sup ]tD0; E2 (t)1E3 (t)Gde 0( .

We will show that T *4Q , which will prove that there exists a global in time
solution for sufficient small initial data. To do this we will define the following
functionals:

E1 (t ; u ; u)4E1 (t)4
1

2
s
0

L

NutN
2 dx1M×u s

0

L

NuxN
2 dxv1s

L1

L

NuN2 dx

E2 (t ; u , u)4E2 (t)4
1

2
s
0

L

NuttN
21Mu s

0

L

NuxN
2 dxvNuxtN

2 dx1s
L1

L

Nu tN
2 dx

E3 (t ; u , u)4E3 (t)4
1

2
s
0

L

NuxtN
21Mu s

0

L

NuxN
2 dxvNuxxN

2 dx1s
L1

L

Nu xN
2 dx .

Where M×(s)4s
0

s

M(s) ds. Let us multiply equation (5.1) by ut and (5.2) by u

and summing the product result we have

d

dt
E1 (t ; u , u)42ks

L1

L

Nu xN
2 dx .(5.8)

Similarly, differentiating in time equations (5.1) and (5.2) multiplying by utt
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and u t respectively and summing up the product result we get

d

dt
E2 (t ; u , u)42ks

L1

L

Nu xtN
2 dx1R2(5.9)

where

R24M 8u s
0

L

NuxN
2 dxv s

0

L

ux uxt dxs
0

L

uxx utt dx1

1

2
M 8u s

0

L

NuxN
2 dxv s

0

L

ux uxt dxs
0

L

NuxtN
2 dx .

Note that

NR2NGce 0 E2 (t) .

From (5.7) we can rewrite identity (5.9) as

d

dt
E2 (t ; u , u)G2ks

L1

L

Nu xtN
2 dx1Ce 0 E2 (t) .(5.10)

Using similar arguments as in section 2 we can show that

(5.11)
d

dt
E3 (t)42ks

L1

L

Nu xxN
2 dx1a(L) u x (L , t) uxt (L , t)2

s
0

L

]a xx u22a x u x( uxt dx1R3

where

R34
1

2
M 8u s

0

L

NuxN
2 dxv s

0

L

ux uxt dxs
0

L

NuxxN
2 dx .

We also have that

NR3NGce 0{E2 (t)1s
L1

L

Nu xN
2 dx} .
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As in the proof of inequality (3.4) and using (5.9) we get

d

dt
E3 (t)G2

k

2
s

L1

L

Nu xxN
2 dx1ces

L1

L

Nu xN
2 dx1

e

2
Nuxt (L , t)N2

1es
0

L

aNuxtN
2 dx1Ce 0 E2 (t) .

In the following Lemma we will summarize the nonlinear version of Lem-
mas 3.2, 3.3.

LEMMA 5.1. – Under the above notations the following inequalities holds.

g12 2L

kM1T
2Ce 0h s

0

T

E2 (t) dtG

L

2
Mu s

0

L

NuxN
2 dxvNuxt (L , t)N21c2s

0

T

aNuxtN
21Nu xtN

2 dx

for a positive constant C.

PROOF. – Using the same technique as in section 3 we get,

d

dt
s
0

L

xutt uxt dx4

2
L

2
Mu s

0

L

NuxN
2 dxvNuxt (L , t)N21

1

2
s
0

L

NuttN
21Mu s

0

L

NuxN
2 dxvNuxtN

2 dx

���
4E2 (t)

2s
0

L

x(au t )x uxt22M 8u s
0

L

NuxN
2 dxvs

0

L

uxt ux dxs
0

L

xuxt uxx dx .

From where it follows that

E2 (t)4
d

dt
s
0

L

xutt uxt dx1
L

2
Mu s

0

L

NuxN
2 dxvNuxt (L , t)N21

s
0

L

x(au t )x uxt12M 8u s
0

L

NuxN
2 dxv s

0

L

uxt ux dxs
0

L

xuxt uxx dx .
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Integrating from 0 to T we have that

s
0

T

E2 (t) dt4u s
0

L

xutt uxt dxv
t40

t4T

1
L

2
s
0

T

Mu s
0

L

NuxN
2 dxvNuxt (L , t)N2 dt

s
0

T

s
0

L

x(au t )x uxt dx dt12 s
0

T

M 8u s
0

L

NuxN
2 dxvs

0

L

uxt ux dxs
0

L

xuxt uxx dx dt

G
L

kM1

(E2 (T)1E2 (0) )1
L

2
s
0

T

Mu s
0

L

NuxN
2 dxvNuxt (L , t)N2 dt

1s
0

T

s
0

L

aNuxtN
2 dx dt1s

0

T

s
L1

L

Nu xtN
21Nu xN

2 dx dt1ce 0 E2 (t) .

From (5.9) it follows

E2 (0)4E2 (T)1ks
0

T

s
L1

L

Nu xtN
2 dx2s

0

T

R2 dt

GE2 (T)1ks
0

T

s
L1

L

Nu xtN
2 dx1Ce 0s

0

T

E2 (t) dt

from where we have

(5.13) s
0

T

E2 (t) dtG
2L

kM1

E2 (T)1
L

2
s
0

T

Mu s
0

L

NuxN
2 dxvNuxt (L , t)N2 dt

1s
0

T

s
0

L

aNuxtN
2 dx dt1cs

0

T

s
L1

L

Nu xtN
21Nu xN

2 dx dt1ce 0s
0

T

E2 (t) dt(5.14)

Using relation (5.9) once more we have

d

dt
{E2 (t)2s

0

t

R2 (t) dt}G2ks
0

t

s
0

L

Nu xtN
2 dx dtG0 .

So we have that

s
0

T

E2 (t) dt2s
0

T

s
0

t

R2 (t) dt dtFTE2 (T)2Ts
0

T

R2 (t) dt .
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From where it follows that

E2 (T)G
1

T
s
0

T

E2 (t) dt1s
0

T

R2 (t) dt2
1

T
s
0

T

s
0

t

R2 (t) dt dt

G
1

T
s
0

T

E2 (t) dt1Ce 0s
0

T

E2 (t) dt1s
0

T

NR2 (t)Ndt .

Inserting the above inequality into (5.14) our conclusion follows.

LEMMA 5.2. – Under the above conditions we have:

d

dt
s
0

L

uuxt dxGCds
L1

L

Nu xxN
21Nu xN

2 dx2s
0

L

aNuxtN
2 dx1CdE2 (t)

2
d

dt
s
0

L

a 2 ut uxx dxGc0 s
L2d 0

L

a 2 NuxtN
2 dx2

m0

2
s
0

L

a 2 NuxxN
2 dx1Cs

L1

L

Nu xN
2 dx

d

dt
s
0

L

a 3 utt uxt dxG2
a 3 (L) m0

2
Nuxt (L , t)N21c s

L2d 0

L

a 3 (NuxxN
21NuxtN

2 ) dx

1s
L1

L

Nu xtN
2 dx1Ce 0 E2 (t) .

PROOF. – We only prove the third inequality, the others can be proved with
the same arguments as in Lemma 3.2 and Lemma 3.3. Differentiating equation
(5.1) and using Lemma 3.1 we arrive at

d

dt
s
0

L

a 3 utt uxt dx4

2
a 3 (L)

2
Mu s

0

L

NuxN
2 dxvNuxt (L , t)N21s

0

L

a 38 (NuttN
21NuxtN

2 ) dx

2s
0

L

a 3 (au t )x uxt2M 8u s
0

L

NuxN
2 dxvs

0

L

uxt ux dxs
0

L

a 3 uxt uxx dx .

Using the inequality

2N(au)x N
222CNuxxN

2GNuttN
2G2N(au)xN

212CNuxxN
2
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together with relation (5.7) our conclusion follows. The proof is now com-
plete. r

From the above Lemma we conclude that

d

dt
{ s

L1

L

uuxt dx2
1

2c0

s
L2d

L

a 2 ut uxx dx}G

2
m0

4c0

s
L2d

L

NuxxN
2 dx2

1

2
s

L1

L

aNuxtN
2 dx1Cds

L1

L

Nu xxN
21Nu xN

2 dx1CdE2 (t) .

From the third inequality of Lemma 5.2 we conclude that

d

dt
{ s

L1

L

uuxt dx2
1

8c
s

L2d

L

a 2 ut uxx dx1
g

c1

s
0

L

a 3 uxt utt dx}
���

»4 F(t)

G

2
m0

8c0

s
L2d

L

NuxxN
2 dx2

1

4
s
0

L

aNuxtN
2 dx2

a 3 (L) m0

2c1

Nux (L , t)N2

1Cds
L1

L

Nu xxN
21Nu xN

2 dx1Cs
L1

L

Nu xtN
2 dx1 (c1 d1c2 e 0 ) dE2 (t)

where g4
1

8
min]1, m0(. Let us denote by L the functional

L(t)4N1 E1 (t)1N1 E2 (t)1NE3 (t)1F(t) .

It is not difficult to see that there exist positive constants s 1 and s 2 for which
we have,

s 1]E2 (t)1E3 (t)(G L(t)Gs 2]E2 (t)1E3 (t)( .

Now let us take d4 s 2

s 1

. In this conditions we have

THEOREM 5.2. – Let us suppose that the initial data satisfies condition
(5.6) then there exists only one solution (u , u) of system (5.1)-(5.2) satisfying

u�C( [0 , Q[, H 2 (0 , L)OH 1
0 (0 , L) )OC 1 ( [0 , Q[, H 1

0 (0 , L) ) ,

u 0 (0 , L)�C( [0 , Q[, H 2 (0 , L)OH 1
0 (0 , L) )OC 1 ( [0 , Q[, L 2 (V) ) ,
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PROOF. – To show the global existence of solutions it is enough to show that
T *4Q. In fact let us suppose that T *EQ. Using relations (5.8), (5.10) and
(5.12) we conclude that the functional L satisfies

(5.15)
d

dt
L(t)G2k 0 s

L2d

L

NuxxN
2 dx2k 0s

0

L

aNuxtN
2 dx2k 0 Nux (L , t)N2

2g kN

2
2Cdhs

L1

L

Nu xxN
2 dx2g kN1

2
2Cdhs

L1

L

Nu xN
21Nu xtN

2 dx

1(NCe 01N2 Ce 01ce 01c1 d) E2 (t) .(5.16)

Let us take d such that dC1G
k 0

8
then take N2 and N such that kN22CdD

k 0 and kN2CdDk 0 in this conditions we have that

d

dt
L(t)G2k 0 8(t)1 (NC1N2 C1C) e 01cd) E2 (t) .

Using Lemma 5.1 we arrive at

L(t)2L(0)G2k 0 c0s
0

t

E2 (t) dt1 [ (NC1N2 C1C) e 01cd]s
0

t

E2 (t) dt .

Taking e 0 and d small we conclude that

L(t)2L(0)G2
k 0 c0

2
s
0

t

E2 (t) dt .

From where it follows that

]E2 (t)1E3 (t)(G
s 2

s 1

]E2 (0)1E3 (0)(2
1

s 1

k 0 c0

2
s
0

t

E2 (t) dt

G
s 2

s 1

e 02
k 0 c0

2s 1

s
0

t

E2 (t) dtEde 0 .

Letting tKT * we conclude that

E2 (T *)1E3 (T *)G
s 2

s 1

e 02
k 0 c0

2s 1

s
0

T *

E2 (t) dtEde 0 .

But this is contratictory with the maximality of T * because by the continuity of
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the solution, there exists hD0 such that E2 (T *1h)1E3 (T *1h)Ede 0 .
Therefore T *4Q. The proof is now complete. r

REMARK 5.1. – The exponential decay to the partial thermoelastic model,
means that we can stabilize the moviment of an elastic string intruducing
another thermoelastic part, no matter how small it is. That is, to stabilize the
moviment is not necessary to introduce neither an external sources nor ex-
ternal controls, but to compose the elastic material with another thermoelas-
tic one.
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