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Calculating a Determinant Associated
with Multiplicative Functions.

P. CODECÁ - M. NAIR

Sunto. – Sia h una funzione moltiplicativa a valori complessi. Per ogni N�N , calco-

liamo il determinante DN »4 det
iNN , jNN

g h( (i , j) )

ij
h, dove (i , j) indica il massimo comun

divisore di i e j, che figurano in ordine crescente in righe e colonne. Precisamente
dimostriamo che

DN4 »
p l

VN

u 1

p l(l11)
»
i41

l

(h(p i )2h(p i21 ) )vt(N/p l )

.

Dunque DN
1/t(N) è effettivamente una funzione moltiplicativa di N . L’apparato alge-

brico associato a questo risultato ci consente di dimostrarne altri due. Il primo è la
caratterizzazione delle funzioni reali moltiplicative f (n), con 0G f (p)E1, come
valori minimi di certe forme quadratiche sulla sfera unità t(N) dimensionale. Il
secondo è la determinazione esplicita dei valori minimi di certe altre forme qua-
dratiche su detta sfera.

Summary. – Let h be a complex valued multiplicative function. For any N�N , we

compute the value of the determinant DN »4 det
iNN , jNN

g h( (i , j) )

ij
h, where (i , j) denotes

the greatest common divisor of i and j, which appear in increasing order in rows
and columns. Precisely we prove that

DN4 »
p l

VN

u 1

p l(l11)
»
i41

l

(h(p i )2h(p i21 ) )vt(N/p l )

.

This means that DN
1/t(N) is a multiplicative function of N. The algebraic apparatus

associated with this result allows us to prove the following two results. The first one
is the characterization of real multiplicative functions f (n), with 0G f (p)E1, as
minimal values of certain quadratic forms on the t(N) unit sphere. The second one
is the explicit evaluation of the minimal values of certain others quadratic forms
also on the unit sphere.



P. CODECÁ - M. NAIR546

1. – Introduction.

Let h(n) be a complex-valued multiplicative function i.e. h(1)41 and for
(m , n)41, m , n�N , we have that h(mn)4h(m)h(n). Here (m , n) denotes
the greatest common divisor of m and n .

For any N�N , denote by d1 , R , dt(N) the positive divisors of N in increas-
ing order. We define the t(N)3t(N) matrix MN to be that with (i , j)th ele-
ment h( (di , dj ) ) /di dj . This we abbreviate to

MN4g h( (i , j) )

ij
h

iNN , jNN

and we write

DN4 det MN .

This matrix can arise in several natural ways some of which we shall now
describe.

Let

D(x , N)4 !
nGxN

(n , N)41

12xf(N)

where f denotes Euler’s function. This expression measures, via

D(N)4 sup
x�R

ND(x , N)N ,

the maximal deviation of the number of integers GxN which are coprime to N
from the expected quantity.

Various results on D(N) may be found in [2]. By writing D(x , N) in the
form

!
nGxN

!
dN(n , N)

m(d)2x !
nGN

!
dN(n , N)

m(d)

and reversing summations, it readily follows that for square-free N

D(x , N)42m(N) !
dNN

m(d)]xd(

where m is the Möbius function and ]t( denotes the fractional part of t. A sim-
ple computation then yields that

s
0

1

D 2 (x , N) dx4
1

12
!

iNN , jNN
m(i) m( j)

(i , j)2

ij
.

This sum can be evaluated to be 2v(N) W(N) /N , where v(N) is the number of
distinct prime factors of N and W is Euler’s function, and, as shown by Perelli-
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Zannier [5], is 2v(N) multiplied by the minimal value of the quadratic form

!
iNN , jNN

xi xj
(i , j)2

ij
subject to the constraint !

iNN
x 2

i 41. Observe that the associat-

ed matrix is of the form MN with h(n)4n 2.
This type of discussion can be presented in a more general context. For any

fixed N�N, define a function f by

f (n)4 fN (n)4 !
dN(n , N)

u d .

Since f is periodic with period N, denoting by m( f ) its mean value, it is eas-
ily seen that

!
nGx

f (n)4m( f ) x2 !
dNN

u dm x

d
n

and hence

1

N
s
0

N

g!
nGx

f (n)2m( f ) xh2
dx4

1

4
g!

dNN
u dh2

1
1

12
!

iNN , jNN
a i a j

(i , j)2

ij

where a i4u N/i . The matrix MN associated with h(n)4n 2 is once more
present in the second term on the right.

Further, since f 2 is also periodic of period N, its mean value m( f 2 ) can be
expressed as

m( f 2 ) »4 lim
xKQ

1

x
!

nGx
f 2 (n)4 !

iNN , jNN
u i u j

(i , j)

ij

and hence we have here an occurrence of MN with h(n)4n.
Problems concerned with determining minimal values of certain quadratic

forms subject to constraints on the variables also give rise to matrices of the
form MN . For example, let g(n) be any positive real multiplicative function
and define the multiplicative function h by h(n)4!

dNn
g(d). Consider the

quadratic form L defined by

L4 !
iNN , jNN

xi xj
h( (i , j) )

ij

or equivalently, in terms of g ,

L4!
dNN

g(d)u!
nNN
dNn

xn

n
v2

,

which transparently shows that L is positive definite. To determine the mini-
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mal value of L on the t(N)-dimensional unit sphere !
dNN

xd
241 reduces to calcu-

lating the smallest eigenvalue of MN. Such problems are often difficult to re-
solve completely since the eigenvalues can be zeros of polynomials of high de-
gree. In our Theorem 3, we determine the required minimal value of L for
square-free N. This includes the special case of h(n)4n 2 corresponding to

g(n)4n 2»
pNn
g12 1

p 2 h which yields the minimal value W(N) /N for the Perelli-

Zannier quadratic form cited above. In Theorem 2, we show that this property
of the function W(n) /n as a minimal value of a constrained quadratic form is, in
fact, one shared by any real multiplicative function f (n) with 0G f (p)E1.

Our first result is a complete evaluation of detMN for any multiplicative
function h.

THEOREM 1. – Let h be a complex-valued multiplicative function.
Then

DN »4 det
iNN , jNN

g h( (i , j) )

ij
h4»

p l
VN

u 1

p l(l11)
»
i41

l

(h(p i )2h(p i21 ) )vt(N/p l )

(1)

for any N�N.

The interest here is in the fact that this can be achieved without calculating
the individual eigenvalues of the matrix MN . We also prove the following curi-
ous result regarding the characterization of certain multiplicative functions as
minimal values of certain quadratic forms on the unit sphere.

THEOREM 2. – Any real-valued multiplicative function f (n) with 0G
f (p)E1 for prime p can be expressed as the minimal value, for square-free n,
of a quadratic form

!
iNn , jNn

xi xj
h( (i , j) )

ij
,

with h multiplicative, on the t(n)-dimensional sphere !
iNn

xi
241.

For example, as may be noted from the proof, the ubiquitous MN with

h(n)4n 2 is associated with f (n)4
f(n)

n
. We also note at the end of the proof

that the condition f (p)E1 cannot be relaxed to f (p)G1.
Finally, as discussed earlier, we prove the following result.

THEOREM 3. – Let N be a square-free integer. For any positive real multi-
plicative function g(n), write h(n)4!

dNn
g(d). Then the minimal value of the
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quadratic form

L4 !
iNN , jNN

xi xj
h( (i , j) )

ij

subject to !
dNN

xd
241 is given by

»
pNN
u12

(p 22h(p) )1k(p 22h(p) )214p 2

2p 2
v .

It is obvious that substituting h(p)4p 2 in this expression immediately
yields the minimal value W(N) /N as mentioned earlier.

The authors would like to thank the referee for his valuable sugges-
tions.

Preliminaries

We shall need three lemmas. Useful references for the facts we require on
tensor products of matrices are [1], [3] and [4].

Lemma 1 is well known, Lemma 2 describes the eigenvalues of the matrix
MN , whilst Lemma 3 is essentially a simple computation. We begin with the
basic definitions.

Given an m3n matrix A4 (aij ) and a p3q matrix B4 (bkl ), the tensor
product A7B is defined to be the mp3nq matrix C4 (crs ) where crs4aij bkl

with r4p(i21)1k and s4q( j21)1 l . Equivalently, i4 k r21

p
l11, kfr

( mod p), j4 k s21

q
l11 and lfs ( mod q) where the square brackets indicate

the integer part function and 1G iGm , 1G jGn , 1GkGp , 1G lGq .
It is a trivial but cumbersome exercise to show that tensor products are as-

sociative and that

(A7B)(C7D)4AC7BD

for any matrices A , B , C , D whenever AC and BD are defined (see [4], Theo-
rems 8.8.3 and 8.8.6). In general, A7BcB7A so that the order in which the
factors occur in a tensor product needs to be explicitly specified.

For any N�N , ND1, we shall denote by MN
7 the tensor product

MN
747p l

VN Mp l

where each factor Mp l is as described in the introduction (with N4p l) and oc-
curs in the product in order of increasing p .

All matrices considered in Lemmas 1 and 2 will be over C .
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LEMMA 1. – For any two square matrices A and B, the eigenvalues of
A7B are precisely all the products of eigenvalues of A with eigenvalues of B
(both with multiplicity).

PROOF. – See [4], Theorem 8.8.13.

COROLLARY 1. – The eigenvalues of MN
7 are precisely all the products of

eigenvalues of the individual factors Mp l , taken one for each p l
VN .

PROOF. – Immediate.

LEMMA 2. – The eigenvalues of MN are precisely all the products of eigen-
values of Mp l , taken one for each p l

VN .

REMARK. – We shall prove that MN and MN
7 are similar matrices and the

result then follows from Lemma 1.

PROOF. – For any (n , m)41, let A4g h( (di , dj ) )

di dj
h, 1G i , jGt(n), where

d1 , R , dt(n) are the t(n) divisors of n , listed in some fixed order (not necessari-

ly increasing) and, similarly, let B4g h( (d k , d l ) )

d k d l

h, 1Gk , lGt(m), where

d 1 , R , d t(m) are the t(m) divisors of m , also listed in some fixed order.
Then A7B4C4 (crs ) satisfies, by definition of 7 ,

crs4
h( (di , dj ) )

di dj

h( (d k , d l ) )

d k d l

4
h( (di d k , dj d l ) )

di d k dj d l

due to the fact that h is multiplicative and (n , m)41.

Here i4 k r21

t(m)
l11 and kfr ( mod t(m) ), 1GkGt(m), and so clearly r

fixes i and k and hence di d k . Similarly, s fixes j and l and hence dj d l . There-

fore, writing a r4di d k (and so a s4dj d l ), we see that crs4
h( (a r , a s ) )

a r a s

where

clearly, as with A and B, the sequence a r , 1GrGt(nm), runs through all
t(nm) divisors of nm in some fixed order (depending on the ordering of the di

and d k ). Observe also that, as with A and B, C is symmetric. Iterating this, it

follows that the (u , v)th element of MN
7 is given by

h( (b u , b v ) )

b u b v

where the se-

quence b u runs precisely through all the divisors of N in some fixed
order.

Now suppose that in the first row of MN
7 , a denominator b 1 b v0

(in the v0
th

column) satisfies b 1 b v0
Eb 1 b v1

for some v1Ev0 . Then, clearly, b v0
Eb v1

and
hence b u b v0

Eb u b v1
for all u i.e. for all rows. Therefore this property holds

for the v0
th and v1

th column of MN
7 . A suitable column exchange in MN

7 would
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therefore remove this particular problem. This means post-multiplying MN
7 by

a non-singular elementary matrix P with det P421. Also since P corre-
sponds to a column exchange, P 24I or P 214P .

However, since MN
7 is symmetric, an analogous problem also occurs in the

v0
th and v1

th row of MN
7 and this is similarly removed by pre-multiplying MN

7 by
the same matrix P . After a certain number of such twin operations, MN

7 will
have all the denominators of the elements in its rows in increasing order as
well as the corresponding property for its columns i.e. MN

7 reduces to MN .
Hence

MN4P1 P2 Q Q QPk MN
7 Pk Pk21 Q Q QP1

with each Pi non-singular and satisfying Pi
214Pi .

Writing P4Pk Q Q QP1 , we deduce that MN is similar to MN
7 and the result

follows from Lemma 1.

COROLLARY 2

DN4 »
p l

VN
(Dp l )t(N/p l ) .

PROOF. – This follows immediately from Lemma 2 and the fact that the de-
terminant of a matrix over C is the products of its eigenvalues.

We now calculate explicitly the eigenvalues and eigenvectors of MN in the
case N4p and, in addition when h(n)4n 2, also for N4p 2.

LEMMA 3. – (i) For each prime p and any real multiplicative function h ,
the two eigenvalues of Mp are, in the case h(p)c1, given by

l p
(i)411

ai (p)

p
, i41, 2

with corresponding eigenvectors

c (i)4 (1 , ai (p) )T , i41, 2

where

a1 (p)4
h(p)2p 21k(p 22h(p) )214p 2

2p
,

a2 (p)4
h(p)2p 22k(p 22h(p) )214p 2

2p
.

If h(p)41, Mp has eigenvalues 0 and 111/p 2 with corresponding eigenvec-
tors (1 , 2p)T and (1 , 1 /p)T respectively.
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(ii) For each prime p and the multiplicative function h(n)4n 2 , the three
eigenvalues of Mp 2 are given by

l (1)412
1

p 2
, l (2)411

a p

p
1

1

p 2
, l (3)411

b p

p
1

1

p 2

with corresponding eigenvectors

c(1)4 (1 , 0 , 21)T , c(2)4 (1 , a p , 1 )T , c(3)4 (1 , b p , 1 )T

where

a p4
212k118p 2

2p
and b p4

211k118p 2

2p

REMARK. – Since, for any multiplicative function h(n), det (Mp 22 tI3 )40 is
a cubic in t, all eigenvalues of Mp 2 can always, in principle, be calculated and
indeed this can also be done for Mp 3 . The details, however, become excessively
tedious. We have merely included (ii) above as an example of such a
calculation.

PROOF. – (i) Mp has characteristic equation

p 2 t 22 t(h(p)1p 2 )1h(p)2140 .

If h(p)41, the eigenvalues are clearly 0 and 111/p 2 and a simple computa-
tion confirms the corresponding eigenvectors as announced.

If h(p)c1, the eigenvalues obtained by solving the quadratic characteris-
tic equation and their corresponding eigenvectors are easily computed to be as
announced above.

(ii) A typical eigenvalue l and its corresponding eigenvectors (1 , x , y)T

are obtained by solving the equations

11
x

p
1

y

p 2

11px1y

11px1p 2 y

4

4

4

l

lpx

lp 2 y .
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Eliminating l from the first two equations and also from the first and third
yields

pxg11 x

p
1

y

p 2 h
p 2 yg11 x

p
1

y

p 2 h
4

4

11px1y

11px1p 2 y .

An easy exercise now shows that either y41 and px 21x22p40 or x40
and y421 and this yields the announced results.

Proofs of Theorems

PROOF OF THEOREM 1. – The fact that

Dp l4
1

p l(l11)
»
i41

l

(h(p i )2h(p i21 ) )

is easily confirmed by reducing the determinant to upper triangular form. This
is achieved by multiplying the i th row by 1 /p and subtracting it from the (i1
1)th row, starting with i4 l and ending with i41. Our determinant identity (1)
then follows immediately from Corollary 2.

PROOF OF THEOREM 2. – Let n be square-free. The minimal value of the

quadratic form !
iNn , jNn

xi xj
h( (i , j) )

ij
on the unit sphere !

iNn
xi

241 is given by the

smallest eigenvalue of Mn . Since the above quadratic form can be rewritten as

!
iNn

g(i)g !
jNn , iNj

xj

j
h2

,

where h(n)4!
dNn

g(d), the imposition of the condition g(i)F0 for all iNn en-

sures that the quadratic form only takes non-negative values and hence the
smallest eigenvalue (and therefore all eigenvalues) of Mn are also non-nega-
tive. The condition g(i)F0 (iNn is equivalent, by Möbius inversion, to the con-
dition h(p)F1 (pNn.

If f (p)40 for any pNn then f (n)40. Choosing h(n)41 for all n, the eigen-

values of Mp are easily calculated to be 0 and 11 1

p 2
and hence by Lemma 2

and the above discussion, Mn has a zero eigenvalue and all others strictly posi-
tive. Thus the smallest eigenvalue of Mn is f (n) in this case.
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If, on the other hand, f (p)D0 for all pNn, we define h multiplicative
with

h(p)4
1

12 f (p)
1p 2 f (p)

and h(p i ), iF2, arbitrary with h(p i )ch(p i21 ) for iF2. This choice of h en-
sures that Mp is nonsingular and hence, by our earlier discussion, all the
eigenvalues of Mp are strictly positive. Define for each pNn , k4k(p)4
2/(p(12 f (p) ). A simple computation shows that

h(p)4p 21
(k 224) p

2k
and that h(p)2p 21k(p 22h(p) )214p 24kp .

Since 1D f (p)D0, we have that kD2/p and Lemma 3(i) implies that the
eigenvalues of Mp are 11k/(2p) and 122/(kp). Thus by Lemma 2, the small-
est eigenvalue of Mn is the product of the smallest eigenvalues of the various
Mp i.e. will equal

»
pNn
g12 2

kp
h4»

pNn
f (p)4 f (n) .

Thus in both cases the minimal value is f (n) as required.
Note: The condition f (p)E1 in Theorem 2 cannot be relaxed to f (p)G1. In

fact, if n4p, the quadratic form !
iNn , jNn

xi xj
h( (i , j) )

ij
reduces to x1

212x1 xp /p1

h(p)xp
2 /p 2 and this can indeed take values strictly less than 1 on the sphere

x 2
1 1xp

241. For example, if h(p)D0, take x14cos u , xp42sin u with u suffi-
ciently small and positive and, if h(p)G0, we may take the same values of x1

and xp but instead for any u� (0 , p/2 ).

PROOF OF THEOREM 3. – As mentioned earlier, we can write L as
follows.

L4 !
iNN , jNN

xi xj
h( (i , j) )

ij
4 !

iNN , jNN

xi xj

ij
!

dN(i , j)
g(d)4

4!
dNN

g(d)u!
nNN
dNn

xn

n
v2

where h(n)4!
dNn

g(d). Thus the problem of minimizing L subject to !
dNN

xd
241

reduces to determining the smallest eigenvalue of MN . Since g(n)D0, L is a
positive definite quadratic form and hence all the eigenvalues of MN are positi-
ve. We also have that h(p)411g(p)D1 and hence Dp4 (h(p)21) /p 2D0.
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Lemma 3 (i) implies that, for each pNN , the eigenvalues of Mp are positive and
together with Lemma 2 implies that the required minimal value of L is the
product of the smallest eigenvalues of each Mp i.e.

»
pNN
u12

(p 22h(p) )1k(p 22h(p) )214p 2

2p 2
v .
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