Bollettino

Unione Matematica Italiana

P. Codecá, M. Nair

Calculating a determinant associated with multiplicative functions

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.2, p. 545-555.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2002_8_5B_2_545_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Calculating a Determinant Associated with Multiplicative Functions.

P. Codecá - M. Nair

Sunto. - Sia h una funzione moltiplicativa a valori complessi. Per ogni $N \in \boldsymbol{N}$, calcoliamo il determinante $D_{N}:=\operatorname{det}_{i|N, j| N}\left(\frac{h((i, j))}{i j}\right)$, dove (i, j) indica il massimo comun divisore di i e j, che figurano in ordine crescente in righe e colonne. Precisamente dimostriamo che

$$
D_{N}=\prod_{p^{l} \| N}\left(\frac{1}{p^{l(l+1)}} \prod_{i=1}^{l}\left(h\left(p^{i}\right)-h\left(p^{i-1}\right)\right)\right)^{\tau\left(N / p^{l}\right)} .
$$

Dunque $D_{N}^{1 / \tau(N)}$ è effettivamente una funzione moltiplicativa di N. L'apparato algebrico associato a questo risultato ci consente di dimostrarne altri due. Il primo è la caratterizzazione delle funzioni reali moltiplicative $f(n)$, con $0 \leqslant f(p)<1$, come valori minimi di certe forme quadratiche sulla sfera unità $\tau(N)$ dimensionale. Il secondo è la determinazione esplicita dei valori minimi di certe altre forme quadratiche su detta sfera.

Summary. - Let h be a complex valued multiplicative function. For any $\boldsymbol{N} \in \boldsymbol{N}$, we compute the value of the determinant $D_{N}:=\operatorname{det}_{i|N, j| N}\left(\frac{h((i, j))}{i j}\right)$, where (i, j) denotes the greatest common divisor of i and j, which appear in increasing order in rows and columns. Precisely we prove that

$$
D_{N}=\prod_{p^{l} \| N}\left(\frac{1}{p^{l(l+1)}} \prod_{i=1}^{l}\left(h\left(p^{i}\right)-h\left(p^{i-1}\right)\right)\right)^{\tau\left(N / p^{l}\right)} .
$$

This means that $D_{N}^{1 / \tau(N)}$ is a multiplicative function of N. The algebraic apparatus associated with this result allows us to prove the following two results. The first one is the characterization of real multiplicative functions $f(n)$, with $0 \leqslant f(p)<1$, as minimal values of certain quadratic forms on the $\tau(N)$ unit sphere. The second one is the explicit evaluation of the minimal values of certain others quadratic forms also on the unit sphere.

1. - Introduction.

Let $h(n)$ be a complex-valued multiplicative function i.e. $h(1)=1$ and for $(m, n)=1, m, n \in \boldsymbol{N}$, we have that $h(m n)=h(m) h(n)$. Here (m, n) denotes the greatest common divisor of m and n.

For any $N \in \boldsymbol{N}$, denote by $d_{1}, \ldots, d_{\tau(N)}$ the positive divisors of N in increasing order. We define the $\tau(N) \times \tau(N)$ matrix M_{N} to be that with $(i, j)^{\text {th }}$ element $h\left(\left(d_{i}, d_{j}\right)\right) / d_{i} d_{j}$. This we abbreviate to

$$
M_{N}=\left(\frac{h((i, j))}{i j}\right)_{i|N, j| N}
$$

and we write

$$
D_{N}=\operatorname{det} M_{N} .
$$

This matrix can arise in several natural ways some of which we shall now describe.

Let

$$
\Delta(x, N)=\sum_{\substack{n \leq x N \\(n, N)=1}} 1-x \phi(N)
$$

where ϕ denotes Euler's function. This expression measures, via

$$
\Delta(N)=\sup _{x \in \boldsymbol{R}}|\Delta(x, N)|,
$$

the maximal deviation of the number of integers $\leqslant x N$ which are coprime to N from the expected quantity.

Various results on $\Delta(N)$ may be found in [2]. By writing $\Delta(x, N)$ in the form

$$
\sum_{n \leqslant x N} \sum_{d \mid(n, N)} \mu(d)-x \sum_{n \leqslant N} \sum_{d \mid(n, N)} \mu(d)
$$

and reversing summations, it readily follows that for square-free N

$$
\Delta(x, N)=-\mu(N) \sum_{d \mid N} \mu(d)\{x d\}
$$

where μ is the Möbius function and $\{t\}$ denotes the fractional part of t. A simple computation then yields that

$$
\int_{0}^{1} \Delta^{2}(x, N) d x=\frac{1}{12} \sum_{i|N, j| N} \mu(i) \mu(j) \frac{(i, j)^{2}}{i j}
$$

This sum can be evaluated to be $2^{\omega(N)} \varphi(N) / N$, where $\omega(N)$ is the number of distinct prime factors of N and φ is Euler's function, and, as shown by Perelli-

Zannier [5], is $2^{\omega(N)}$ multiplied by the minimal value of the quadratic form $\sum_{i|N, j| N} x_{i} x_{j} \frac{(i, j)^{2}}{i j}$ subject to the constraint $\sum_{i \mid N} x_{i}^{2}=1$. Observe that the associated matrix is of the form M_{N} with $h(n)=n^{2}$.

This type of discussion can be presented in a more general context. For any fixed $N \in \boldsymbol{N}$, define a function f by

$$
f(n)=f_{N}(n)=\sum_{d \mid(n, N)} \theta_{d} .
$$

Since f is periodic with period N, denoting by $m(f)$ its mean value, it is easily seen that

$$
\sum_{n \leqslant x} f(n)=m(f) x-\sum_{d \mid N} \theta_{d}\left\{\frac{x}{d}\right\}
$$

and hence

$$
\frac{1}{N} \int_{0}^{N}\left(\sum_{n \leqslant x} f(n)-m(f) x\right)^{2} d x=\frac{1}{4}\left(\sum_{d \mid N} \theta_{d}\right)^{2}+\frac{1}{12} \sum_{i|N, j| N} \alpha_{i} \alpha_{j} \frac{(i, j)^{2}}{i j}
$$

where $\alpha_{i}=\theta_{N / i}$. The matrix M_{N} associated with $h(n)=n^{2}$ is once more present in the second term on the right.

Further, since f^{2} is also periodic of period N, its mean value $m\left(f^{2}\right)$ can be expressed as

$$
m\left(f^{2}\right):=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqslant x} f^{2}(n)=\sum_{i|N, j| N} \theta_{i} \theta_{j} \frac{(i, j)}{i j}
$$

and hence we have here an occurrence of M_{N} with $h(n)=n$.
Problems concerned with determining minimal values of certain quadratic forms subject to constraints on the variables also give rise to matrices of the form M_{N}. For example, let $g(n)$ be any positive real multiplicative function and define the multiplicative function h by $h(n)=\sum_{d \mid n} g(d)$. Consider the quadratic form Λ defined by

$$
\Lambda=\sum_{i|N, j| N} x_{i} x_{j} \frac{h((i, j))}{i j}
$$

or equivalently, in terms of g,

$$
\Lambda=\sum_{d \mid N} g(d)\left(\sum_{\substack{n|N \\ d| n}} \frac{x_{n}}{n}\right)^{2},
$$

which transparently shows that Λ is positive definite. To determine the mini-
mal value of Λ on the $\tau(N)$-dimensional unit sphere $\sum_{d \mid N} x_{d}^{2}=1$ reduces to calculating the smallest eigenvalue of M_{N}. Such problems are often difficult to resolve completely since the eigenvalues can be zeros of polynomials of high degree. In our Theorem 3, we determine the required minimal value of Λ for square-free N. This includes the special case of $h(n)=n^{2}$ corresponding to $g(n)=n^{2} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)$ which yields the minimal value $\varphi(N) / N$ for the PerelliZannier quadratic form cited above. In Theorem 2, we show that this property of the function $\varphi(n) / n$ as a minimal value of a constrained quadratic form is, in fact, one shared by any real multiplicative function $f(n)$ with $0 \leqslant f(p)<1$.

Our first result is a complete evaluation of $\operatorname{det} M_{N}$ for any multiplicative function h.

Theorem 1. - Let h be a complex-valued multiplicative function. Then

$$
\begin{equation*}
D_{N}:=\operatorname{det}_{i|N, j| N}\left(\frac{h((i, j))}{i j}\right)=\prod_{p^{l} \| N}\left(\frac{1}{p^{l(l+1)}} \prod_{i=1}^{l}\left(h\left(p^{i}\right)-h\left(p^{i-1}\right)\right)\right)^{\tau\left(N / p^{l}\right)} \tag{1}
\end{equation*}
$$

for any $N \in \boldsymbol{N}$.
The interest here is in the fact that this can be achieved without calculating the individual eigenvalues of the matrix M_{N}. We also prove the following curious result regarding the characterization of certain multiplicative functions as minimal values of certain quadratic forms on the unit sphere.

Theorem 2. - Any real-valued multiplicative function $f(n)$ with $0 \leqslant$ $f(p)<1$ for prime p can be expressed as the minimal value, for square-free n, of a quadratic form

$$
\sum_{i|n, j| n} x_{i} x_{j} \frac{h((i, j))}{i j}
$$

with h multiplicative, on the $\tau(n)$-dimensional sphere $\sum_{i \mid n} x_{i}^{2}=1$.
For example, as may be noted from the proof, the ubiquitous M_{N} with $h(n)=n^{2}$ is associated with $f(n)=\frac{\phi(n)}{n}$. We also note at the end of the proof that the condition $f(p)<1$ cannot be relaxed to $f(p) \leqslant 1$.

Finally, as discussed earlier, we prove the following result.
Theorem 3. - Let N be a square-free integer. For any positive real multiplicative function $g(n)$, write $h(n)=\sum_{d \mid n} g(d)$. Then the minimal value of the
quadratic form

$$
\Lambda=\sum_{i|N, j| N} x_{i} x_{j} \frac{h((i, j))}{i j}
$$

subject to $\sum_{d \mid N} x_{d}^{2}=1$ is given by

$$
\prod_{p \mid N}\left(1-\frac{\left(p^{2}-h(p)\right)+\sqrt{\left(p^{2}-h(p)\right)^{2}+4 p^{2}}}{2 p^{2}}\right)
$$

It is obvious that substituting $h(p)=p^{2}$ in this expression immediately yields the minimal value $\varphi(N) / N$ as mentioned earlier.

The authors would like to thank the referee for his valuable suggestions.

Preliminaries

We shall need three lemmas. Useful references for the facts we require on tensor products of matrices are [1], [3] and [4].

Lemma 1 is well known, Lemma 2 describes the eigenvalues of the matrix M_{N}, whilst Lemma 3 is essentially a simple computation. We begin with the basic definitions.

Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ and a $p \times q$ matrix $B=\left(b_{k l}\right)$, the tensor product $A \otimes B$ is defined to be the $m p \times n q$ matrix $C=\left(c_{r s}\right)$ where $c_{r s}=a_{i j} b_{k l}$ with $r=p(i-1)+k$ and $s=q(j-1)+l$. Equivalently, $i=\left[\frac{r-1}{p}\right]+1, k \equiv r$ $(\bmod p), j=\left[\frac{s-1}{q}\right]+1$ and $l \equiv s(\bmod q)$ where the square brackets indicate the integer part function and $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n, 1 \leqslant k \leqslant p, 1 \leqslant l \leqslant q$.

It is a trivial but cumbersome exercise to show that tensor products are associative and that

$$
(A \otimes B)(C \otimes D)=A C \otimes B D
$$

for any matrices A, B, C, D whenever $A C$ and $B D$ are defined (see [4], Theorems 8.8.3 and 8.8.6). In general, $A \otimes B \neq B \otimes A$ so that the order in which the factors occur in a tensor product needs to be explicitly specified.

For any $N \in N, N>1$, we shall denote by M_{N}^{\otimes} the tensor product

$$
M_{N}^{\otimes}=\otimes_{p^{l} \| N} M_{p^{l}}
$$

where each factor $M_{p^{l}}$ is as described in the introduction (with $N=p^{l}$) and occurs in the product in order of increasing p.

All matrices considered in Lemmas 1 and 2 will be over \boldsymbol{C}.

Lemma 1. - For any two square matrices A and B, the eigenvalues of $A \otimes B$ are precisely all the products of eigenvalues of A with eigenvalues of B (both with multiplicity).

Proof. - See [4], Theorem 8.8.13.
Corollary 1. - The eigenvalues of M_{N}^{\otimes} are precisely all the products of eigenvalues of the individual factors $M_{p^{l}}$, taken one for each $p^{l} \| N$.

PRoof. - Immediate.
Lemma 2. - The eigenvalues of M_{N} are precisely all the products of eigenvalues of $M_{p^{l}}$, taken one for each $p^{l} \| N$.

REmARK. - We shall prove that M_{N} and M_{N}^{\otimes} are similar matrices and the result then follows from Lemma 1.

Proof. - For any $(n, m)=1$, let $A=\left(\frac{h\left(\left(d_{i}, d_{j}\right)\right)}{d_{i} d_{j}}\right), 1 \leqslant i, j \leqslant \tau(n)$, where $d_{1}, \ldots, d_{\tau(n)}$ are the $\tau(n)$ divisors of n, listed in some fixed order (not necessarily increasing) and, similarly, let $B=\left(\frac{h\left(\left(\delta_{k}, \delta_{l}\right)\right)}{\delta_{k} \delta_{l}}\right), 1 \leqslant k, l \leqslant \tau(m)$, where $\delta_{1}, \ldots, \delta_{\tau(m)}$ are the $\tau(m)$ divisors of m, also listed in some fixed order.

Then $A \otimes B=C=\left(c_{r s}\right)$ satisfies, by definition of \otimes,

$$
c_{r s}=\frac{h\left(\left(d_{i}, d_{j}\right)\right)}{d_{i} d_{j}} \frac{h\left(\left(\delta_{k}, \delta_{l}\right)\right)}{\delta_{k} \delta_{l}}=\frac{h\left(\left(d_{i} \delta_{k}, d_{j} \delta_{l}\right)\right)}{d_{i} \delta_{k} d_{j} \delta_{l}}
$$

due to the fact that h is multiplicative and $(n, m)=1$.
Here $i=\left[\frac{r-1}{\tau(m)}\right]+1$ and $k \equiv r(\bmod \tau(m)), 1 \leqslant k \leqslant \tau(m)$, and so clearly r fixes i and k and hence $d_{i} \delta_{k}$. Similarly, s fixes j and l and hence $d_{j} \delta_{l}$. Therefore, writing $\alpha_{r}=d_{i} \delta_{k}$ (and so $\alpha_{s}=d_{j} \delta_{l}$), we see that $c_{r s}=\frac{h\left(\left(\alpha_{r}, \alpha_{s}\right)\right)}{\alpha_{r} \alpha_{s}}$ where clearly, as with A and B, the sequence $\alpha_{r}, 1 \leqslant r \leqslant \tau(n m)$, runs through all $\tau(n m)$ divisors of $n m$ in some fixed order (depending on the ordering of the d_{i} and δ_{k}). Observe also that, as with A and B, C is symmetric. Iterating this, it follows that the $(u, v)^{\text {th }}$ element of M_{N}^{\otimes} is given by $\frac{h\left(\left(\beta_{u}, \beta_{v}\right)\right)}{\beta_{u} \beta_{v}}$ where the sequence β_{u} runs precisely through all the divisors of N in some fixed order.

Now suppose that in the first row of M_{N}^{\otimes}, a denominator $\beta_{1} \beta_{v_{0}}$ (in the $v_{0}^{\text {th }}$ column) satisfies $\beta_{1} \beta_{v_{0}}<\beta_{1} \beta_{v_{1}}$ for some $v_{1}<v_{0}$. Then, clearly, $\beta_{v_{0}}<\beta_{v_{1}}$ and hence $\beta_{u} \beta_{v_{0}}<\beta_{u} \beta_{v_{1}}$ for all u i.e. for all rows. Therefore this property holds for the $v_{0}^{\text {th }}$ and $v_{1}^{\text {th }}$ column of M_{N}^{\otimes}. A suitable column exchange in M_{N}^{\otimes} would
therefore remove this particular problem. This means post-multiplying M_{N}^{\otimes} by a non-singular elementary matrix P with $\operatorname{det} P=-1$. Also since P corresponds to a column exchange, $P^{2}=I$ or $P^{-1}=P$.

However, since M_{N}^{\otimes} is symmetric, an analogous problem also occurs in the $v_{0}^{\text {th }}$ and $v_{1}^{\text {th }}$ row of M_{N}^{\otimes} and this is similarly removed by pre-multiplying M_{N}^{\otimes} by the same matrix P. After a certain number of such twin operations, M_{N}^{\otimes} will have all the denominators of the elements in its rows in increasing order as well as the corresponding property for its columns i.e. M_{N}^{\otimes} reduces to M_{N}. Hence

$$
M_{N}=P_{1} P_{2} \cdots P_{k} M_{N}^{\otimes} P_{k} P_{k-1} \cdots P_{1}
$$

with each P_{i} non-singular and satisfying $P_{i}^{-1}=P_{i}$.
Writing $P=P_{k} \cdots P_{1}$, we deduce that M_{N} is similar to M_{N}^{\otimes} and the result follows from Lemma 1.

Corollary 2

$$
D_{N}=\prod_{p^{l} \| N}\left(D_{p^{l}}\right)^{\tau\left(N / p^{l}\right)} .
$$

Proof. - This follows immediately from Lemma 2 and the fact that the determinant of a matrix over \boldsymbol{C} is the products of its eigenvalues.

We now calculate explicitly the eigenvalues and eigenvectors of M_{N} in the case $N=p$ and, in addition when $h(n)=n^{2}$, also for $N=p^{2}$.

Lemma 3. - (i) For each prime p and any real multiplicative function h, the two eigenvalues of M_{p} are, in the case $h(p) \neq 1$, given by

$$
\lambda_{p}^{(i)}=1+\frac{a_{i}(p)}{p}, \quad i=1,2
$$

with corresponding eigenvectors

$$
c^{(i)}=\left(1, a_{i}(p)\right)^{T}, \quad i=1,2
$$

where

$$
\begin{aligned}
& a_{1}(p)=\frac{h(p)-p^{2}+\sqrt{\left(p^{2}-h(p)\right)^{2}+4 p^{2}}}{2 p}, \\
& a_{2}(p)=\frac{h(p)-p^{2}-\sqrt{\left(p^{2}-h(p)\right)^{2}+4 p^{2}}}{2 p} .
\end{aligned}
$$

If $h(p)=1, M_{p}$ has eigenvalues 0 and $1+1 / p^{2}$ with corresponding eigenvectors $(1,-p)^{T}$ and $(1,1 / p)^{T}$ respectively.
(ii) For each prime p and the multiplicative function $h(n)=n^{2}$, the three eigenvalues of $M_{p^{2}}$ are given by

$$
\lambda^{(1)}=1-\frac{1}{p^{2}}, \quad \lambda^{(2)}=1+\frac{\alpha_{p}}{p}+\frac{1}{p^{2}}, \quad \lambda^{(3)}=1+\frac{\beta_{p}}{p}+\frac{1}{p^{2}}
$$

with corresponding eigenvectors

$$
\boldsymbol{c}^{(1)}=(1,0,-1)^{T}, \quad \boldsymbol{c}^{(2)}=\left(1, \alpha_{p}, 1\right)^{T}, \quad \boldsymbol{c}^{(3)}=\left(1, \beta_{p}, 1\right)^{T}
$$

where

$$
\alpha_{p}=\frac{-1-\sqrt{1+8 p^{2}}}{2 p} \quad \text { and } \quad \beta_{p}=\frac{-1+\sqrt{1+8 p^{2}}}{2 p}
$$

Remark. - Since, for any multiplicative function $h(n)$, $\operatorname{det}\left(M_{p^{2}}-t I_{3}\right)=0$ is a cubic in t, all eigenvalues of $M_{p^{2}}$ can always, in principle, be calculated and indeed this can also be done for $M_{p^{3}}$. The details, however, become excessively tedious. We have merely included (ii) above as an example of such a calculation.

Proof. - (i) M_{p} has characteristic equation

$$
p^{2} t^{2}-t\left(h(p)+p^{2}\right)+h(p)-1=0 .
$$

If $h(p)=1$, the eigenvalues are clearly 0 and $1+1 / p^{2}$ and a simple computation confirms the corresponding eigenvectors as announced.

If $h(p) \neq 1$, the eigenvalues obtained by solving the quadratic characteristic equation and their corresponding eigenvectors are easily computed to be as announced above.
(ii) A typical eigenvalue λ and its corresponding eigenvectors $(1, x, y)^{T}$ are obtained by solving the equations

$$
\begin{aligned}
& 1+\frac{x}{p}+\frac{y}{p^{2}}=\lambda \\
& 1+p x+y=\lambda p x \\
& 1+p x+p^{2} y=\lambda p^{2} y
\end{aligned}
$$

Eliminating λ from the first two equations and also from the first and third yields

$$
\begin{aligned}
& p x\left(1+\frac{x}{p}+\frac{y}{p^{2}}\right)=1+p x+y \\
& p^{2} y\left(1+\frac{x}{p}+\frac{y}{p^{2}}\right)=1+p x+p^{2} y
\end{aligned}
$$

An easy exercise now shows that either $y=1$ and $p x^{2}+x-2 p=0$ or $x=0$ and $y=-1$ and this yields the announced results.

Proofs of Theorems

Proof of Theorem 1. - The fact that

$$
D_{p^{l}}=\frac{1}{p^{l(l+1)}} \prod_{i=1}^{l}\left(h\left(p^{i}\right)-h\left(p^{i-1}\right)\right)
$$

is easily confirmed by reducing the determinant to upper triangular form. This is achieved by multiplying the $i^{\text {th }}$ row by $1 / p$ and subtracting it from the $(i+$ $1)^{\text {th }}$ row, starting with $i=l$ and ending with $i=1$. Our determinant identity (1) then follows immediately from Corollary 2.

Proof of Theorem 2. - Let n be square-free. The minimal value of the quadratic form $\sum_{i|n, j| n} x_{i} x_{j} \frac{h((i, j))}{i j}$ on the unit sphere $\sum_{i \mid n} x_{i}^{2}=1$ is given by the smallest eigenvalue of M_{n}. Since the above quadratic form can be rewritten as

$$
\sum_{i \mid n} g(i)\left(\sum_{j|n, i| j} \frac{x_{j}}{j}\right)^{2}
$$

where $h(n)=\sum_{d \mid n} g(d)$, the imposition of the condition $g(i) \geqslant 0$ for all $i \mid n$ ensures that the quadratic form only takes non-negative values and hence the smallest eigenvalue (and therefore all eigenvalues) of M_{n} are also non-negative. The condition $g(i) \geqslant 0 \forall i \mid n$ is equivalent, by Möbius inversion, to the condition $h(p) \geqslant 1 \forall p \mid n$.

If $f(p)=0$ for any $p \mid n$ then $f(n)=0$. Choosing $h(n)=1$ for all n, the eigenvalues of M_{p} are easily calculated to be 0 and $1+\frac{1}{p^{2}}$ and hence by Lemma 2 and the above discussion, M_{n} has a zero eigenvalue and all others strictly positive. Thus the smallest eigenvalue of M_{n} is $f(n)$ in this case.

If, on the other hand, $f(p)>0$ for all $p \mid n$, we define h multiplicative with

$$
h(p)=\frac{1}{1-f(p)}+p^{2} f(p)
$$

and $h\left(p^{i}\right), i \geqslant 2$, arbitrary with $h\left(p^{i}\right) \neq h\left(p^{i-1}\right)$ for $i \geqslant 2$. This choice of h ensures that M_{p} is nonsingular and hence, by our earlier discussion, all the eigenvalues of M_{p} are strictly positive. Define for each $p \mid n, k=k(p)=$ $2 /(p(1-f(p))$. A simple computation shows that

$$
h(p)=p^{2}+\frac{\left(k^{2}-4\right) p}{2 k} \text { and that } h(p)-p^{2}+\sqrt{\left(p^{2}-h(p)\right)^{2}+4 p^{2}}=k p
$$

Since $1>f(p)>0$, we have that $k>2 / p$ and Lemma 3(i) implies that the eigenvalues of M_{p} are $1+k /(2 p)$ and $1-2 /(k p)$. Thus by Lemma 2 , the smallest eigenvalue of M_{n} is the product of the smallest eigenvalues of the various M_{p} i.e. will equal

$$
\prod_{p \mid n}\left(1-\frac{2}{k p}\right)=\prod_{p \mid n} f(p)=f(n) .
$$

Thus in both cases the minimal value is $f(n)$ as required.
Note: The condition $f(p)<1$ in Theorem 2 cannot be relaxed to $f(p) \leqslant 1$. In fact, if $n=p$, the quadratic form $\sum_{i|n, j| n} x_{i} x_{j} \frac{h((i, j))}{i j}$ reduces to $x_{1}^{2}+2 x_{1} x_{p} / p+$ $h(p) x_{p}^{2} / p^{2}$ and this can indeed take values strictly less than 1 on the sphere $x_{1}^{2}+x_{p}^{2}=1$. For example, if $h(p)>0$, take $x_{1}=\cos \theta, x_{p}=-\sin \theta$ with θ sufficiently small and positive and, if $h(p) \leqslant 0$, we may take the same values of x_{1} and x_{p} but instead for any $\theta \in(0, \pi / 2)$.

Proof of Theorem 3. - As mentioned earlier, we can write Λ as follows.

$$
\begin{aligned}
\Lambda & =\sum_{i|N, j| N} x_{i} x_{j} \frac{h((i, j))}{i j}=\sum_{i|N, j| N} \frac{x_{i} x_{j}}{i j} \sum_{d \mid(i, j)} g(d)= \\
& =\sum_{d \mid N} g(d)\left(\sum_{\substack{n|N \\
d| n}} \frac{x_{n}}{n}\right)^{2}
\end{aligned}
$$

where $h(n)=\sum_{d \mid n} g(d)$. Thus the problem of minimizing Λ subject to $\sum_{d \mid N} x_{d}^{2}=1$ reduces to determining the smallest eigenvalue of M_{N}. Since $g(n)>0, \Lambda$ is a positive definite quadratic form and hence all the eigenvalues of M_{N} are positive. We also have that $h(p)=1+g(p)>1$ and hence $D_{p}=(h(p)-1) / p^{2}>0$.

Lemma 3 (i) implies that, for each $p \mid N$, the eigenvalues of M_{p} are positive and together with Lemma 2 implies that the required minimal value of Λ is the product of the smallest eigenvalues of each M_{p} i.e.

$$
\prod_{p \mid N}\left(1-\frac{\left(p^{2}-h(p)\right)+\sqrt{\left(p^{2}-h(p)\right)^{2}+4 p^{2}}}{2 p^{2}}\right)
$$

REFERENCES

[1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York (1970).
[2] P. CodecÁ - M. Nair, Extremal Values of $\Delta(x, N)=\sum_{\substack{n \leq x N \\ N}} 1-x \phi(N)$, Canad.
Math. Bull. (3), 41 (1998), 335-347.
[3] P. De Bartolomeis, Algebra lineare, La Nuova Italia Editrice, Scandicci, Firenze 1993.
[4] F. A. Graybill, Introduction to matrices with applications in statistics, Wordsworth Publishing Company Belmont, California 1969.
[5] A. Perelli - U. Zannier, An Extremal Property of the Möbius Function, Arch. Math., 53 (1989), 20-29.
P. Codecá: Dipartimento di Matematica, Universitá di Ferrara

Via Machiavelli 35, 44100 Ferrara, Italy; e-mail: cod@dns.unife.it
M. Nair: Department of Mathematics, University of Glasgow

Glasgow G12 8QW, U.K.; e-mail: m.nair@maths.gla.ac.uk

[^0]
[^0]: Pervenuta in Redazione
 il 9 aprile 2001

