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Bollettino U. M. I.
(8) 5-B (2002), 527-543

L p-Improving Properties of Measures Supported
on Curves on the Heisenberg Group. II.

SILVIA SECCO

Sunto. – In questo lavoro riprendiamo la trattazione del cosiddetto fenomeno di L p-
improving per curve nel gruppo di Heisenberg iniziato nel precedente articolo [7].
Il problema riguarda lo studio delle proprietà di limitatezza L p-L q per operatori di
convoluzione con misure finite a supporto su curve nel gruppo di Heisenberg. Sia G
una curva C Q regolare nel gruppo di Heisenberg H1 definita da

G : IKH1 sOG(s)4 (c 1 (s), c 2 (s), c 3 (s) )

dove I è un intervallo limitato di R e c 1 (s), c 2 (s), c 3 (s) sono funzioni C Q a valori
reali. Definita la misura

am , f b4s
I

f (G(s) ) ds f�Cc (H1 ) ,

consideriamo il corrispondente operatore di convoluzione a destra con m

Tf (w)4 f˜m(w)4s
I

f (w Q (G(s) )21 ) ds w�H1 .

Nella prima parte di questo lavoro forniamo alcune limitazioni sull’insieme
caratteristico

R4mg 1

p
,

1

q
h� [0 , 1 ]3 [0 , 1 ] : T è limitato da L p (H1 ) a L q (H1 )n

dell’operatore T, precisamente proviamo che l’insieme R è contenuto nel trapezio
chiuso di vertici

A4 (0 , 0 ), B4 (1 , 1 ), C4 (2 /3 , 1 /2), D4 (1 /2 , 1 /3) .

Nella seconda parte di questo lavoro focalizziamo invece l’attenzione su curve nel
gruppo di Heisenberg H1 aventi vettore tangente nell’origine parallelo al centro del
gruppo. Più precisamente, consideriamo una curva g(s) data da

g : IKH1 sOg(s)4 (s m , s n , s)(1)

dove I4 [0 , R], RD0, e m, n sono numeri reali distinti maggiori di uno. Provia-
mo che l’insieme caratteristico dell’operatore U definito dalla formula

Uf (w)4s
I

f (w Q (g(s) )21 ) ds w�H1
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è contenuto nel trapezio chiuso di vertici A4 (0 , 0 ), B4 (1 , 1 ), P14

g m1n21

m1n11
, m1n22

m1n11
h, P24 g 3

m1n11
, 2

m1n11
h con la sola possibile eccezione

del segmento chiuso congiungente i due punti P1 e P2 se m1nF5, ed è l’intero tra-
pezio chiuso ABCD se m1nE5. I risultati ottenuti per l’operatore U rimangono
validi sostituendo la curva (1) con una più generale curva G(s)4 (s m1o(s m ), s n1
o(s n ), s), per s in un intorno dell’origine.

Summary. – L p-L q estimates are obtained for convolution operators by finite mea-
sures supported on curves in the Heisenberg group whose tangent vector at the ori-
gin is parallel to the centre of the group.

1. – Introduction.

In this paper we continue the study of the L p-L q boundedness properties
of convolution operators by finite measures supported on curves in the
Heisenberg group which we started in a previous paper [7].

As in [7], let H1 be the Heisenberg group, that is R 3 with group law given
by

(x , y , t) Q (x 8 , y 8 , t 8 )4gx1x 8 , y1y 8 , t1 t 81
1

2
(xy 82x 8 y)h .

We consider a smooth regular curve G in the Heisenberg group H1 which is de-
fined as

G : IKH1 sOG(s)4 (c 1 (s), c 2 (s), c 3 (s) )(1)

where I is a bounded interval of R and c 1 (s), c 2 (s), c 3 (s) are smooth real
valued functions.

For any continuous compactly supported function f on H1 we define the
measure

am , f b4s
I

f (G(s) ) ds(2)

and we consider the corresponding right convolution operator by m

Tf (w)4 f * m(w)4s
I

f (w Q (G(s) )21 ) ds w�H1 .(3)



L p-IMPROVING ON THE HEISENBERG GROUP 529

We denote by

R4mg 1

p
,

1

q
h� [0 , 1 ]3 [0 , 1 ] : T : L p (H1 )KL q (H1 ) boundedlyn

the type set of the operator T in (3). The set R is a convex subset of the square
[0 , 1 ]3 [0 , 1 ], contained in the triangle below the diagonal 1 /p41/q and con-
taining the diagonal itself, [1].

In the first part of this paper we obtain some limitations on the type set R
of the operator T in (3). Analogously to the case of a curve in Rn , the set R is
subject to constraints which are due to dimensions and to a sort of local homo-
geneity of the curve G .

Suitably modifying some arguments which can be found in [4], we prove
that the the type set R of the operator in (3) is contained in the closed trape-
zoid with vertices

A4 (0 , 0 ), B4 (1 , 1 ), C4 (2 /3 , 1 /2), D4 (1 /2 , 1 /3)(4)

within the closed triangle with vertices A4 (0 , 0 ), B4 (1 , 1 ), P4

(3 /5 , 2 /5).
It is well known that if in (3) we replace the Heisenberg group convolution

by the ordinary convolution in R 3 , then the L p-improving properties of the
measure m in (2) are closely related to the curvature and torsion properties of
G , [2, 3, 6].

In our previous paper [7], we discussed the L p-improving properties of a fi-
nite measure m in the case in which its supporting manifold is a curve in H1

whose tangent vector at any point is not parallel to the centre of the group, i.e.,
without loss of generality, it has the form G(s)4 (s , f 1 (s), f 2 (s) ), s�I%R
where f 1 (s), f 2 (s) are smooth real valued functions.

We found the curvature condition that implies that the type set of the cor-
responding right convolution operator is the whole closed trapezoid ABCD
and we also established a notion of right curvature-torsion and a notion of left
curvature-torsion which are not mutually equivalent.

In the second part of this paper we focus our attention on curves in the
Heisenberg group having tangent vector at the origin which is parallel to the
centre of the group. More precisely we consider a curve g(s) which is given by

g : IKH1 sO g(s)4 (s m , s n , s)(5)

where I4 [0 , R], RD0, and m , n are distinct real numbers greater than
one.

We define the right convolution operator U

Uf (w)4s
I

f (w Q (g(s) )21 ) ds w�H1(6)
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whose convolution kernel is a measure supported on the curve in (5) and we
prove that its type set U is contained in the closed trapezoid with vertices A4

(0 , 0 ), B4 (1 , 1 ), P14g m1n21

m1n11
, m1n22

m1n11
h, P24g 3

m1n11
, 2

m1n11
h with

the only possible exception of the closed segment joining the two points P1 and
P2 if m1nF5, and it is the whole closed trapezoid ABCD if m1nE5.

The fact that we have to distinguish between m1nF5 and m1nE5 is
due to the following remarks.

We know that the type set of the operator U in (6) is contained in the
closed trapezoid ABCD , but we can also prove, by taking into account the local
homogeneity near the origin of the curve in (5), that another necessary condi-
tion for the operator U to be bounded from L p (H1 ) to L q (H1 ) is that

1

p
2

1

q
G

1

m1n11
.(7)

The inequality in (7) generates the closed trapezoid with vertices A4 (0 , 0 ),

B4 (1 , 1 ), P14g m1n21

m1n11
, m1n22

m1n11
h, P24g 3

m1n11
, 2

m1n11
h within the

closed triangle with vertices A , B , P4 (3 /5 , 2 /5). Depending on m and n , the
optimal trapezoid ABCD intersects the trapezoid ABP1 P2 and since we are
looking for boundedness in the intersection between the two previous closed
trapezoids, we have to distinguish between the case m1nF5 and the case
m1nE5.

The results we have proved for the operator U also hold when we replace
the curve (5) by the more general curve G(s)4 (s m1o(s m ), s n1o(s n ), s), for
s in a neighborhood of the origin.

2. – Preliminary estimates.

THEOREM 2.1. – Let G(s), s�I , be the smooth regular curve defined in (1)
and let T be the operator defined in (3), then the type set R of T is contained
in the closed trapezoid with vertices A4 (0 , 0 ), B4 (1 , 1 ), C4 (2 /3 , 1 /2),
D4 (1 /2 , 1 /3).

PROOF. – A result due to Ricci and Stein, [5], implies that if G(s), s�I , does
not generate the Heisenberg group H1 (i.e. it is contained in some proper
closed subgroup of H1) then the type set R of T is reduced to the diagonal
1 /p41/q .

Hence we can assume that the curve G(s), s�I , generates the full group
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H1 . Then there exists at least one point s0�I such that

N
N
N

c 18 (s0 )

c 28 (s0 )

c 38 (s0 )

c 19 (s0 )

c 29 (s0 )

c 39 (s0 )

0

0

1

N
N
N
c0 .(8)

Up to translations we can suppose that s040 and G(0)4 (0 , 0 , 0 ).
Since inequality (8) holds for s040, at least one value between c 18 (0) and

c 28 (0) is not zero. Up to a rotation we can assume without loss of generality
that c 18 (0)c0.

By the automorphism

.
`
/
`
´

x 84
1

c 18 (0)
x

y 84
c 28 (0)

c 18 (0)
x2y

t 84 t2
c 39 (0) c 28 (0)2c 38 (0) c 29 (0)

c 28 (0) c 19 (0)2c 29 (0) c 18 (0)
x1

c 39 (0) c 18 (0)2c 38 (0) c 19 (0)

c 28 (0) c 19 (0)2c 29 (0) c 18 (0)
y ,

(which is well defined because c 18 (0)c0 and (8) holds) and a change of
parameter, the curve G(s) can be written as

G(s)4 (s , as 21o(s 2 ), bs 31o(s 3 ) )(9)

in a neighborhood of the origin, where

a4
c 28 (0) c 19 (0)2c 29 (0) c 18 (0)

2c 18 (0)

and

b42

N
N
N

c 18 (0)
c 28 (0)
c 38 (0)

c 19 (0)
c 29 (0)
c 39 (0)

c 1R(0)
c 2R(0)
c 3R(0)

N
N
N

6(c 28 (0) c 19 (0)2c 29 (0) c 18 (0) )
.

We notice that the coefficient b might be zero while the coefficient a is not zero
because of the inequality in (8).

Suitably modifying the standard argument of testing the operator T on the
characteristic function of a small euclidean ball, [2], we can prove that a
necessary condition for the operator T to be bounded from L p (H1 ) to L q (H1 )
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is that

3

p
2

2

q
G1 .(10)

Recalling that the operator T : fO f * m is bounded from L p (H1 ) to L q (H1 ) if
and only if the operator fO m * f is bounded from L q 8 (H1 ) to L p 8 (H1 ), the same
test shows that also the inequality

3

q
F

2

p
(11)

must hold.
Conditions (10) and (11) together with the fact that it must be 0G 1

q
G

1

p
G1,

[1], imply that the type set R of T is contained in the closed triangle with ver-
tices A4 (0 , 0 ), B4 (1 , 1 ), P4 (3 /5 , 2 /5).

Finally, testing the operator T on the characteristic function fe of the set
](x , y , t)�H1 : NxNEe , NyNEe 2 , NtNEe 3( for a small positive e , which takes
into account the local homogeneity of the curve (9) in a neighborhood of the
origin, yields the necessary condition

1

p
2

1

q
G

1

6
(12)

for the L p-L q boundedness of T to hold. The inequality in (12) generates
the closed trapezoid with vertices A4 (0 , 0 ), B4 (1 , 1 ), C4 (2 /3 , 1 /2),
D4 (1 /2 , 1 /3) within the closed triangle ABP and this concludes the
proof. r

In order to study the type set of the operator U in (6), we need a prelimi-
nary lemma whose proof can be found in [7] and that we rewrite here for the
sake of completeness.

LEMMA 2.2. – Let I be a bounded interval of R and consider the curve in R 2

given by C(s)4 (u(s), z(s) ) where u(s) and z(s) are smooth real-valued func-
tions such that

Nu 8 (s) z 9 (s)2u 9 (s) z 8 (s)NFC1(13)

and

Nu 8 (s)NFC2(14)

for two positive constants C1 and C2 .
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Then the operator

Sf (x)4s
I

f (x2C(s) ) ds , x�R 2

is bounded from L 3/2 (R 2 ) to L 3 (R 2 ) and

VSf VL 3 (R 2 )Gcg C1 C2

M 3 h21/3g 1

C2

1
C3

C2
3
NINh2/3

V f VL 3/2 (R 2 )

where C1 , C2 are the constants in (13) and (14) respectively, and C34

max
s�I

Nu 9 (s)N , M4max
s�I

Nu 8 (s)N .

3. – Type set for curves having tangent vector at the origin which is par-
allel to the centre of the Heisenberg group.

Let g be the curve in the Heisenberg group H1 which is defined in (5).
Since rotations in the first two coordinates of the Heisenberg group are group
automorphisms, we can suppose without loss of generality mDnD1. More-
over, since away from the origin the operator U is essentially a convolution op-
erator by a curve which satisfies the hypotheses of Theorem 3.1 in [7], we
assume I4[0, d] for a sufficiently small positive parameter d , (we will see later
how small we must choose d). We can state the following result.

THEOREM 3.1. – Let U be the operator defined in (6) and let U be its type
set, then

(i) if m1nF5, the type set U is contained in the closed trapezoid

with vertices A4 (0 , 0 ), B4 (1 , 1 ), P14g m1n21

m1n11
, m1n22

m1n11
h, P24

g 3

m1n11
, 2

m1n11
h with the only possible exception of the closed segment

joining the two points P1 and P2 ;

(ii) if m1nE5, the type set U is the whole closed trapezoid with ver-

tices A4 (0 , 0 ), B4 (1 , 1 ), C4g 2

3
, 1

2
h, D4g 1

2
, 1

3
h.

PROOF. – We split the argument into several steps.

STEP 1. – By Theorem 2.1 we know that the type set U of U is contained in
the closed trapezoid with vertices A4 (0 , 0 ), B4 (1 , 1 ), C4 (2 /3 , 1 /2), D4

(1 /2 , 1 /3). We get some other limitations on U by applying U to some test
functions.
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Take, as a test function, the characteristic function fe of the set

](x , y , t)�H1 : NxNEe m , NyNEe n , NtNEe(

where e is a small positive parameter.
Let (x , y , t) be a point in the set

Me4](x , y , t)�H1 : NxNEc1 e m , NyNEc1 e n , NtNEc1 e(

where c1D0 is a small constant and let 0EsEce . It is easy to verify that, if c
is small enough, we get by term by term majorization

Nx2s mNEe m

Ny2s n NEe n

N t2s2
x

2
s n1

y

2
s mNEe .

Therefore Ufe (x , y , t)Dce on Me . Since the Lebesgue measure of Me is a con-
stant times e m1n11 , we have VUfe VL q (H1 )DCe 11 (m1n11) /q . If we impose the
condition that U is bounded from L p (H1 ) to L q (H1 ), we must have

VUfe VqGCV fe Vp

that is

e 11 (m1n11) /qGCe (m1n11) /p

for every 0EeE1. This gives

1

p
2

1

q
G

1

m1n11
.

This restriction implies that the type set U of U is contained in the closed

trapezoid which lies above the line 1

p
2

1

q
4

1

m1n11
inside the optimal closed

trapezoid ABCD , i.e. the closed trapezoid with vertices A4 (0 , 0 ), B4 (1 , 1 ),

P14g m1n21

m1n11
, m1n22

m1n11
h, P24g 3

m1n11
, 2

m1n11
h.

STEP 2. – Let e be a sufficiently small positive real value that will be deter-
mined later. We make a decomposition of [0 , d] into intervals Jj4 [ (11
e)2j21 d , (11e)2j d], j40, 1 , R , and we define the operators

Uj f (x , y , t)4 s
(11e)2j21 d

(11e)2j d

f ( (x , y , t) Q (s m , s n , s)21 ) ds .
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Then

U4 !
j40

1Q

Uj .(15)

We rescale the operators Uj in such a way to have a common range of integra-
tion. We hence define U0, j so that

(16) Uj f (x , y , t)4

(11e)2j D( (11e)mj , (11e)nj , (11e)(m1n) j ) (U0, j D( (11e)2mj , (11e)2nj , (11e)2(m1n) j ) f )(x , y , t)

where for a function f on H1 and (e 1 , e 2 , e 3 )�R 3 , we set

D(e 1 , e 2 , e 3 ) f (x , y , t)4 f (e 1 x , e 2 y , e 3 t) .

Then

U0, j f (x , y , t)4 s
d/(11e)

d

f ( (x , y , t) Q (s m , s n , (11e)(m1n21) j s)21 ) ds .(17)

Since s� [d/(11e), d], by a change of variable the operator in (17) becomes
essentially the operator

U0, j f (x , y , t)4 s
(d/(11e) )m

dm

f ( (x , y , t) Q (s , s n/m , (11e)(m1n21) j s 1/m )21 ) ds .(18)

Hence, by (15) and (16)

(19) VUfVqG !
j40

1Q

VUj f Vq4

!
j40

1Q

(11e)2j
VD( (11e)mj , (11e)nj , (11e)(m1n) j ) (U0, j D( (11e)2mj , (11e)2nj , (11e)2(m1n) j ) f )Vq4

!
j40

1Q

(11e)(212 2m12n

q
) j
VU0, j D( (11e)2mj , (11e)2nj , (11e)2(m1n) j ) f VqG

!
j40

1Q

(11e)(212 2m12n

q
1

2m12n

p
) j
VU0, j Vp , q V f Vp

where U0, j is the operator defined in (18).

STEP 3. – Let U0, j be the operator defined in (18). For an appropriate d we
prove that
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(a) U0, j is bounded from L 3/2 (H1 ) to L 2 (H1 ) and

VU0, j V3/2 , 2GC(11e)2
m1n21

6
j(20)

(b) U0, j is bounded from L 2 (H1 ) to L 3 (H1 ) and

VU0, j V2, 3GC(11e)2
m1n21

6
j(21)

where C is a positive constant which is independent of j .
We start by proving statement (a).
We notice that U0, j is a right convolution operator by a finite measure sup-

ported on the curve g j given by

g j (s)4 (s , s n/m , (11e)(m1n21) j s 1/m )

4 (s , f(s), c j (s) ), s� [ (d/(11e) )m , d m ]
(22)

where we set f(s)4s n/m and c j (s)4 (11e)(m1n21) j s 1/m . We impose that g j

satisfies the right curvature condition for every s� [ (d/(11e) )m , d m ], as in
Theorem 3.1 in [7]. Since

Nf 9 (s) cRj (s)2fR(s) c 9j (s)1
(f 9 (s) )2

2 N4

n(m2n)

2m 5
s

2n

m
24 N2(11e)(m1n21) j (m21)(n21) s

12m2n

m 2nm(m2n)NF

n(n2m)

2m 5
d 2n24m (11e)(m1n21) j (2(m21)(n21) d 12n2m2nm(m2n) )

for every s� [ (d/(11e) )m , d m ], we choose d sufficiently small so that

2(m21)(n21) d 12n2m2nm(m2n)D0 .(23)

Then

Nf 9 (s) cRj (s)2fR(s) c 9j (s)1
(f 9 (s) )2

2
NFC(11e)(m1n21) j .

Therefore, by applying Theorem 3.1 in [7], we know that U0, j is bounded
from L 3/2 (H1 ) to L 2 (H1 ), but we need to check how the L 3/2 (H1 )KL 2 (H1 )
norm of U0, j depends on j .

Proving that U0, j is bounded from L 3/2 (H1 ) to L 2 (H1 ) is equivalent to
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prove that the operator U0, j* U0, j is bounded from L 3/2 (H1 ) to L 3 (H1 ) and

VU0, j V3/2 , 2GkVU0, j* U0, j V3/2 , 3 .(24)

Following the proof of Theorem 3.1 in [7], for any f�Cc (H1 ) we write

(25) U0, j* U0, j f (x , y , t)4 s
( d

11e
)m

dm

s
( d

11e
)m

dm

f((x , y , t) Q

(s , s n/m , (11e)(m1n21) j s 1/m ) Q (r , r n/m , (11e)(m1n21) j r 1/m )21 ) drds

4 s
( d

11e
)m

dm

s
( d

11e
)m

dm

f ((x , y , t) Q (r2s , r n/m2s n/m , (11e)(m1n21) j (r 1/m2s 1/m )1

1

2
(sr n/m2s n/m r)h21h drds .

By changing variable

.
/
´

r2s

s

4u

4v

the operator in (25) becomes

(26) U0, j* U0, j f (x , y , t)4 s
(d/(11e) )m2dm

dm2 (d/(11e) )m

s
I(u)

fg(x , y , t) Q gu , (v1u)n/m2v n/m ,

(11e)(m1n21) j ( (v1u)1/m2v 1/m )1
v(v1u)n/m2 (v1u)v n/m

2
h21h dvdu4

s
(d/(11e) )m2dm

dm2 (d/(11e) )m

( fx2u * R 2 g x , u , j )gy , t1
1

2
uyh du

where we set

fx2u (y , t)4 f (x2u , y , t)

I(u)4
.
/
´

[ (d/(11e) )m , d m2u],

[ (d/(11e) )m2u , d m ],

0GuGd m2 (d/(11e) )m

d/(11e) )m2d mGuE0 .

and for a fixed u with NuNGd m2 (d/(11e) )m and a fixed x�R , g x , u , j is the
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curve given by

(27) g x , u , j (v)4g(v1u)n/m2v n/m , (11e)(m1n21) j ( (v1u)1/m2v 1/m )1

v(v1u)n/m2 (v1u)v n/m

2
1

x( (v1u)n/m2v n/m )

2
h , v�I(u) .

Hence, if g x , u , j is the curve in (27), we are reduced to prove the following
estimate

Vg * R 2 g x , u , j VL 3 (R 2 )GC( j)VgVL 3/2 (R 2 ) NuN22/3(28)

for any g�Cc (R 2 ), where C( j)4C(11e)2(m1n21) j/3 .
In fact, assuming that (28) holds, we have by (25)

(29) VU0, j* U0, j V34

NNNN s
(d/(11e) )m2dm

dm2 (d/(11e) )m

( fx2u * R 2 g x , u , j )gy , t1
1

2
uyh duNN

L 3 (R 2 )
NN

L 3 (R)
G

NN s
(d/(11e) )m2dm

dm2 (d/(11e) )m

NN( fx2u * R 2 g x , u , j )gy , t1
1

2
uyh NN

L 3 (R 2 )
duNN

L 3 (R)
G

C( j) NN s
(d/(11e) )m2dm

dm2 (d/(11e) )m

V fx2u VL 3/2 (R 2 ) NuN22/3 duNN
L 3 (R)

GC( j)V f V3/2

where the last inequality follows from the boundedness of the Riesz potential
of order 1 /3 as a mapping from L 3/2 (R) to L 3 (R).

To prove inequality (28) we write by a scaling argument

( g * R 2 g x , u , j )(j , h)4D(u21 , u21 ) (D(u , u) g * R 2 gAx , u , j )(j , h)(30)

for any g�Cc (R 2 ), where

(31) gA x , u , j (v)4g (v1u)n/m2v n/m

u
, (11e)(m1n21) j (v1u)1/m2v 1/m

u
1

v(v1u)n/m2 (v1u)v n/m

2u
1

x( (v1u)n/m2v n/m )

2u
h , v�I(u) .

Moreover, by conjugating the convolution operator gO g * R 2 gAx , u , j by the lin-
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ear change of coordinates in R 2

(j , h) Ogj , h2
x

2
jh ,

we can replace the curve in (31) by the curve

(32) gu , j (v)4g (v1u)n/m2v n/m

u
, (11e)(m1n21) j (v1u)1/m2v 1/m

u
1

v(v1u)n/m2 (v1u) v n/m

2u
h , v�I(u)

which is independent of x , and

VgO g * R 2 gAx , u , j VL 3/2 (R 2 ), L 3 (R 2 )4VgO g * R 2 gu , j VL 3/2 (R 2 ), L 3 (R 2 ) .(33)

Therefore inequality (28) will then follow from the estimate

Vg * R 2 gu , j VL 3 (R 2 )GC( j)VgVL 3/2 (R 2 ) for any g�Cc (R 2 )(34)

where gu , j is the curve in (32).
In fact if we assume that (34) holds and we take into account the equality in

(30), we get

Vg * R 2 g x , u , j VL 3 (R 2 )4

4

4

G

VD(u21 , u21 ) (D(u , u) g * R 2 gAx , u , j )VL 3 (R 2 )

VD(u21 , u21 ) (D(u , u) g * R 2 gu , j )VL 3 (R 2 )

NuN2/3
VD(u , u) g * R 2 gu , j VL 3 (R 2 )

C( j)NuN22/3
VgVL 3/2 (R 2 )

(35)

which gives the inequality in (28).
Now we prove the estimate (34) by applying Lemma 2.2.
For v�I(u), we rewrite the curve in (32) as

gu , j (v)4 (u u (v), z u (v) )

where

u u (v)4
(v1u)n/m2v n/m

u

z u (v)4 (11e)(m1n21) j (v1u)1/m2v 1/m

u
1v

(v1u)n/m2v n/m

2u
2

v n/m

2
.

By the mean-value Theorem there exist t i , i41, R , 5 , between v and v1u
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such that

u u8 (v)4
n

m
g n

m
21h t 1

(n/m)22

u u9 (v)4
n

m
g n

m
21hg n

m
22h t 2

(n/m)23

z u8 (v)4
(11e)(m1n21) j

m
g 1

m
21h t 3

(1 /m)221

n

2m
t 4

(n/m)211
n

2m
g n

m
21h vt 1

(n/m)222
n

2m
v (n/m)21

z u9 (v)4
(11e)(m1n21) j

m
g 1

m
21hg 1

m
22h t 5

(1 /m)231
n

m
g n

m
21h t 1

(n/m)221

n

2m
g n

m
21hg n

m
22h vt 2

(n/m)232
n

2m
g n

m
21h v (n/m)22 .

Since v and v1u belong to [(d/(11e) )m , d m ] and t i , i41, R , 5 are between
v and v1u , there exist three positive constants C2 , C3 , M such that

C2GNu u8 (v)NGM , for every v�I(u)(36)

Nu u9 (v)NGC3 , for every v�I(u) .(37)

Moreover we can prove that there exists a positive constant C1 which is inde-
pendent of j such that

Nu u8 (v) z u9 (v)2u u9 (v) z u8 (v)NFC1 (11e)(m1n21) j(38)

for every jF0.
Since m1n21D0 then (11e)(m1n21) jF1 when jF0. Moreover, since

v , t 1 , R , t 5 � [ (d/(11e) )m , d m ], and (11e)4m22nG(11e)5m2n21 , we have

(39) Nu u8 (v) z u9 (v)2u u9 (v) z u8 (v)NF
n(m2n) d 2n24m

2m 5
(11e)(m1n21) j Q

(2(m21)(2m21) d2m2n111 (3m22n) mn2

(2(m21)(2m2n) d2m2n111mn(4m23n) )(11e)5m2n21 ) .

Now, suppose we have fixed a d such that (23) holds; then we can choose
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an arbitrarily small positive e such that

Nu u8 (v) z u9 (v)2u u9 (v) z u8 (v)NF (11e)(m1n21) j C1

which is the inequality in (38).
Therefore, by applying Lemma 2.2, taking into account the estimates in

(36), (37), (38) and the fact that NI(u)NGd m2 (d/(11e) )m , we have

(40) Vg * R 2gu,jVL 3(R 2)GCg C1(11e)(m1n21) jC2

M 3 h21/3g 1

C2

1
C3

C2
3
NI(u)Nh2/3

VgVL 3/2(R 2)

GC(11e)2
m1n21

3
j
VgVL 3/2 (R 2 ) .

By combining (28), (29) and (24), we have

VU0, j V3/2 , 2GC(11e)2
m1n21

6
j .(41)

which is the inequality in (20).
For what regards statement (b), we notice that if we have chosen a suffi-

ciently small dD0, then the curve in (22) also satisfies the left curvature con-
dition for every s� [ (d/(11e) )m , d m ], therefore, by Theorem 3.1 in [7] we
know that the operator U0, j is bounded from L 2 (H1 ) to L 3 (H1 ) and we can re-
peat the previous proof by replacing the operator U0, j* U0, j by the operator
U0, j U0, j* , to get inequality (21).

STEP 4. – Let BC be the segment with endpoints C4 (2 /3 , 1 /2) and
B4 (1 , 1 ) and let AD be the segment with endpoints A4 (0 , 0 ) and
D4 (1 /2 , 1 /3). We prove that the operator U in (6) is bounded on the points of

BC of coordinates g 1

p
, 3

2p
2

1

2
h for 1

p
D

m1n21

m1n11
and it is bounded on the

points of AD of coordinates g 1

p
, 2

3p
h for 1

p
E

3

m1n11
.

Let g 1

p
, 3

2p
2

1

2
h, 1

p
�g 2

3
, 1h, be a point on the segment BC, we estimate

the L p (H1 )KL
2p

32p (H1 ) norm of the operator U0, j in (18) by interpolating be-
tween the estimates L 3/2 (H1 )KL 2 (H1 ), L 1 (H1 )KL 1 (H1 ). Let r� (0 , 1 ) be a
value such that

1

p
4

12r

3/2
1

r

1

that is

r4
322p

p
.
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Since the operator U0, j is uniformly bounded on the points of the diagonal AB
and since (20) holds, by applying the Riesz-Thorin interpolation theorem we
get

VU0, j Vp , 2p

32p
GVU0, j V3/2 , 2

12r
VU0, j V1, 1

r GC(11e)2
(m1n21)(p21)

2p
j .(42)

Therefore by (19) and (42) we have

VUf V 2p

32p
GC !

j40

1Q

(11e)(12
(m1n)(32p)

p
1

2m12n

p
2

(m1n21)(p21)

2p
) j
V f Vp

4C !
j40

1Q

(11e)
(m1n21) p2m2n21

2p
j
V f Vp

(43)

and the series in (43) converges if

(m1n21) p2m2n21

2p
E0

that is

1

p
D

m1n21

m1n11
.

Now, let g 1

p
, 2

3p
h, 1

p
�g0, 1

2
h, be a point on the segment AD, analogously

to the previous case, by taking into account the estimate (21) and the fact that
U0, j is uniformly bounded from L Q (H1 ) to L Q (H1 ), we get by the Riesz-
Thorin interpolation theorem

VU0, j Vp , 3p

2
GVU0, j VQ , Q

(p22) /p
VU0, j V2, 3

2 /p GC(11e)2
m1n21

3p
j .(44)

Therefore by (19) and (44) we have

VUf V3p/2GC !
j40

1Q

(11e)(212 4m14n

3p
1

2m12n

p
2

m1n21

3p
) j
V fVp

4C !
j40

1Q

(11e)
m1n1123p

3p
j
V f Vp

(45)

and the series in (45) converges if

1

p
E

3

m1n11
.

STEP 5. – We now conclude the proof of Theorem 3.1.
We notice that if m1nF5 then, by what we have proved in Step 1 and
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in step 4 it follows that the type set U of the operator U defined in (6) is
contained in the closed trapezoid with vertices A4 (0 , 0 ), B4 (1 , 1 ), P14

g m1n21

m1n11
, m1n22

m1n11
h, P24g 3

m1n11
, 2

m1n11
h with the only possible ex-

ception of the closed segment P1 P2, and this gives statement (i).
If m1nE5 we know by what we have proved in step 1 that the type set U

of U is contained in the closed trapezoid with vertices A4 (0 , 0 ), B4 (1 , 1 ),

C4 (2 /3 , 1 /2), D4 (1 /2 , 1 /3). Moreover, since in this case we have 2

3
D

m1n21

m1n11
and 1

2
E

3

m1n11
, we know by what we have seen in step 4, that U is

bounded on the points C4 (2 /3 , 1 /2) and D4 (1 /2 , 1 /3). Therefore, by inter-
polating with the trivial estimates L Q (H1 )KL Q (H1 ), and L 1 (H1 )KL 1 (H1 ),
we get that the operator U is bounded on the whole closed trapezoid ABCD ,
and this proves statement (ii). r
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