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Classification of Initial Data for the Riccati Equation.

N. CHERNYAVSKAYA - L. SHUSTER

Sunto. – Consideriamo un problema di Cauchy

y 8 (x)1y 2 (x)4q(x), y(x)Nx4x04y0

dove x0 , y0�R e q(x)�L1
loc (R) è una funzione non negativa che soddisfa la

condizione:

s
2Q

x

q(t) dtD0, s
x

Q

q(t) dtD0 for x�R .

Otteniamo le condizioni nelle quali y(x) può essere continuata in tutto R . Questo
dipende da x0 , y0 e dalle proprietà di q(x).

Summary. – We consider a Cauchy problem

y 8 (x)1y 2 (x)4q(x), y(x)Nx4x04y0

where x0 , y0�R e q(x)�L1
loc (R) is a non-negative function satisfying the condi-

tion:

s
2Q

x

q(t) dtD0, s
x

Q

q(t) dtD0 for x�R .

We obtain the conditions under which y(x) can be continued to all of R . This depends
on x0 , y0 and the properties of q(x).

1. – Introduction.

In this paper we study a Cauchy problem for a Riccati equation

y 8 (x)1y 2 (x)4q(x)(1.1)
y(x)Nx4x0

4y0(1.2)

where x0 , y0�R and q(x)�L1
loc (R) is a non-negative function satisfying the

condition

s
2Q

x

q(t) dtD0 , s
x

Q

q(t) dtD0 for x�R .(1.3)

Throughout the sequel we assume requirement for q(x) to be satisfied. The
following assertions are well known (see the remark at the ends of § 2):
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I) For any point (x0 , y0 ) in the XOY-plane, the Cauchy problem (1.1)-
(1.2) has a unique solution in some neighborhood of x0 .

II) The solution of (1.1)-(1.2) cannot be continued from the neighbor-
hood where it exists to the whole axis R for all initial data (x0 , y0 )�XOY .

Here the requirements of the initial data x0 , y0 for which the solution of
(1.1)-(1.2) can be continued to the whole number axis are unknown. Therefore,
in many papers which are concerned with equation (1.1), the assertions are of a
conditional nature. For example, in [1, Ch. I, § 8, § 11], the main results are
given under the assumption that a solution of the Riccati equation exists on
some segment [a , b]; it is emphasized that such an assumption is essential. In
this paper, we study conditions under which a solution of (1.1)-(1.2) exists on
the whole number axis.

To be more precise, our goal is as follows: For problem (1.1)-(1.2), to distin-
guish between Cauchy data for which the solution can be continued to R and
those for which such a continuation is impossible. Note that such a classifica-
tion may be useful as a priori information for solving (1.1)-(1.2) by numeric
methods. Here the a priori nature of the information is guaranteed by the fact
that the main results of the paper are formulated in terms of the initial data
x0 , y0 and some auxiliary functions in q(x). See § 3 for a more detailed analysis
of our statements.

The authors are grateful to Professor Ja.M. Coltser and Dr. J. Schiff for
useful discussions.

2. – Preliminaries.

In this section, we give some assertions which will be used in the proofs.
Throughout the sequel we denote by c absolute positive constants which are
not essential for exposition and may differ within a single chain of calculations.

THEOREM 2.1. – [2] Consider an equation

z 9 (x)4q(x) z(x) , x�R(2.1)
Equation (2.1) has a fundamental system of solutions (FSS) ]u(x), v(x)(
such that

v(x)D0, u(x)D0, v 8 (x)D0, u 8 (x)E0, x�R ,

v 8 (x) u(x)2u 8 (x)v(x)41 ,

lim
xK2Q

v(x)

u(x)
4 lim

xKQ

u(x)

v(x)
40 .

(2.2)

A FSS of (2.1) with properties (2.2) is called a principal FSS (PFSS) be-
cause v(x) and u(x) are principal solutions of (2.1) on (2Q , 0 ) and (0 , Q), re-
spectively [9, Ch. 11, § 6].
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THEOREM 2.2. – [7] For x�R the PFSS of (2.1) admits a representa-
tion

v(x)4kr(x) expu 1

2
s

x0

x

dt

r(t)
v , u(x)4kr(x) expu2 1

2
s

x0

x

dt

r(t)
v .(2.3)

Here r(x)4
def

u(x) v(x), x0 is the unique root of the equation u(x)4v(x).

In the above form, representation (2.3) was given in [2, 5]. Note the follow-
ing inequality [5]:

Nr 8 (x)NE1 , x�R .(2.4)

For a fixed x�R , consider an equation in dF0:

24d s
x2d

x1d

q(j) dj .(2.5)

For every x�R , equation (2.5) has a unique positive continuous solution [2, 5].
Let d(x) denote this solution, q *(x)4

def
d 22 (x). The functions d(x), q *(x) were

introduced by M. Otelbaev [10]. Note that the function q *(x) is a Steklov-type
averaging of q(t) on the segment [x2d(x), x1d(x) ] ([11, 5]).

DEFINITION 2.1. – [3] We say that q(x) belongs to the class H (and
write q(x)� H) if there exists a continuous function k(x)F2, x�R such that
k(x)KQ as NxNKQ , and for x�R , the following conditions hold:

(2.6) 1 ) c 21 k(x)Gk(t)Gck(x) for Nt2xNGk(x) q *(x)21/2

(2.7) 2 ) F(x)4
def k(x)

kq *(x)
sup

NzNGk(x) q *(x)21/2Ns0
z

[q(x1 t)2q(x2 t) ] dtNGc .

THEOREM 2.3. – [3] If q(x)� H, one has

Nr 8 (x)NGck(x)21/2 , x�R(2.8)

r(x)4
11e(x)

2 kq *(x)
, Ne(x)NG

c

kk(x)
, NxNc 1 .(2.9)

REMARK. – One can obtain stronger estimates for Nr 8 (x)N and Ne(x)N [3].
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THEOREM 2.4. – [3] Let q(x)4q1 (x)1q2 (x) where q1 (x) is positive and
continuous for x�R , q2 (x)�L1

loc (R), A(x)4 [0 , 2q1 (x)21/2 ] and

h1 (x)4
1

kq1 (x)
sup

t�A(x)
Ns

0

t

[q1 (x1s)22q1 (x)1q1 (x2s) ] dsN, x�R(2.10)

h2 (x)4
1

kq1 (x)
sup

t�A(x)
N s

x2 t

x1 t

q2 (s) dsN, x�R .(2.11)

If h1 (x)K0, h2 (x)K0 as NxNKQ , then (see (2.5))

d(x)4
11d(x)

kq1 (x)
, Nd(x)NGc(h1 (x)1h2 (x) ), NxNc 1(2.12)

c 21 q1 (x)21/2Gd(x)Gcq1 (x)21/2 , x�R .(2.13)

REMARK. – Theorems 2.3 and 2.4 were obtained in [3] under the assump-
tion

1Gq(x)�L1
loc (R) .(2.14)

By minor modification of the proofs, we can keep their statement with condi-
tion (2.14) replaced by the requirement

q0*4
def

inf
x�R

q *(x)D0 .(2.15)

THEOREM 2.5. – [8, Ch. III, § 40]. The general solution of equation (1.1) is
of the following form:

y(x)4
uv 8 (x)1u 8 (x)

uv(x)1u(x)
.(2.16)

Here ]u(x), v(x)( is a PFSS of (2.1), u is an arbitrary constant.

REMARK. – Assertioins 1)-2) follow easily from Theorems 2.5 and 2.1.

3. – Statement of results, analysis and examples.

In this section we present the results of the paper. Their proofs are given
in § 4.
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LEMMA 3.1. – For a fixed x�R consider an equation in dF0

(3.1) 14s
0

k2d

s
x2t

x

q(j) dj dt , 14s
0

k2d

s
x

x1t

q(j) dj dt , 24s
0

k2d

s
x2t

x1t

q(j) dj dt .

Each of equations (3.1) has a unique positive solution.

Denote by d1 (x), d2 (x), d×(x) the solutions of (3.1). These functions were in-
troduced in [4] and were used in [3, 6].

THEOREM 3.1. – For x�R one has

1

k2

1

d1 (x)
E

v 8 (x)

v(x)
E

k2

d1 (x)
,

1

k2

1

d2 (x)
E

Nu 8 (x)N

u(x)
E

k2

d2 (x)
(3.2)

1

k2

d1 (x) d2 (x)

d1 (x)1d2 (x)
Er(x)Ek2

d1 (x) d2 (x)

d1 (x)1d2 (x)
(3.3)

d×(x)

2 k2
Er(x)Ek2d×(x) .(3.4)

REMARK. – Under condition (2.14), estimates (3.2)-(3.3) were obtained in
[5], and (3.4) was obtained in [6]. In the present paper, (3.2)-(3.4) are proved
under minimal requirements to q(x).

LEMMA 3.2. – For x�R one has (see (2.5) and (3.1)

d×(x)

k2
Gd(x)Gk2d×(x) .(3.5)

REMARK. – Estimates (3.5) show that inequality (3.4) and formula (2.9)
agree. Moreover, one can show [6, preprint] that under the hypotheses of The-
orem 2.4 the functions d(x) and d×(x) are asymptotically equivalent.

Let T and P be the following subsets of the plane XOY:

T4](x , y) : yd1 (x)Fk2(N ](x , y) : yd2 (x)G2k2((3.6)

P4{(x , y) : yd1 (x)G
1

k2
}O{(x , y) : yd2 (x)F2

1

k2
} .(3.7)

THEOREM 3.2. – Let y(x) be the solution of (1.1)-(1.2). If (x0 , y0 )�P , one
can continue y(x) to R ; if (x0 , y0 )�T , one cannot continue y(x) to R .
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COROLLARY 3.2.1. – Suppose that the solution of (1.1)-(1.2) can be conti-
nued to R , and let yA(x) denote this continuation. Then

22 k2G yA(x) d×(x)G2 k2 , x�R .(3.8)

Under additional requirements to q(x), one can sharpen Theorem 3.2 for
NxNc 1. Let e� (0 , 1 ], aD0 be given. We introduce the following sets (see
(2.5)):

(3.9) T(e, a)4](x, y) : yd(x)F11e, xFa(N](x, y) : yd(x)G2(11e), xG2a(

P(e , a)4](x , y) : 211eGyd(x)G12e , NxNFa( .(3.10)

THEOREM 3.3. – Let q(x)� H, q0*D0 (see (2.15)), and let y(x) be the solution
of (1.1)-(1.2). Then for any e� (0 , 1 ] there is a4a(e) c 1 such that if
(x0 , y0 )�T(e , a), y(x) cannot be continued to R , and if (x0 , y0 )�P , y(x) can
be continued to R . Moreover, any solutions y2 (x), y1 (x) of (1.1) defined on
(2Q , a], [a , Q), respectively, satisfy

lim
xK2Q

y2 (x) d(x)421 , lim
xKQ

y1 (x) d(x)41 .(3.11)

Analysis of results.

We emphasize that the classification of initial data (x0 , y0 ) given in Theo-
rem 3.2 applies to all equations (1.1) with non-negative coefficients q(x)�
L1

loc (R) satisfying condition (1.3). We impose no restriction to q(x) such as
smoothness, oscillation, etc., and in this sense the requirements to q(x) in The-
orem 3.2 are minimal. Moreover, the classification of initial data (x0 , y0 ) is
asymptotically exact (as NxNc 1) in the class of equations (1.1) with q(x)� H.
The class H is large enough since it contains not only «ordinary» functions
q(x) but also non-differentiable, rapidly increasing and rapidly oscillating
functions (see [3]). Note that it is usually difficult to study equations (1.1) and
(2.1) with such coefficients. We bring reader’s attention to the fact that the
classification of initial data given in Theorem 3.2 is not full since it does not in-
clude the points (x0 , y0 )�S4XOY0(PUT). Such points are defined by one of
the following inequalities (see (3.6)-(3.7)):

1

k2

1

d1 (x0 )
Ey0E

k2

d1 (x0 )
, 2

k2

d2 (x0 )
Ey0E2

1

k2d2 (x0 )
.(3.12)

This gap in the classification is explained by the fact that Theorem 3.2 follows
from Theorems 3.1 and 2.5, and the following main lemma.
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LEMMA 3.3. – Let y(x) be the solution of (1.1)-(1.2). One can continue y(x)
to R if and only if

u 8 (x0 )

u(x0 )
Gy0G

v 8 (x0 )

v(x0 )
.(3.13)

Thus points (3.12) arise from the following reason: instead of the exact

values of logarithmic derivatives
u 8 (x)

u(x)
,

v 8 (x)

v(x)
we use their estimates (3.2). On

the other hand, by Liouville’s well-known theorem, it is impossible to give ex-

act formulas for
v 8 (x)

v(x)
,

u 8 (x)

u(x)
in the case of general equation (1.1). Taking this

into account, one can pose an interesting problem of constructing an effective

numerical method for computing
v 8 (x)

v(x)
,

u 8 (x)

u(x)
in an arbitrary point x0�R with

prescribed error. We consider this problem in a forthcoming paper. Finally, note
that it is usually impossible to find exact values of d1 (x) and d2 (x) in an analytic
form. However, for a given x0 one can find the values d1 (x0 ), d2 (x0 ), d(x0 ) with
prescribed error by using standard numerical methods since the functions

.
`
/
`
´

F1 (d)4 s
0

k2d

s
x02 t

x0

q(j) dj dt , F2 (d)4 s
0

k2d

s
x0

x01 t

q(j) dj dt ,

F3 (d)4 s
0

k2d

s
x02 t

x01 t

q(j) dj dt .

(3.14)

are non-negative, non-decreasing for d� [0 , Q) and Fi (0)40, Fi (Q)4Q ,
i4 1, 3. Therefore, the root of equation (3.1) can be localized in intervals with
arbitrarily close ends. See Example 1 for a realization of this scheme in its sim-
plest form (without computing all integrals).

EXAMPLE 1. – Consider a Cauchy problem

y 8 (x)1y 2 (x)4 (11x 2 )1 (11x 2 ) cosgx1 x 3

3
h(3.15)

y(0)4y0 .(3.16)

To apply Theorem 3.2, we need two-sided estimates for d1 (0) and d2 (0). From
(3.14) for x40 we obtain

F2 (d)4 s
0

k2d

s
0

t

(11j 2 ) dj dt1 s
0

k2d

s
0

t

(11j 2 ) cosgj1 j 3

3
h dj dt

4d 21
d 4

3
1 s

0

k2d

singt1 t 3

3
h dtGd 21

d 4

3
1k2d4

def
f (1) (d) .
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Since f (1)g 1

2
hE1, one has F2g 1

2
hG f (1)g 1

2
hE1 ¨ d2 (0)D 1

2
. Similarly,

F2 (d)4d 21
d 4

3
1 s

0

k2d

singt1 t 3

3
h dtFd 21

d 4

3
2k2d4

def
f (2) (d) .

Since F2g 27

20
hF f (2)g 27

20
hD1, one has d2 (0)E 27

20
. Since in this case F1 (d)4

F2 (d) for dF0, we have d1 (0)4d2 (0), and hence

221Ed2 (0), d1 (0)E27 Q2021 .(3.17)

From (3.17) and Theorem 3.2, it follows that if y0� k2 1

2
, 1

2
l , one can continue

the solution of (3.15)-(3.16), and if y0F3 or y0G23, one cannot continue it. In

the cases y0�g23, 2 1

2
hNg 1

2
, 3h , Theorem 3.2 gives not answer to the

question on the existence of continuation of the solution of (3.15)-(3.16) to R .
(Here we, in fact, slightly weakened the result in order to obtain «round»
numbers.)

EXAMPLE 2. – Below we present a possible approach to the problem of find-
ing asymptotics of the solution of (1.1)-(1.2) continued to R , and to applications
of Theorem 3.3. To express the asymptotics in terms of q(x), we assume below,
in addition to the requirements from § 1, that the following conditions hold:

q(x)D0 for x�R , q(x)KQ as NxNKQ(3.18)

Nq(s)2q(x)NGcq(x)a Ns2xNb for Ns2xNG
k(x)

kq(x)
, x�R .(3.19)

Here aD0, bD0, 221 b112a4
def

dD0, k(x)Gq(x)g , g4
d

2(b12)
, k(x)F2 for

x�R , k(x) is a continuous function and k(x)KQ as NxNKQ . To apply Theo-
rem 3.3, we verify that q(x)� H. Let us find q *(x) for NxNc 1. According to
Theorem 2.4, one has q1 (x) »4q(x), q2 (x) »40. Then

h1 (x)4
1

kq(x)
sup

t�A(x)
Ns

0

t

[ (q(x1s)2q(x) )1 (q(x2s)2q(x) ) ] dsN

G
2cq(x)a

kq(x)
sup

t�A(x)
Ns

0

t

s b dsN4 c

q(x)d
K0 for NxNKQ ¨

q *(x)21/24d(x)4
11a(x)

kq(x)
, Na(x)NGcq(x)2d , NxNc 1 .(3.20)
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Let us check (2.6). From (3.18)-(3.19) for NxNc 1 and s�

kx2 k(x)

kq(x)
, x1

k(x)

kq(x)
l , it follows that

q(s)

q(x)
E 16cq(x)a21u k(x)

kq(x)
vb

E 16
c

q(x)d/2
G16c 61 .(3.21)

Since k(x), q(x) are continuous, (3.21) remains true for all x�R (possibly, with
a bigger constant c). Using (3.20) for NxNc1 we check (2.7) in a similar
way:

(3.22) F(x)4
k(x)

kq *(x)
sup

NzNGk(x) q *(x)21/2Ns0
z

[(q(x1s)2q(x))2(q(x2s)2q(x))] dsN

G
c

kq(x)
sup

NzNG2k(x) q(x)21/2

ys
0

z

2cq(x)aNsNbdszG ck(x)b12

q(x)d
K0 for NxNKQ.

Hence F(x)Gc for NxNc 1. Since d(x) is a continuous positive function (see
[3]), from (2.13) it follows that F(x) is absolutely bounded for x�R . Thus
q(x)� H. Then by Theorem 3.3, for any e� (0 , 1 ], problem (1.1)-(1.2) has
a continuation to R for all y0 and Nx0 Nc 1 such that y0 q(x0 )21/2� [211e ,
12e]. Conversely, it has no continuation to R for all y0 and Nx0 Nc 1 such that
either y0 q(x0 )21/2F11e , or y0 q(x0 )21/2G2(11e). In addition (see (3.10)),
one has

lim
xK2Q

y2 (x)

kq(x)
421, lim

xKQ
y1 (x)

1

kq(x)
41 .

REMARK. – The scheme suggested in Example 2 is also convenient for
studying equations (1.1) with oscillating functions q(x). Consider, for example,

(3.15). Set q1 (x)411x 2 , q2 (x)4 (11x 2 ) cos gx1 x 3

3
h . It is easy to verify

that q1 (x) satisfies (3.18) and (3.19) for a4
1

2
, b41, k(x)4q1 (x)1/6 . Repeating

the above computation, we obtain that in this case, by Theorem 2.4 and Defini-
tion 2.1, one has

d(x)4
11d(x)

k11x 2
, Nd(x)NG

c

k11x 2
, NxNKQ

and q(x)�H . Thus q2 (x) does not have any influence on the asumptotic behav-
ior y2 (x) and y1 (x), and by Theorem 3.3, for any eD0, problem (3.15)-(3.16)
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has a continuation to R for all y0 and Nx0Nc1 such that y0

k11x0
2
� [211e ,

12e]. Conversely, it has not continuation to R for all y0 and Nx0 Nc 1 such that

either y0

k11x0
2
F11e , or y0

k11x0
2
G2(11e).

4. – Proofs.

In this section, we prove the assertions from § 3.

PROOF OF LEMMA 3.1. – All the equations from (3.1) are considered in the
same way. Let us verify, for example, the assertion for the second equation.
From (3.14) it follows that

F2 (d)4 s
0

k2d

s
x

x1 t

q(j) dj dtF s
dOk2

k2d

s
x

x1 t

q(j) dj dtF
d

k2
s
x

x1dOk2

q(j) djKQ

as dKQ . Hence F2 (Q)4Q . Since F2 (0)40, F2 (d) does not decrease and is
continuous on [0 , Q), we conclude that the equation F2 (d)41 has at least one
positive root. Suppose that there are two roots a and b , aDb . Then

14 s
0

k2b

s
x

x1 t

q(j) dj dtGk2b s
x

x1k2b

q(j) dj ¨ s
x

x1k2b

q(j) djc0 ¨

04 s
k2b

k2a

s
x

x1 t

q(j) dtFk2(a2b) s
x

x1k2b

q(j) dj ¨ a4b ,

a contradiction. r

PROOF OF THEOREM 3.1. – We integrate the equations v 9 (j)4q(j) v(j) and
u 9 (j)4q(j) u(j) along [x2 t , x] and [x , x1 t], tF0, respectively. We
get

(4.1) v 8(x)2v 8(x2t)4s
x2t

x

q(j) v(j) dj , Nu 8(x)N1u 8(x1t)4s
x

x1t

q(j) dj .

Let us integrate equalities (4.1) by t� [0 , m], mF0. We get

v 8 (x)m4v(x)2v(x2m)1s
0

m

s
x2 t

x

q(j) v(j) dj dt , mF0(4.2)

Nu 8 (x)Nm4u(x)2u(x1m)1s
0

m

s
x

x1 t

q(j) u(j) dj dt , mF0 .(4.3)
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In (4.2) and (4.3), set m4k2d1 (x) and m4k2d2 (x), respectively. In the esti-
mates presented below, we use (2.2) and the definition of d1 (x):

v 8 (x) k2d1 (x)Ev(x)1v(x) s
0

k2d1 (x)

s
x2 t

x

q(j) dj dt42v(x)

v 8(x)k2d1 (x)Dv(x)2v(x2k2d1(x))1v(x2k2d1 (x)) s
0

k2d1 (x)

s
x2t

x

q(x) dj dt4v(x) .

Thus inequalities (3.2) for v(x) are proved. The estimates for u(x) are proved
in a similar way. Furthermore, (3.2) and (2.2) imply (3.3):

d1 (x) d2 (x)

d1 (x)1d2 (x)

1

r(x)
4

v 8(x)

v(x)
1

Nu 8(x)N

u(x)

d1 (x)211d2 (x)21
Gmax{ v 8(x)

v(x)
d1 (x),

Nu 8(x)N

u(x)
d2 (x)}Ek2

d1(x) d2(x)

d1(x)1d2(x)

1

r(x)
4

v 8(x)

v(x)
1

Nu 8(x)N

u(x)

d1(x)211d2(x)21
Fmin{ v 8(x)

v(x)
d1(x),

Nu 8(x)N

u(x)
d2(x)}D 1

k2
.

Let us check (3.4). Let h(x)4d1(x) d2(x)(d1(x)1d2(x))21. Then h(x)Ed1(x),
h(x)Ed2 (x), and therefore from the definition of d1 (x), d2 (x) it follows that

24 s
0

k2d1 (x)

s
x2 t

x

q(j) dj dt1 s
0

k2d2 (x)

s
x

x1 t

q(j) dj dt

F s
0

k2h(x)

s
x2 t

x1 t

q(j) dj dt .

(4.4)

From (4.4) it follows that d×(x)Dh , and we thus obtain r(x)Ek2h(x)E
k2d×(x) by (3.3). From (2.2) and the definition of d×(x) we then obtain

1

r(x)
4

v 8(x)

v(x)
1

Nu 8(x)N

u(x)
4

v(x)2v(x2k2d×(x))

v(x)k2d×(x)
1

1

k2d×(x)
s
0

k2d×(x)

s
x2t

x

q(j)
v(j)

v(x)
dj dt

1
u(x)2u(x1k2d×(x) )

k2d×(x) u(x)
1

1

k2d×(x)
s
0

k2d×(x)

s
x

x1 t

q(j)
u(j)

u(x)
dj dt

E
k2

d×(x)
1

1

k2d×(x)
s
0

k2d×(x)

s
x2 t

x1 t

q(j) dj dt4
k2

d×(x)
1

k2

d×(x)
4

2 k2

d×(x)
. r
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PROOF OF LEMMA 3.2. – From the definitions of d(x) and d×(x), we deduce
the following relations which prove the assertion:

24 s
0

k2d×(x)

s
x2 t

x1 t

q(j) dj dtGk2d×(x) s
x2k2d×(x)

x1k2d×(x)

q(j) dj ¨ k2d×(x)Fd(x)

24 s
0

k2d×(x)

s
x2 t

x1 t

q(j) dj dtF s
d×(x)Ok2

k2d×(x)

s
x2 t

x1 t

q(j) dj dtF
d×(x)

k2
s

x2d×(x)Ok2

x1d×(x)Ok2

q(j) dj

¨ d(x)F
d×(x)

k2
. r

PROOF OF LEMMA 3.3. – By assertion I) from § 1, it is enough to prove the
statement of the lemma with signs G, F in (3.13) replaced by E, D,
respectively.

NECESSITY. – Suppose that the solution of (1.1)-(1.2) can be continued to R .
By Theorem 2.5, this solution is of the form (2.18) for some u4u 0 , and u 0c0,
u 0c6Q because of the above assumption on inequality signs in (3.13). Then
only one of the following can hold:

1) y0D
v 8 (x0 )

v(x0 )
, 2 )

u 8 (x0 )

u(x0 )
Ey0E

v 8 (x0 )

v(x0 )
, 3 ) y0E

u 8 (x0 )

u(x0 )
.

Let us show that if 1) or 3) holds then u 0E0. Indeed, in the case 1) we ob-
tain, using (2.2) and (2.18):

0E
u 0v 8(x0)1u 8(x0)

u 0v(x0)1u(x0)
2

v 8(x0)

v(x0)
42

1

v(x0)[u 0v(x0)1u(x0)]
¨ u 0E2

u(x0)

v(x0)
E0 .

Similarly, in the case 3), one has

0E
u 8 (x0 )

u(x0 )
2

u 0 v 8 (x0 )1u 8 (x0 )

u 0 v(x0 )1u(x0 )
42

u 0

u(x0 )[u 0 v(x0 )1u(x0 ) ]
.(4.5)

The assumption u 0D0 contradicts (4.5) because of (2.2). Thus in the cases 1)
and 3) we have u 0E0. But then there is x1�R such that u 0 v(x1 )1u(x1 )40.

Indeed, from Theorem 2.1 it follows that the function W(x)42
u(x)

v(x)
, x�R is
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continuous, W(x)E0 for all x�R , and in addition

W 8 (x)4
1

v 2 (x)
D0, x�R ; lim

xK2Q
W(x)42Q , lim

xKQ
W(x)40 .

Therefore, the equation u 0 v(x)1u(x)40 has a unique finite root x1 . Then the
solution of (1.1)-(1.2) has vertical asymptotics at the point x4x1 , and thus the
solution cannot be continued to R . This implies that the case 2) holds.

SUFFICIENCY. – Suppose that (3.13) holds. By assertion I) from §1 and The-
orem 2.5, in some neighborhood of the point x4x0 there exists a unique
soluition of (1.1)-(1.2), and it is of the form (2.18) with some u4u 0 , u 0c0,
u 0c6Q . Then we deduce from (3.13) and (2.2):

0E
u 0 v 8 (x0 )1u 8 (x0 )

u 0 v(x0 )1u(x0 )
2

u 8 (x0 )

u(x0 )
4

u 0

u(x0 )[u 0 v(x0 )1u(x0 ) ]
.(4.6)

0E
v 8 (x0 )

v(x0 )
2

u 0 v 8 (x0 )1u 8 (x0 )

u 0 v(x0 )1u(x0 )
4

1

v(x0 )[u 0 v(x0 )1u(x0 ) ]
.(4.7)

From (4.6)-(4.7) and (2.2) it follows that u 0D0. But then in view of (2.2) the
solution (2.18) is defined for all x�R and satisfies (1.1) almost every-
where. r

PROOF OF THEOREM 3.2. – Follows from Theorems 3.1, 2.5 and Lemma
3.3. r

PROOF OF COROLLARY 3.2.1. – From (2.3) one can easily deduce the
equalities

v 8 (x)

v(x)
4

11r 8 (x)

2r(x)
,

u 8 (x)

u(x)
42

12r 8 (x)

2r(x)
, x�R .(4.8)

Since the solution (1.1) of equation (1.1) exists for all x�R , it is of the form
(2.18) with uD0 (see the above proof of Theorem 3.2). Then from (2.18), (3.13),
(2.4) and (3.4), it follows that

y(x)G
v 8 (x)

v(x)
4

11r 8 (x)

2r(x)
E

1

r(x)
E

2 k2

d×(x)
, x�R

y(x)F
u 8 (x)

u(x)
42

12r 8 (x)

2r(x)
D2

1

r(x)
D2

2 k2

d×(x)
, x�R . r
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PR O O F O F TH E O R E M 3 . 3 . – Si n c e q(x)� H, by Th e o r e m 2 . 3 o n e h a s
r 8 (x)K0 as NxNKQ , and (2.8)-(2.9) hold. Let e� (0 , 1 ], (x0 , y0 )� ](x , y) :
yd(x)F11e , xFa(%T(e , a). Then for a c 1 we obtain using (4.8), (2.8) and
(2.9):

v 8 (x0 )

v(x0 )
4

11r 8 (x0 )

2r(x0 )
4

11r 8 (x0 )

d(x0 )(11e(x0 ) )
E

11e

d(x0 )
Gy0 .

By Lemma 3.3, this implies that the solution of problem (1.1)-(1.2) cannot be
continued to R . The cases (x0 , y0 )� ](x , y) : yd(x)G2(11e)(�T(e , a),
a c 1 and (x0 , y0 )�P(e , a), c 1 are considered in a similar way. Let us check
(3.11). From (2.2), (2.18) and Theorem 2.3 for uc0, uc6Q , we get

lim
xKQ

y1 (x) d(x)4 lim
xKQ

uv 8 (x)1u 8 (x)

uv(x)1u(x)
d(x)4 lim

xKQ

v 8 (x)

v(x)

11
1

u

u 8 (x)

v 8 (x)

11
1

u

u(x)

v(x)

d(x)

4 lim
xKQ

(11r 8 (x) )
d(x)

2r(x)

12
1

u

12r 8 (x)

11r 8 (x)

u(x)

v(x)

11
1

u

u(x)

v(x)

41 .

The second equality of (3.11) can be verified in a similar way. r
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