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Observations on W' ? Estimates
for Divergence Elliptic Equations with VMO Coefficients.

P. AUSCHER - M. QAFSAOUI

Sunto. — In questo lavoro esponiamo alcune osservazioni circa il lavoro di Di Fazio ri-
guardante le stime WP per 1 <p < o per soluzioni di equazioni ellittiche del tipo
div A Vu = div f su un dominio Q con dati di Dirichlet nulli, A nella classe VMO ed
fin LP. Si considera il caso in cut 1 coefficienti della parte principale sono com-
plessi e la frontiera di Q é di classe C1. Si considera inoltre il caso del problema di
Neumann non omogeneo e si dimostrano risultati analoghi. Il principale stru-
mento utilizzato € una conveniente formula di rappresentazione per la funzione di
Green e di Neumann.

Summary. — In this paper, we make some observations on the wovk of Di Fazio concern-
ing WY P estimates, 1 <p < o, for solutions of elliptic equations div A Vu = div f,
on a domain  with Dirichlet data 0 whenever A e VMO(R) and fe L? (). We wea-
ken the assumptions allowing real and complex non-symmetric operators and C*
boundary. We also consider the corresponding inhomogeneous Newmann problem
for which we prove the similar result. The main tool is an appropriate representa-
tion for the Green (and Newmann) function on the upper half space. We propose
two such representations.

Introduction.

In recent years, there has been a wide interest for elliptic equations with
discontinuous coefficients that belong to VMO, [1], [4], [5], [6], [8], [7], [11],
[12], [13], [15], [16], [18], [20], [21]. In particular, it is shown in [11] that for
1<p<+ o and feLP(R), the inhomogeneous Dirichlet problem

divAVu=divf in Q
®

we Wi (@)
has a unique solution, and [|Vu||, < C[|f||, with C independent of f, provided £ is
a smooth (e.g. C1'1) bounded open set in R", n =2, and A is a real, symmetric,

uniformly elliptic matrix with coefficients in VMO(Q) N L * (). We recall that
a locally integrable function g on Q is in the space BMO(LR) if

1
sup — | |g(x) — gg|de =|gll. < + o,
B |B| g
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where B ranges over balls Bc 2 and gz denotes the mean of g on B. For ge
BMO(£2) and >0, we set

n(r) = sup |g(x) — gp|de .

Here o denotes the radius of B,. A function ge BMO(Q) is in VMO(L) if
lirr}] 7(r) = 0 and we call # the vmo modulus of continuity of g. Our observations

will be the followings.

1) We remove the hypothesis that A be real and symmetric and allow
complex coefficients: Our assumptions on A(x) = (a;(%)); <, k<, are

a;p () e C and |lay/|., <67,
2) A(x) + A*(x) =201d a.e.

a1, € vmo(£2)

for some 6 > 0 called the ellipticity constant of A.

What is really at stake is the representation of the Green function G(x, y)
for constant coefficients operators on the upper half space as the one chosen in
[11] cannot extend to all matrices A satisfying (2).

Here, we use two different representations: one is taken from [14], [22]; L?
boundedness of the operator with kernel V.V, G(x, y) follows from classical
theory for singular integrals of convolution type. The other originates from
[2]; it uses the reflection principle and L” boundedness is a consequence of the
T(1) theorem [10].

2) There is a technical step in [11] which can be avoided. We establish a
representation of solutions that is simpler to use for obtaining interior and
boundary a priori estimates via commutator results between Calderén-Zyg-
mund operators and VMO functions [9].

3) We make clear that the proof works for C! domains by controlling the
constants. Note that in [22], the similar problem with continuous coefficients
was treated on C! domains. Our assumption on Q is:

3) Q is a bounded, open, connected set with C! boundary .

4) We can treat in the same way the corresponding inhomogeneous
Neumann problem:

@)

divAVu =div f in Q
ueWh?(Q) and v. AVu=v.f on 32

where v is the outward unit normal. To avoid defining v. AVu as a distribution
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on the boundary of 2 we mean (4) variationally:

) ueWh?(Q) and V¢ e Lip(Q) fAVuV(p:fquo.
Note that, similarly, (1) is equivalent to ! !

6) ueWi?(Q2) and Vo e Lip (), Supp¢c Q fAVuV(p = ffV(p .
The main result of this paper is ’ ’

THEOREM 1. — Let A satisfy (2) and Q satisfy 3), 1 <p< + o and fe
L?(Q). Then there exist a unique solution up of (1) and a unique solution uy
of (4) modulo constant. Moreover, the operators f—Vup and f—Vuy are
bounded on LP(Q), with norm bounded by a constant depending on n, o, p,
the VMO modulus of continuity of A, 92 and |£]|.

1. - Estimates for constant coefficients operators.

In this section A denotes a constant complex matrix satisfying (2).

1.1. Main results.

The fundamental solution of —divAV = — Z 9;(aj; 9;) is given by, for
x#0, gk

1
) Ii(x) = (S 'a, x)2" "2 if n=3,
4 (n—2) w,(det S)?
1
8) i) =———log(S 'u, x) it n=2.
( A = dersye
A+'A

Here, S =

of the logarithm and z% = e¢“¢* for ze C\R™ and a e R. This is well known
when A is real and symmetric, and can be easily checked in general. From this
we obtain

is the symmetric part of A, logz denotes the principal branch

C

9 |D“FA(90)|$W,

x=0,

for |a| =1, 2,3 and C depends only on dimension and ellipticity, and D is
the usual symbol for the partial derivative associated with a.

Consider now the Green function G4(x, y) and the Neumann function
Ny(x,y) for L= —divAV on R%, that is for all y e R%,

{LIGA(%,y) =0,(y) in @' (RY)

(10) ,
Gyu(x,y)=0 if xedRY



490 P. AUSCHER - M. QAFSAQUI

and

[L,Nay(x,y)=06,(y) in @ RY)

11)
v. AV, Nu(x, ) =0 if zcdR"

and v=(0,...,0, —1).
Assume for a moment that A is real and symmetric. Then G4 («x, ¥) can be
computed as

(12) Galx,y)=Ta(x—y)—T4(T(x)—y), x yeRY,

where T is the orthogonal symmetry with respect to 9R” = R" ! in the inner
product induced by the inverse of A. It is characterized by

(13) Tw.=1d, T?=Id, 'TA'T=A"",

('T is the transpose of T) and calculations yield

(14) Tx)=x*—-2un,v,
where x* = (a1, ..., ,_1, —x,) if €= (xy, ..., €,_1, x,) and ve R" ! with
Zak
= —, 1<k<n-1
an'ﬂ

Formula (12) extends to matrices A for which one can find T of the form (14)
such that I'y o T=T4. In (13), 'TA "' T = A ! must be replaced by 7S /T =S,

where S = A+tA. One finds

.+ a
(15) = —& T 1<k<n-1,
a?m

so that A must satisfy a,;, + a;, € Ra,,, for T to be a map on R™
The Neumann function when A is real symmetric is given by

(16) Ny, ) =T'y(x—y)+T'y(T(x)—y), x,yeRL.

One checks that this formula is valid for any A provided a;, = a,; € Ra,,,
1<sksn-1

One must therefore find another representation for G, and N, to remove
these algebraic constraints on A. We achieve this goal by presenting two diffe-
rent approaches (see section 1.2, section 1.3). This enables us to prove the fol-
lowing results.
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PROPOSITION 2. — There is a constant C depending only on dimension and
ellipticity of A such that

C
(1) |D“Gaa, y) | + [D*Ny(@, ) | S ————
|x—y|" 2+ |al
whenever x, ye R, x =y and aeN*", |a| =1, 2, 3 and D is any partial of
order 1 in x and y.

Of course, one can differentiate indefinitely but then the constant C de-
pends also of |a|. Note also that these estimates hold up to the boundary of R .
Define G, and N, as follows: for all g, h e (R’ ), valued in C",

(18) ©ug, ) =— [ V,6u@, ). 9) divh(e) dedy
R x R"

(19) Wago ) = — [f 9, NuG, ). g divh(e) dedy .
RY x RY.

Note that the above integrals exist in the Lebesgue sense by (17). The main
result is

THEOREM 3. — For all pe (1, + »), there exists C depending on dimen-
ston, ellipticity and p such that for all g € A(RY), valued in C",

(20) IGagll, + [¥agll, < Clgll,-
1.2. Fourier transform method.

In this section we prove Proposition 2 and Theorem 3 using an algorithm
based on the Fourier transform. We follow [14] to compute the Green function
(and correct a mistake in that paper). Actually, such computations already ap-
peared in [22]. We use similar ideas to compute th Neumann function. To this
end, it is convenient to write xte R® asx = (x', t) withx' e R" andt=1x,=0
is the nth coordinate of x. Functions f(x) defined on R" will be denoted as
f(@)(x") and the variable x’ will often be omitted.

Again, we assume A to be constant. We have

VEeR", TAE) =(AE. &)

where f is the Fourier transform of fin R” (formally (&) = [, f(x) e ~* ¢ dux).
Write £= (&', 7)eR" " ! xR. For fixed & e R* ™!, there exist 7,(£') and
t_(&") with Imt.(E') >0 and Imzr_(E') <0 such that

Ag §:a7L7z(T_T+(§,))(7:_T7(§,))-
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As functions of &', 7 (§') and 7 _ (&) are homogeneous of degree 1 on R" ',
C>(R"~*\{0}) and there exist m, M > 0 depending only on % and ¢ such that
for all £’eR"™!

[JImr (E)=m|E'|, Smr_(§)s-m|&'|,

(1)
7. (ED] + T (E)] <M|E'|.

The Fourier transform of I',(t) (in R*~!) is given by

+ o
itt

. 1 ¢
Iy)E") = - ‘
a(E" 27-% @y(T—7 ()T -7 (§7)) '

and by the calculus of residues we find

jeitt=(E"

a?m(77+(‘5’)_77—(‘;:’)) ’

where 7, (") occurs when £ =0 and 7 _(&’) occurs when t < 0.

The solution of the homogeneous Dirichlet problem divAVy =0 in R",
v=gonR" 'and v =0at » is given by v(t) = &P, xg where * is the convolution
on R"~! and &, is the Poisson kernel. Using Fourier transform in R" ! one
has

22) FaB(E) =

23) PLEN =™, 120, EeRL

Then G4(x, y) can be computed as

(24) Ga(x, y) = (Tat—8) = PALa(—8))a" —y")
=L —y) = (P4 (=)' —y'),

where x=(x', 1), y=(y', s) e R}.
To compute the Neumann function, we construct the Neumann to Dirichlet
boundary operator as follows. We look for N,(x, ) in the form

Na(w, y) = (T4t —5)— P*h(s)) @' —y")
for x=(x', %), y=(y’', s) e R% . The condition on /% is that
(25) Vs>0, —v. AVI(t —8),_,= —v. AV(‘J’t*h(s)‘tzo,

where V=V, = (fo, %) and v= (0, ..., 0, —1). Set B,, B_ the boundary
operators with symbols b,, b_ given by

n—1
b€ =i( 2 aubitanr.@)
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with &' = (&4, ..., &,_1) € R"" L Then (25) is equivalent to
Vs>0, B,h(s)=B_I(-s).

LEMMA 4. — The symbols b,, b_ are C*(R""'\{0}) and homogeneous of
degree 1 with

VEeR'"™ ™ m|E|<|b(E)|SM|E],
where m, M depend only on n and 6 i (2).

Proor. — We only consider b, . It is clear that b, € C*(R"~'\{0}), and the
upper bound for b, is obvious from (21). Next we study the lower bound. Fix
&'eS" % and let V: C?—C" be linear defined by Ve, =&’, Ve, =e,, when
(g1, €9) is the canonical basis of C? and (e, ..., e,) the canonical basis of C".
Since ||E'||=1, V is unitary so that

VoeC?  NRe'VAVw. v = O|Vol? = o|jv|P,

where § is the ellipticity constant of A. The matrix representing 'VAV is given
by

n—1
> @& & kgl e & 1

1<j,k<sn-1
n—1
21 ank&k Ay

and by definition of 7, (we drop £’) and b, we have

tVAV(l):(_“b+).
T, b,

Thus 6(1+ |7, |*)<b, (-7, +7;) = —2ib, (Imr,) and the lower bound
for b, follows from the properties of 7,. =

Set m = b 'b_. Using [23], p. 75, and the properties (9) on I'4( —s), we see
that i(s) =P.V.K,*I 4(—s)+ ¢, 4(—s) on R"" 1, where K,, is a Calderén-
Zygmund kernel on R" ! and c,, € C. Hence,

(26) Nay(x,y)=Ta(x—y)— (P*PV.K, +c,00) *a(=35)) &' —y').

Note that G4(x, ) in (24) and N, (x, y) in (26) are of the same type.

We now turn to the proof of Proposition 2. Since the estimates on D *I" have
been already observed, it remains to obtain estimates for functions of the
form

fu(s, t, ") =D“(F*x(PV.K+cdo) *I(=s))(x)
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where ce C, ae N" "1 |a| =1, 2, 3 and D is any owaj, 1<sjsn-1, D, D,,
and KeC*(R""'\{0}) is a Calderén-Zygmund kernel on R" . To see this
we observe after straightforward computations using (21), (22), (23) and Lem-
ma 4 that

fu(s,tyx')= ——— feer(E)*WT—(E)A“(E’)eW-{3 dg’,

27" 7

where A, is a homogeneous function of degree |a| -1 and A,e
C*(R"\{0}) with |4,(§")| sM|& |!“/~! and M depends only on % and 9.
Using the fact that Smz . (§') =m|&’| and Imz _ (') < —m|&'|, we routi-
nely obtain

M

20 s, t,x')| <=
f | (S+t+|x/|)n71+|a|

for all s>0,t>0, 2’ eR"" ! and M depends only on n and ¢ if |a| is restrie-
ted to 1, 2 or 3. It is then easy to deduce Proposition 2 from (27), and we skip
further details.

It remains to prove Theorem 3. First we have

/

R%

(28) < C(n, 6, p)llgll, | Al

( v, e =y 9 dy) divh() da
RY
for all g, h e M(R", ), valued in C". Indeed, integrating by parts, the expression
in the left hand side is equal to

@) 1m [ @ -y o). k) dedy - [ eot). hw) de,

lv—y|=e R%

where C is the constant matrix with entries

go= | 0. tdat)
Sn—l
and o is the surface measure on S”~!. Classical Calderén-Zygmund theory
yields (28).
Next, set H(x, y) = (Pi*xI[(—=s))x' —y') forx=(x',t) and y=(y', s) €
R . Then for g, h € M(R".) valued in C",

- f( nyH(%, Y). 9(y) dy) div h(x) dx =

R% \RY

[ [~.v,H@, 9 g@). k) dedy,

R% R%
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the last integral being non singular since, by (27),

M
r—y

It is classical that (30) gives an upper bound of the form C(n, o, p)llg|l, ||,
for the last integral by using Hardy inequality (see [5], or [3] for a short
proof). This proof applies with H(x,y) replaced by H(x,y) =
(Px(P.V.K, +¢,00) *I(=s))(@x' —y'). This finishes the proof of Theorem
3 by this method.

1.3. Reflection principle method.

Here, we use the good old reflection principle across the boundary and
then rely on estimates for fundamental solution of a specific class of elliptic
operators studied in [2]. We will deduce Theorem 3 from the T(1) theorem. As
for Proposition 2, we only obtain part of it. We miss some cases in (17), not be-
cause they cannot be obtained by this method, but because we feel that such
calculations are out of the core of this article.

Define the orthogonal symmetry S of R" across oR" by

(31) 8(901, ceey 90,1_1,9671)28(90/, 90”)2(90’, _xn)
and let

A if x,=0
(32) Alx) =

SAS if x,<0.

Recall that A is constant, but A¥x) may no longer be constant. Let b ()
be the coefficients of A'zx). We have

by () = ay, ifl1<j,ksn—-1orj=k=mn,

| by (x) = aysign (x,) otherwise ,

therefore, the coefficients of A" depend only on x,. Furthermore A" is unifor-
mly elliptic on R” with the same ellipticity constant 6 as A. The class of elliptic
operators £ = —div @V on R" associated with bounded uniformly elliptic ma-
trices @ depending on one coordinate variable is studied in [2] and in particu-
lar estimates are obtained for derivatives of the kernel of e ~'*.

In our case, this gives us enough information to apply the T(1) theorem. Set
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LV= —divA"V and introduce the vectors fields

9
X,=— forl1sksn-1,
axk

o )
X,=b,— +...+0b,, —,
x4 ox,,
and
)
Xj=— forlsisn-—-1
aﬂcl
= )
Xn bln -— + + bnn
@901

For t >0, let K,(x, y), M/ (x, y) and M¥(x, y) be respectively the kernels

¢ H _ ~ ~
of e " 12X, ¢ 1" anq t12¢ "%, 1 <k<n (here, 'X; is the transpose
of X,).

LEMMA 5 ([2], Ch IV, Lemma 24 and Appendix B). — We have for ne (0, 1),
say n=1/2,

C ale—y|?
|Ki(x, y) | < Y exp(—%)

— C alx—y|?
\ME@, )| + | M, 9)| < tn/zexp( alz—y|* yl )

_ — C RN
MG, ) = MEG, |+ | ity + = Bif G < 0z (1)’

where C =0 and a >0 depend only on n and o.

Define

+ oo

B = X (LH 11X, = f X,e X dt |
0

This is a formal definition. In fact, we have

‘Bkl = lim TJ,]ECZ
e—0
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and

1/e

(Giz:kaeftLhtyLdt, e>0.

The limit is taken in the strong topology of B(LZ*(R")) once uniform estimates
with respect to ¢ are obtained. Since this is a standard step in Calderén-Zyg-
mund theory we ignore it and think G, as Tj; in the sequel.

Denote by K (x, y) e @' (R" x R") the distribution kernel of Gy;.

PROPOSITION 6. — There is a constant C depending only on n and 6 such
that for all x, yeR", x 2y,

C
(33) | K@, ) | S ———,
|z =y
C hl Y
(34) |Kiy(x + R, y) — Ky, y) | < n+1( - )’
|z —y] v —y|
C ki Y
(35) |Kiu(x, y +h) — Ky, y) | < n+1( - )’
|z =y lv—y|

when |h| S%|x—y|.

. _ ¢ H
PRrOOF. — Using ¢ " = ¢~ LF p L7 (oo (orite

+ o
Kkl(x7 ?/) =2 f ( fMt]/CZ(w7 Z) MQ/Z(Z, y) dZ) dt .
0

R”

The proof follows from the preceding lemma and routine computa-
tions. =

PROPOSITION 7. — Ty, s a Calderén-Zygmund operator on R": for all
pe(l, + ), there exists a constant C depending only on n, 0 and p such
that

G 1, < CIlf Il
for fe L2(R") N LP(R").

ProOF. — The argument is divided into four cases: we apply the T(1) theo-
rem to obtain LZ boundedness. Then the L? estimate is a classical consequence
of Proposition 6. In this argument, the spaces are defined on R".
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* Case 1: 1<k, l<n—1.

Since X, = a_ and X, = a_ we have that G;,;(1) = Gj5(1) = 0. Thus G is
XL

bounded by using the T(1) theorem (we recall the reader that the weak boun-
dedness property follows from G;(1) = 0 or Gj;(1) = 0 by standard arguments
[10D).

* Case 2: k=nand 1 <I<n-—1.
We have

©

= 0
En,l:XfL(LN)_ltXl = _f (bnl a_

0
+..+b, —) et 9 g
0 o ox,,

89@

and thus G, ;(1) =0 (and G, ; has the weak boundedness property). On the
other hand

©

. o S 9 — 3 —
= - —et<L“>'(_bm+...+—b,m) dt .
0 8901 d 0

1 L,

Since b,,, is constant we have
n l(l) = 2 E]*l(b71])

By the first case and Calderén-Zygmund theory we know that, for 1<jsn—1,
the operators T}, extends boundedly from L “ to BMO. Hence G} (1) e BMO.
Thus G, ,; is bounded by invoking again the T(1) theorem.

* Case 3: 1<k<n—-1andl=n
We have

[

) 3 3
Cpon = — —etL“(—b1,2+...+—b7m) dt .
0 axk 3901 a%‘n

Again Gf ,(1) =0 and since b, is constant
n-—1
(Bk, n(l) = '21 Bk,](b]n)
J=

As for the case 2, we have that G, ,(1) e BMO. Hence G, , is bounded by the
T(1) theorem.
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* Case 4: k=1=mn.
We have

[

) )
By = —J.(bn1 — +...+b, ) etL”(—a byy+ ...+ 9 b,m) dt
axl 99071

and
n-—1
(Gn, n(l) = '21 (Gﬂ,j(b]’n)
j=

For the same reasons above, we have that G, , (1) e BMO. The same holds for
Ty

n—1
G L, (1) = '21 G, (b)),
J=

and G} (1) e BMO.
It remains to prove the weak boundedness property for G, ,. We
have

o

) 3 a
Bn, n= fbnn —¢€ ~iLf ( _bln +...+ bnw) dt + g{n’
axn (9.’)(,'1 ox

0 n

where

n—1
g{n: 2 bnj‘gj,n'
J

=1

We have that R, is bounded on L? since the G; , are bounded on L* and b,; e
L ~. Let B be a ball (with center x, and radius ) and ¢, ¢ € C' compactly sup-
ported in B. We have

| Ry ) | <[ Rl 2ol ol
<Cor" | Ry, 2 ol -

On the other hand, since

©

((EWL, n g{n) 20 1/)) = bnn (6 _tLHtXn(p’
0

") at

n

and taking into consideration the estimates on the kernel of t"2¢ ~“*tX and
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the fact that

+ o0

1 2
= e Ur—ylI* - -
Of t(n+1)/2e ! dt < |x_y|nfl’
it then follows
1 Y
‘ ((T;n,n - L(R'n) 2 1/}) ‘ S C|B|||(p||L°°(B) n—1 |1 o
| —y| L, dx, IL=®B)
d
<o gl | 2L

ox,,

Hence

| B u@s W) | <O llgllo (plloc + iV

This shows the weak boundedness property for G,, and ends the proof of Pro-
position 7. =

If I 41 denotes the fundamental solution for the operator L' = —div (A"V)
then the Green and the Neumann functions are respectively given by

(36) Galw, y) = Lan(e, y) — Tan(x, y*),
and
(87 NaCe,y) =Tas(a, y) + Tan(x, y*).

Let X=(X;, ..., X,), X=X, ..., X,) and define for xeR"

(1 0 0o --- 0 0
1 o --- 0 0 l
J(x)=J= : S
0 0 o - 1 0
Lbnl an bn3 T b’n,nfl bmz
r1 0 0 ce 0 0
0 1 0o - 0 0 l
Jw=0=|: & 1,
0 0 0 <. 1 0
\bln b2n b?m e bnfl,n b?m

where J and J have bounded coefficients. We have X = JV, X = JV. Here we
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understand X, X and V as column vectors. Thus

+ oo

VLYY = [T X e TR dt,
0

Let X(x, %) be the distribution kernel of G = [, * Xe ““*'¥ dt. Note that
J(x) and J(x) are constant on R” and on R" = R”\R_ﬁ. Thus

(38) = V.V, Ly, y) =J H(x) R, y)tj_l(?/),
where the equality holds in @' (R x R ). If 94 = G4 or N4, we have for all g,
h e D(RY), valued in C",

(Iag, h) = — ff V, (L, y) = Tan(e, y*)). g(y) divh(x) dady

R% x R%

where — (resp. +) occurs when I, = Gy (resp. Hy = Ny). It follows from (38)
that

(ICag, h) = (BT g tT ‘h) = (BT 1Og,'J *h)

where Og(x) = Sg(Sx) and S is defined in (31). Hence, by Proposition 7 we
obtain

|(OCag, B) | < CllgllLrns rllzr gy

This proves Theorem 3.

REMARK. — Using the fact that A" J and J are constant on R”. and on R" ,
¢ with
(x, y) e R X R% and D*“ is any derivative in « and y. This would give another
proof of Proposition 2.

this formalism can be used to obtain |D*I 4u(u, NE

n—1+|a| ’

2. — Variations on commutator results.

Let (X, d, u) be a space of homogeneous type with u(X) = + . In our ap-
plication X is the half-space R’ .

Let T be a bounded operator on some L?(X), 1 <o < o, with norm boun-
ded by 1 and assume that T is associated with a kernel k(x, ) in the sense
that

39) Tf(x) = fk(ac, y) f(y) du(y)  for a.e. x¢suppf, feL?(X),
X
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and that k satisfies |k(x, y)| <d(x, y)™" and for some v >0,

dlx, x')”

(40) ke, y) —k(x',y)| S ————
| T, Y € Y | d(x,y)nJrv

d,w) L1 . Here n is the homogeneous

for every «, x', y e X such that
d(x, y) 2

dimension.

PROPOSITION 8. — Let T and k be as above. Then, there exists C, such that
Jor all >0 and all ball B in X if g=T((a — agp) f) with fe L"(X), supp f
compact, and xeB,

— 1/1
BT flg ¢|du < Collall, QL] 1)(@))

Here, M is the maximal operator
1
Mh(x) = sup —— f |~(y) | duy) .
Bsx |B| B

This is classical and we include a proof adapted from [5], Theorem 3.19, for the
reader’s convenience.

Proor. — Write g = g, + g» where g, = T((a¢ — azp) x25f) and g; = T((a —
aZB) Xe (zg)f). We have

1 1 1/0 1 1/0
ed, < a—asp|®|fl°d
A <|B|B lo:% ) (|B|ZB' 2511 “)

1/r
<ol 57 J 1170

B

by the boundedness of 7', John-Nirenberg inequality and Hoélder inequality.
Next, set cg = nyZB k(xg, y)(a(y) — azp) f(y) du(y) where xp is the center
of B (cp exists by using the pointwise estimate on k£ and the assumption on the
support of f). Then
d(x, xg)”

2B d(ﬂC, y)n+v

so that using d(x, xz) < R (=radius of B) and d(x, ) = ¢, d(xg, ¥)

|g2(2) — cp| < |a(y) — azp | |f(y) | duy),

1
|B| |92(®) —cp |du() <cr” f PR GE |aly) — azp | [/(y) |duly).
B d(y, xg) =2R y
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Breaking the integral in rings 2°R < d(y, x5) <2**'R, k=1, and using

fa aopldu<cln(k+1)||a

we obtain

B[ |92(%)—03|dﬂ(90)<02 In (k+1) |lall,.2" ’”W f |f(y) |duty)
B

2k+lB
so that

2 19— e ldu < clal, p@),

u(B) g

for all x € B and Proposition 8 follows.

3. — A priori estimates.

Let B, = B,NR™, where B, is_a ball of radius o in R™ Let p > 2, u, f, f,
be compactly supported in B,NR™ with we W' ?(B,"), fe[L?(B, )]" and

,ﬁ)ELp*(BU+ )7 p* =
A e BUC(R"). Suppose that

" with, in addition,

divAVu = —divf+f, in R%Y
u=0 on JR%

in the sense that for all ¢ € Lip (R ), SuppepcR’,
fAVquo fquo—l—ffogo
]Rﬂ R?I

We claim that

(41) ||Vu||LP<B;) < (Al ||Vu||LP(B;> + C”f”LP(B;) + C”.ﬁ)”L“(EJ),

with C' depending only on p, n and ¢.

Note that if B,c R", we obtain an interior estimate, while if B, N IR" = ¢
we obtain a boundary estimate. We do them in the same flow.

Let B be a ball in R” with center in R” and B = BN R™ (those B * are the
balls B used in section 2 on the space X = R%). If Ayp+ is the mean of A over
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2B *, we have

—divAyp+ Vu = —divf—div((Asz+ —A) Vu) +f, in RY
u=0 on JR’ .

Thus for all xeRY, if G=Gy,,.,

u@) = [ V,G@, ) ) dy+ [ ,Gle, y)XAsp — AGp) Vuly) dy +

R% RY

fG(x, y) foly) dy .

R

c

n-17

@~y
have that x+— fR1 V,G(x, y) h(y) dy € Ly (R%). Also, since |G(x,y)|<

For h e L”(R";) with compact support and since |V, G(x, y) | < we

(or C|lnjx—y|| if »=2), we have foRﬁG(x,y)ﬁ)(y)dye

L2.(R"). Taking derivatives in (' (R") and using the bounded extension of
G = Ga4,,+ (see Theorem 3) to L”(R" ), we have

Vu(x) = GRx) + G((Agp+ — A) Vu)(x) + Ip fo(x) in @ (R%).

This is where it is convenient to have A e BUC (R} ) since the term G((Azz+ —
A) Vu) is defined as (Asp+ —A) Vue LP(R".). Here the integral (Iph)(x) =
J ry Ve G(, y) I(y) dy defines a bounded operator from L”+(R’ ) into L”(R’)
since 1 <p, and p < +  using (17) with |a| =1. By Theorem 3

42) [Vall, < O], + | S((Az+ — A) Va) |, + Cll foll,.,

where C depends only on p, n and 6 (note that the ellipticity constant of Ayp+
is uniformly controlled by the one of A, hence the estimate does not depend on
the choice of B). By Proposition 8, if g = §((Ayp+ —A) Vu) and 1 <r<p, for
all xeB*,

lg —c| < ClAll. (M, (| V| "))

inf
ceC” |BJr |BJr

Here we used ||4], = supﬁ S g+ |A —Ap+| where the supremum is taken
B+
over all B = BN R", B being an Euclidean ball with center in R” . [It is easy
to see that this norm is equivalent to the usual norm defined in the intro-
duction, where the balls B are contained in R%]. Also M, (h)(x)=
1

sup —— Joe|h].

oL 0]

Btsx
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Fixing « and taking the supremum over B * o« leads to
9%x) < CllAJL M, (| Vae | @),

where ¢! is the Fefferman-Stein sharp function on R’ . Using [|gll, < C,llg"|,
and the Hardy-Littlewood theorem, since » < p, yields |||}, < C||Al|,. [[Vl|,- This
proves (41).

Next, let us consider the Neumann problem. With the same hypotheses on
u, f, fy and A, we assume

—divAVu = —divf+f, in R%
v.AVyu=wv.f on OR" .

Again this is interpreted in the variational sense. Then we have

(43) IVl sy < CllAlL IVullpoz,e ) + CllFlloe,sy + Cllfo ey

with C depending only on p, » and 8. The argument is entirely similar to the
preceding one and is skipped.

4. — Proof of Theorem 1.

Now, we wish to prove Theorem 1 in its full generality. We only consider
the existence issue when p > 2. Indeed, uniqueness (modulo constant) follows
easily from the p = 2 case. Then a duality argument ends the proof when p < 2.
We henceforth suppose that p > 2.

First assume that 2 has C'* boundary, that A e C * (L) and that fe Cy” (Q).
Let us consider first the Neumann problem. By Lax-Milgram lemma, we have
a solution e W' 2(Q) with fQu =0 such that

fAVqu=fva, VveLip(Q).
Q o

Classical interior and boundary elliptic regularity tells us that ueC*(Q).
Hence Vu e L?(£L) but we wish to prove

(44) [Vl

Lo S C||f|

LP(2)

with C depending only on %, 8, p, the VMO modulus of continuity of A, |2]
and the C'! modulus of continuity of 2 which we can define as the modulus of
continuity of the outward unit normal on 0Q.

Fix 0 e Cy° (B,) where B, is a ball in R". We get

(45) fAV(ue)w: ffw+ ffov, Vve Lip (Q),

QnB, QnB, QnB,
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where f = 6f + AVOu and f,=FfV0—AVuVO and A = Ay +I(1—y) where
y € Cy” (By,) and y =1 on supp 6. Note that A e C *(Q) and if ¢ is chosen small
enough we have that ||A | is small, as it is controlled by the VMO modulus of
continuity of A.

If B,c Q then we can consider B, in a half-space so that either a priori esti-
mate (41) or (43) yields

(46) [V(u6)|

L’)(B,,) =< C(” f

Loy + | Folle.a,)

and C depends uniquely on p, %, ¢ and || 4],.

If B,N 92 # @ with o small enough, then we use a local C* chart ¢ : R}, —Q
to flatten the boundary. Then one can pull back the a priori estimate (43) to
(u0) o, f oq, fyoqp and A on £2 replaced by another C' * matrix A on R" and
the important point is that HAH=X< C|lA||, where C depends on dimension and
on the C'! modulus of continuity of 82 (this is because BUCX (VMO NL *)c
(VMO N L *)). Thus we also have (46) with C depending on p, n, 6, the VMO
modulus of continuity of A and the C' modulus of continuity of 9.

From here, it suffices to iterate as in [11], p. 416, to obtain

IVallr o) < CAIVUll 20 + [ Fllrce) + ull o)) -

Poincaré-Sobolev inequality (valid for connected lipschitz sets, if [,u=0)
yields

lellzoc0) < CIValr. (o)
and a second iteration yields
IVull,r @) < CAVUllL2c) + [1fllr2))-
Lastly the L? theory yields
Vall2c0) < Cllfll 2o < C1 2127 YP([]lLog)

and (44) follows with the expected behavior of C.

The proof for the Dirichlet problem is entirely similar and skipped.

It remains to remove the a priori assumptions on 2, A, f. Assume that A
and Q satisfy (2) and (3) and that fe L?(Q).

Dirichlet problem: Let A, e C * () satisfying (2) uniformly such that A, —
A a.e.on Qand A,— A in BMO(RQ) and f, e Cy* (22) with f,—fin L? (). Choo-
se also an increasing sequence of C * subdomains £, converging to 2, with C!
modulus of continuity of 92 uniform in k, that is sup w o, < Cw 4, (this can be

e

done using a regularized distance function to 92). One can arrange supp f;,C
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Q. Let u, e C~*(£2}) be the solution of u, =0 on 02,
fAkVuqu[): fka¢
Qp Qy

for all ¢ € Cy° (£22},). Extend u;, to be 0 outside of Q. Then, using our a priori
estimate on Q,

”Vuk”L”(Q) ||V%k ”LI’(Qk) < Cka ||L7’(Qk) <C SUP ||fk ”LP(Q) = C”f”m(m

Thus (u;) has a weakly converging subsequence in Wi ?(2). In particular,
there exists ue W P() such that, up to extraction, Vu,— Vu weakly in
L?(Q) and we obtain

fAVuV(pz ffV(p, Vo eCp(RQ).
Q Q

This shows the existence part of Theorem 1 in the case p > 2 for the Dirichlet
problem.

Neumann problem: Pick f, e Cy* (22) with f,—Ffin L?(Q) and A, e C~* (R")
vmth sup 4| = &y < 20, A uniformly elliptic on R", with ellipticity constant

— Ak —>A a.e. on 2 and A, — A in BMO(LR). Now let (£2,) be a decreasing se-
quence of C* domains converging to 2 with C' modulus of continuity of 69,
uniform in k.
Let u,e WH2(Q,) with f u, = 0 be the unique solution of
fAkvukV¢:fka¢ V(pEC (‘Qk)'
Qi Q1

Since 2c 2, and supp f,.c 2,

”Vuk”L”(Q) <||Vay, Loy S C|f, HL"(Qk) <C Sl}ip ”fk”LP(.Q) S C”f”L"(Q)

with C uniform in k. Thus (u;) has a weakly converging subsequence in
W P(Q) and there exists u e W ?(Q) such that, up to extraction, Vu,— Vu
weakly in L”(Q). Now, for all ¢ e C*(Q), write

Qr Q Q Q

f Ak V?/Lk V(p .
Q,\Q
The first term tends to 0 by dominated convergence since | [,(A;—
A) Vi Vo | < ||V ||lLoo (A, — 4) VollLr @), the second by weak convergence
and the last by [|4; Vi |00, < 206 sup [Vay|Lro) and [|[VelLr 0,0 — 0. Since
ke
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f 0,01 Vo tends to Jof Vg, the proof of Theorem 1 for the existence of a sol-
ution when p > 2 for the Neumann problem is finished. Taking into account
the starting comments of this section Theorem 1 has been completely
proved.

5. — Concluding remark.

One cannot take £ with arbitrary lipschitz boundary. Indeed, already for
L= —A4, W7 estimates for both (1) and (4) are restricted to p < p, for some
Py < + o ([17], [19]). However, it is plausible that p, tends to + c with the lip-
schitz constant of 92 tending to 0 (i.e. 32 tends to a C! boundary), whenever
AeVMO(R). Also for a given p, one can replace the hypothesis «4 e
VMO(Q)» by «the distance of A to VMO(LR) in BMO(£) being small enough
depending on the value of p» (see [8] where this is observed for non divergen-
ce equations).
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