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Remarks on the Quasiconvex Envelope
of Some Functions Depending on Quadratic Forms.

M. BOUSSELSAL - H. LE DRET

Sunto. – In questo lavoro calcoliamo la chiusura quasi convessa di alcune funzioni de-
finite sullo spazio Mmn delle matrici reali m3n attraverso forme quadratiche. I ri-
sultati sono applicati ad alcune funzioni relative alla densità di energia elastica di
James e Ericksen.

Summary. – We compute the quasiconvex envelope of certain functions defined on the
space Mmn of real m3n matrices. These functions are basically functions of a
quadratic form on Mmn . The quasiconvex envelope computation is applied to den-
sities that are related to the James-Ericksen elastic stored energy function.

1. – Introduction.

We denote by Mmn the space of real m3n matrices. Let W be a function
defined on Mmn with values in R . Let D be a bounded domain in Rn . We use
the Einstein summation convention, unless otherwise specified.

In applications to problems of Continuum Mechanics, the fundamental is-
sue of the Calculus of Variations consists in minimizing such energy function-
als as

I(u)4s
D

W(˜u(x) ) dx ,(1.1)

where u is a mapping from D into Rm belonging to some subset of an appropri-
ate Sobolev space. In this context, ˜u designates the gradient of u , i.e., the
m3n matrix

(˜u)ij4
¯ui

¯xj

,

where u1 , R , um denote the Cartesian components of u . In applications to
nonlinear elasticity, u is a deformation of a body occupying the domain D in its
reference configuration, ˜u is the deformation gradient and W is the stored
energy function of a hyperelastic material. Naturally, appropriate boundary
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conditions and loading terms must be added to give rise to a well-posed
problem.

As a general rule, the functional I is not weakly lower semicontinuous on
the above-mentioned Sobolev space. The direct method of the Calculus of
Variations thus does not apply to minimize (1.1). One of the ways of getting
around this difficulty is to consider the so-called relaxed problem, which in
this case consists in minimizing the energy

I (u)4s
D

QW(˜u(x) ) dx(1.2)

where QW denotes the quasiconvex envelope of W , see [5]. Before going any
further, let us recall the various convexity notions that are relevant in the vec-
torial case of the Calculus of Variations, see [5] again.

l Let t(m , n) be the number of all minors of an m3n matrix F and
M(F) be the vector of all such minors. A function W : MmnKR is said to be
polyconvex if there exists a convex function W× : Rt(m , n)KR such that

(F�Mmn , W(F)4W×(M(F) ) .(1.3)

l A function W is said to be quasiconvex if

(F�Mmn , W(F)G
1

meas D
s

D

W(F1˜v(x) ) dx ,(1.4)

for all bounded domains D%Rn and all functions v�W 1, Q
0 (D ; Rm ).

l A function W is said to be rank-1-convex if, for all couples of
matrices (F , G) such that rank (F2G)G1 and all l� [0 , 1 ],

W(lF1 (12l) G)GlW(F)1 (12l) W(G) .(1.5)

Quasiconvexity was introduced by Morrey [10], [11] as a necessary
and sufficient condition for the weak lower semicontinuity of I over Sobolev
spaces, under appropriate assumptions of growth and bound below. It
is clearly not easy to check in practice. Morrey also proved that rank-
1-convexity is a necessary condition for such weak lower semicontinuity.
In the case when W is of class C 2 , condition (1.5) can be slightly strengthened
to become the well-known Legendre-Hadamard, or strong ellipticity con-
dition

(F�Mmn , (j�Rn , (h�Rm ,
¯ 2 W

¯Fij ¯Fkl

(F) j i j k h j h lFcNjN2 NhN2 ,(1.6)

with cD0. Polyconvexity was introduced by Ball [1] to deal with existence
questions in nonlinear elasticity, for which the growth conditions required
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by Morrey’s theorem are not satisfied. In particular, using polyconvexity,
certain energy densities W that take the value 1Q become amenable.

It is by now well-known that, in the finite-valued case,

W convex ¨ W polyconvex ¨ W quasiconvex ¨ W rank-1-convex ,(1.7)

and that the reverse implications are false in general. The last one,

W rank-1-convex Ö W quasiconvex ,

which had been left standing for a long time, was recently established by Šver-
ák, see [12] for dimensions mF3 and nF2. When m41 or n41, which is to
say in the scalar case, all the above notions are equivalent.

Associated with the above convexity notions are the corresponding convex,
polyconvex, quasiconvex and rank-1-convex envelopes defined by

CW4 sup ]Z ; Z convex and ZGW ( ,

PW4 sup ]Z ; Z polyconvex and ZGW ( ,

QW4 sup ]Z ; Z quasiconvex and ZGW ( ,

RW4 sup ]Z ; Z rank-1-convex and ZGW ( .

By (1.7), we clearly have

CWGPWGQWGRW .(1.8)

The four envelopes coincide when RW is convex.
The relationship between the quasiconvex envelope and the relaxed energy

functional alluded to above, is that minimizing sequences for the original en-
ergy (1.1) weakly converge to minimizers of the relaxed functional (1.2), under
appropriate technical assumptions, see [5]. The converse is also true in the
sense that all minimizers of (1.2) are weak limits of a minimizing sequence for
(1.1). Thus, the computation of the quasiconvex envelope of an energy density
W provides information on the asymptotic behavior of minimizing sequences
for the corresponding functional.

The goal of this article is to compute the quasiconvex envelope of certain
functions W which depend on the gradient through a quadratic form. The ex-
plicit computation of the quasiconvex envelope of a given function W is in gen-
eral a hopeless task, see [6], [7], [8], [9] for some examples in which it is possi-
ble to carry it out completely. Indeed, the results we obtain here are rather
limited in scope. The main motivation for them is the study of an elastic stored
energy function proposed by James and Ericksen to model phase transitions
in elastic crystals in dimension two, see for example [4]. The James-Ericksen
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density is given by

W(F)4WA(C)4k 1 ( tr (C)22)21k 2 c12
2 1k 3gg c112c22

2
h2

2e 2h2

(1.9)

where

C4F T F4gc11

c21

c12

c22
h

is the Cauchy-Green or strain tensor, the nonnegative constants k 1 , k 2 and k 3

are elastic moduli and e is a small parameter. The quasiconvex envelope of the
James-Ericksen density was computed in the cases when k 140 or k 340 by
Bousselsal and Brighi [3]. We recover their result in the case k 140 as a con-
sequence of more general relaxation results.

The general case k 1 k 2 k 3D0 seems unfortunately to be out of reach of cur-
rent methods. We nonetheless succeed in identifying a rather large set of ma-
trices for which the quasiconvex envelope of W vanishes. This set is a region in
the deformation gradient space where the relaxed energy is degenerate. If the
deformation gradient of a solution of the relaxed minimization problem takes
such values in a subset of the domain V , this indicates that relaxation is occur-
ing in this subset and that minimizing sequences for the initial minimization
problem will develop oscillations and exhibit microstructure in the same sub-
set. After this work was completed, it was brought to our attention that the set
we had found was not optimal. It actually is a strict subset of the actual set of
matrices for which the quasiconvex envelope vanishes, see [2]. Our method
nonetheless provides estimates from above for the quasiconvex envelope of
the James-Ericksen density, and is not a priori limited to the 2D or 2D-3D
cases.

We conclude the article by giving an example of how the case of functions
depending on certain homogeneous functions of degree pc2 can be handled
along similar lines.

2. – Rank one decompositions and quadratic forms.

Let us first recall the following result, due to Bousselsal and Brighi [3].
The proof is given here for completeness.

THEOREM 2.1. – Let F�Mmn , a�R and q a quadratic form on Mmn such
that q(F)Ga . We assume that there exists two vectors a�Rm and b�Rn such
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that q(a7b)D0. Then there exists l� [0 , 1 ] and t�R such that if E4

ta7b ,

q(F1lE)4q(F2 (12l) E)4a .(2.1)

PROOF. – For all F , E�Mmn and l� [0 , 1 ], we have

q(F1lE)4q(F)12lb(F , E)1l 2 q(E)(2.2)

q(F2 (12l) E)4q(F)22(12l) b(F , E)1 (12l)2 q(E)(2.3)

where b(Q , Q) is the symmetric bilinear form associated with q .
If q(F)4a , we just take t40. Assume now that q(F)Ea . We want to

solve the system

.
/
´

q(F)12lb(F , E)1l 2 q(E)4a ,

q(F)22(12l) b(F , E)1 (12l)2 q(E)4a ,
(2.4)

for t�R2 and l� [0 , 1 ].
It is clear that if we let X14lt and X24 (l21) t , then system (2.4) is

equivalent to requiring that X1 and X2 be roots of the polynomial

P(X)4q(a7b) X 212b(F , a7b) X1q(F)2a .

Now, since q(a7b)D0 and q(F)2aE0, this polynomial has two real simple
roots so that we are left with solving the system

.
`
/
`
´

lt4
2b(F , a7b)2kD

q(a7b)
,

(l21) t4
2b(F , a7b)1kD

q(a7b)
,

where

D4b(F , a7b)21 (a2q(F) ) q(a7b) .

It follows readily that

.
`
/
`
´

t42
2kD

q(a7b)

l4
1

2
g11 b(F , a7b)

kD
h .

It is clear that l� [0 , 1 ]. r
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Let us apply Theorem 2.1 in some examples that will be useful for the study
of the James-Ericksen energy. We denote by F k the k-th column-vector of a
m3n matrix F and by F k QF l their scalar product in Rm

F k QF l4Fik Fil .

We consider a quadratic form q on Mmn that can be expressed as

q(F)4skl F k QF l ,

where S4 (skl ) is a symmetric n3n matrix.

COROLLARY 2.2. – Let a�R and F�Mmn be such that q(F)ca .
i) If q(F)Ea and at least one diagonal coefficient of S is strictly positive,

then there exists l� [0 , 1 ], A , B�Mmn such that rank (A2B)G1 with

F4lA1 (12l) B and q(A)4q(B)4a .(2.5)

ii) If q(F)ca and either there are two diagonal coefficients of S , skk and
sll with kc l , such that skk sllE0, or at least one off-diagonal coefficient is
nonzero, then there exists l� [0 , 1 ], A , B�Mmn such that rank (A2B)G1
with

F4lA1 (12l) B and q(A)4q(B)4a .(2.6)

In both cases, we have in addition, Aik4Bik4Fik for all 1G iGm21 and
1GkGn .

PROOF. – i) Let F�Mmn be such that q(F)Ea and let skk be a strictly posi-
tive diagonal coefficient of S . We take a4 (ai )�Rm and b4 (bj )�Rn with ai4

d im and bj4d jk . Then, q(a7b)4skkD0 and we can apply Theorem 2 to find
l� [0 , 1 ] and t such that A4F1ltE and B4F2 (12l) tE meet our re-
quirements, since Eik40 for all 1G iGm21 and 1GkGn .

ii) Assume now that q(F)ca and either there are two diagonal coeffi-
cients of S , skk and sll with kc l , such that skk sllE0, or at least one off-diago-
nal coefficient is nonzero.

If q(F)Ea , either skkD0 and we apply case i), or there exist kc l such that
sklc0. In the latter case, we take a4 (ai )�Rm and b4 (bj )�Rn with ai4d im

and bj4d jk1sign skl d jl . Then, q(a7b)4NsklND0 and the conclusion follows
as before.

Finally, if q(F)Da , we apply the previous step to the quadratic form 2q
and the value 2a . r

REMARK 2.3. – The only quadratic forms of the form above that are not in-
cluded in the hypotheses of part ii) are those for which the matrix S is diagonal
and all its coefficients are of the same sign. r
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A very similar result is as follows. We assume here that nGm .

COROLLARY 2.4. – Assume that S is such that there exists kc l with skk sllE

0. Let a�R and F�Mmn be such that q(F)ca . Then there exists l� [0 , 1 ],
A , B�Mmn such that rank (A2B)G1 with

F4lA1 (12l) B and q(A)4q(B)4a .(2.7)

In addition, A j QA p4B j QB p4F j QF p for all jcp .

PROOF. – Assume first that q(F)Ea and skkD0. Let G be the vector sub-
space of Rm spanned by the vectors F j for all jck . Since nGm , we have
dim GGm21. We can thus choose a�G » 0]0( and b4 (bj ) with bj4d jk , so
that q(a7b)4skk NaN2D0. Applying Theorem 2.1, we obtain our matrices A
and B . Moreover,

A j QA p4 (F j1ltd jk a) Q (F p1ltd pk a)

4F jQF p1lt(d jk a QF p1d pk a QF j)1l 2 t 2 NaN2 d jk d pk .

First of all, when pc j , we always have d jk d pk40 so that the quadratic term
disappears. Secondly, if jck and pck , then d jk4d pk40. On the other hand,
if j4k (and thus pck), then a QF p40, and if p4k (and thus jck), then a Q
F j40. Therefore, we have shown that A j QA p4F j QF p . The same argument
applies to B .

In the case when q(F)Da , we apply the previous argument to 2q and 2a
by exchanging the roles of k and l . r

EXAMPLES 2.5. – Keeping the case of the James-Ericksen energy density in
mind, we can for example apply Corollary 2.2 for m4n42 and q(F)4F 1 QF 2 .
This yields rank-1 decomposition matrices A and B such that A 1 QA 24B 1 Q
B 24a and A114B114F11 and A124B124F12 . Similarly, Corollary 2.4 applies
for m4n42 and q(F)4NF 1N22NF 2N2 to obtain a rank-1 decomposition such
that NA 1N22NA 2N24NB 1N22NB 2N24a and A 1 QA 24B 1 QB 24F 1 QF 2 .

3. – Relaxation results.

Let W : R1KR be a function such that

a) there exists aD0, with min
R1

W4W(a),

b) W(t)4W**(t) for all tFa . Let g : Mm21, nKR be a convex function.
For all F�Mmn , we denote by FA the (m21)3n matrix obtained by erasing
the m-th line of F .
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THEOREM 3.1. – Let q be a nonzero nonnegative quadratic form on Mmn , of
the form q(F)4skl F k QF l , and define W : MmnKR by W(F)4W(q(F) )1g(FA).
Then

QW(F)4
.
/
´

W(a)1g(FA)

W(q(F) )1g(FA)

if q(F)Ga ,

if q(F)Da .
(3.1)

PROOF. – Since q is nonnegative, it follows that all diagonal coefficients skk

are also nonnegative (take F j40 for jck and (F k )i4d 1 i). Assume for contra-
diction that they all vanish. Let sklc0 be a nonzero off-diagonal coefficient. If
we take (F k )i4d 1 i , (F l )i4ed 1 i , with e461, and F j40 otherwise, then
q(F)4eskl , and therefore q changes sign. We have thus shown that q satisfies
the hypothesis of Corollary 2.2 i). Consequently, if q(F)Ga , we can find two
matrices A and B with rank (A2B)G1, q(A)4q(B)4a and F4lA1 (12
l) B . Moreover, AA4BA4FA. In this case, since QW is rank-1-convex, we see
that

QW(F)GlW(A)1 (12l) W(B)4W(a)1g(FA) .

If we introduce a function WA: R1KR by WA(t)4W(a) for tGa and WA(t)4
W(t) for tDa , we can rewrite the above as the following statement:

(F�Mmn , QW(F)GWA(q(F) )1g(FA) .

Note now that by condition b), W is nondecreasing on [a , 1Q[. As it
coincides with its convex envelope on this interval, it follows that the function
WA is convex, nondecreasing on R1 and WAGW . Since the quadratic form q is
nonnegative, it is a convex function on Mmn . Therefore, the function
FO WA(q(F) )1g(FA) is convex and below W , thus

WA(q(F) )1g(FA)GCW(F)GQW(F) ,

and the result follows. r

REMARK 3.2. – We could have assumed as well that g is quasiconvex, in-
stead of convex. r

EXAMPLE 3.3. – A classical example of function W that satisfies a) and b) is
W(t)4Nt21Np for 1GpE1Q . If we take as quadratic form q(F)4

tr (F T F)4 !
j41

n

NF jN2 and g40, we recover a well-known result, see for

example [5] and [3] for slightly different versions. r
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Let us now turn to relaxation results that are more specifically related to
the James-Ericksen energy. We assume here that W : RKR is bounded below
and let m4 inf

t�R
W(t). We do not make any convexity assumption on W . Let

g : Mm21, nKR be a quasiconvex function.

THEOREM 3.4. – Let q be a quadratic form on Mmn that satisfies the hy-
potheses of Corollary 2.2 ii). The quasiconvex envelope of the function
W : MmnKR ,

W(F)4W(q(F) )1g(FA)(3.2)

is given by

QW(F)4m1g(FA) .(3.3)

PROOF. – First of all, the function Z : FOm1g(FAF) is quasiconvex be-
cause for all v�W 1, Q

0 (D ; Rm ), the function vA obtained by deleting the m-th
component of v is in W 1, Q

0 (D ; Rm21 ) and ˜vA 4˜vA. Furthermore, the function
Z is below W . Therefore, for all F�Mmn ,

m1g(FA)GQW(F) .(3.4)

Next, for all eD0, we choose a�R such that mGW(a)Gm1e . If F is
such that q(F)4a , then QW(F)Gm1g(FA)1e . If F is such that q(F)ca ,
then by Corollary 2.2, we can find l� [0 , 1 ] and A , B�Mmn such that
rank (A2B)G1 with F4lA1 (12l) B , q(A)4q(B)4a , and AA4BA4FA.
Therefore, by the rank-1-convexity of QW , we obtain

QW(F)GlW(A)1 (12l) W(B)4W(a)1g(FA)Gm1g(FA)1e ,(3.5)

from which the conclusion follows at once. r

The following is an easy consequence of Theorem 3.4.

PROPOSITION 3.5. – Let W , q and q be as in Theorem 3.4. A necessary condi-
tion for the minimization problem: Find u�WF

1, Q such that

s
V

W(˜u(x) ) dx4 inf
v�WF

1, Q
s

V

W(˜v(x) ) dx

where

WF
1, Q4]v�W 1, Q (V ; Rm ); v(x)4Fx on ¯V( ,

to have a solution, is that the infimum of W be attained.
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PROOF. – Indeed, by the previous result and by Dacorogna’s representation
formula for the quasiconvex envelope of a function, see [5], we have

inf
v�WF

1, Q
s

V

W(˜v(x) ) dx4 ( meas V) (m1g(FA) ) .

Since m is the infimum of W , it is clear that for all v in WF
1, Q ,

s
V

W(q(˜v(x) ) ) dxF ( meas V) m ,

and that by the quasiconvexity of g ,

s
V

g(˜v(x)A) dxF ( meas V) g(FA) .

Let us assume that there exists u in WF
1, Q such that

s
V

W(˜u(x) ) dx4 ( meas V) (m1g(FA) ) .

Then necessarily,

s
V

W(q(˜u(x) ) ) dx4 ( meas V) m and s
V

g(˜u(x)A) dx4 ( meas V) g(FA) .

In particular, the first inequality implies that W(˜u(x) )4W(q(˜u(x) ) )4m4

inf
t�R

W(t) almost everywhere, so that the infimum of W is attained. r

EXAMPLE 3.6. – Let g : R2KR be a convex function. Then the quasiconvex
envelope of the function W : M2, 2KR , W(F)4W(F 1 QF 2 )1g(F11 , F12 ) is
given by QW(F)4m1g(F11 , F12 ). r

Here is another example in a similar spirit. Assume that nGm and consid-
er a quadratic form q that satisfies the hypotheses of Corollary 2.4. Let us be
given coefficients b jp for all 1G jEpGn , at least one of which is nonzero, a
fonction W : RKR bounded below, with m4 inf

R
W , and a function f : MmnKR

bounded below and such that there exists a�R such that for all F�Mmn satis-
fying q(F)4a ,

f (F)4I4 inf
G�Mmn

f (G) .

THEOREM 3.7. – The quasiconvex envelope of the function W : MmnKR ,

W(F)4W(b jp F j QF p )1 f (F)(3.6)
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is given by

QW(F)4m1I .(3.7)

PROOF. – Again, it is obvious that

m1IGQW(F) .(3.8)

If F is such that q(F)4a , then f (F)4I , so that QW(F)GW(b jp F j QF p )1
I . If F is such that q(F)ca , then by Corollary 2.4, we can find l� [0 , 1 ],
A , B�Mmn with rank (A2B)G1 such that F4lA1 (12l)B , q(A)4
q(B)4a and A j QA p4B j QB p4F j QF p for all jcp . Hence, by rank-1-convexity
of QW , we obtain

QW(F)GlW(A)1 (12l) W(B)4W(b jp F j QF p )1I ,(3.9)

and the above inequality is established for all F . Let now Z(F)4W(b jp F j Q
F p )1I . By inequality (3.9), it follows immediately that

QW(F)GQZ(F)4m1I ,(3.10)

by Theorem 3.4 applied to Z . r

EXAMPLE 3.8. – Take the James-Ericksen density

W(F)4k 2 (F 1 QF 2 )21k 3gg NF 1N22NF 2N2

2
h2

2e 2h2

with k 140. We recover the result of [3] that in this case QW(F)40. r

Let us now consider the general case k 1 k 2 k 3D0. We can apply the rank-
one decompositions of Theorem 2.1 and its various corollaries to the quadratic
forms appearing in the expression of the James-Ericksen stored energy func-
tion. This yields diverse upper bounds for its quasiconvex envelope, depending
on the order in which we try to relax each of the three terms. In the end, we
will obtain a set of matrices where QW(F)40, that is to say, a region in the
deformation gradient space where the relaxed energy is degenerate. If the de-
formation gradient of a solution of the relaxed minimization problem takes
such values in a subset of the domain V , this indicates that relaxation is occur-
ing in this subset and that minimizing sequences for the initial minimization
problem will develop oscillations and exhibit microstructure in the same
subset.
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PROPOSITION 3.9. – Let F be such that NF 1N21NF 2N2G2. Then we
have

(3.11) QW(F)Gk 2 (F 1 QF 2 )21k 3 inf ]((12NF 2N2 )22e 2 )2 , ((12NF 1N2 )22e 2 )2 ( .

PROOF. – Let us take q(F)4NF 1N21NF 2N2 and F such that q(F)G2 and
F 2

c0. Let us choose a4 (F 2 )»4 (F22 , 2F21 )T and b4 (1 , 0 )T . Then a7b4
( (F 2 )» N0) and we obtain

q(a7b)4NF 2N2D0

Consequently, as in Theorem 2.1, we construct a pair of matrices A4F1

lta7b and B4F1 (l21) ta7b with l� [0 , 1 ], such that q(A)4q(B)42
and A 1 QA 24B 1 QB 24F 1 QF 2 . In addition, we see that, since q(A)4q(B)42
and A 24B 24F 2 ,

NA 1N22NA 2N24NB 1N22NB 2N242(12NF 2N2 ) .

Therefore, for all F such that q(F)G2 and F 2
c0,

QW(F)GlW(A)1 (12l) W(B)4k 2 (F 1 QF 2 )21k 3 ((12NF 2N2 )22e 2)2
.

This inequality extends to the case F 240 by the continuity of both
sides.

If we choose now a4 (F 1 )» and b4 (0 , 1 )T , we likewise obtain

QW(F)Gk 2 (F 1 QF 2 )21k 3 ((12NF 1N2 )22e 2 )2 ,

for all F such that q(F)G2, hence the result. r

Let us now relax the second term in the right-hand side of estimate
(3.11).

PROPOSITION 3.10. – Let F be such that NF 1N2G12e , NF 2N2G11e or
NF 1N2G11e , NF 2N2G12e . Then we have

QW(F)Gk 2 (F 1 QF 2 )2 .(3.12)

PROOF. – Let us take q 8 (F)4NF 2N2 and let F be such that q 8 (F)G11e
and NF 1NG12e (note that then q(F)G2). If we choose a4 (F 1 )» and b4
(0 , 1 )T , we obtain two matrices A and B such that rank (A2B)41, F4lA1

(12l) B with l� [0 , 1 ], q 8 (A)4q 8 (B)411e and A 1 QA 24B 1 QB 24F 1 QF 2 .
Moreover, since A 14F 1 and q 8 (A)411e , we see that

NA 1N21NA 2N24NF 1N2111eG2 ,

and the same holds true for B . Estimate (3.11) can thus be applied to A and B .
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Therefore, we see that, for all F such that NF 2N2G11e and NF 1N2G12e,

QW(F)GlQW(A)1 (12l) QW(B)Gk 2 (F 1 QF 2 )2 ,

since ((12NA 2N2 )22e 2 )24 ( (12NB 2N2 )22e 2 )240.
For F such that NF 1N2G11e and NF 2N2G12e , we use the same argu-

ment with the quadratic form q 9 (F)4NF 1N2 , which completes the
proof. r

The final relaxation step is easier to carry out if we first perform a simple
change of variables.

LEMMA 3.11. – For any function W : M2, 2KR , we define a second func-

tion W× : M2, 2KR by W×(G)4W(F) with G4 (G 1NG 2 )4g F 11F 2

k2
N F 12F 2

k2
h.

Then

QW(F)4QW×(G) .

PROOF. – Let R4
1

k2
g1

1
1
21
h . This is an orthogonal matrix and G4FR

and F4GR . Let D be the unit disk in R2 . By Dacorogna’s representation for-
mula, see [5], we have

QW×(G)4 inf
c�W 1, Q

0 (D ; R2 )

1

p
s

D

W×(G1˜c) dx

4 inf
c�W 1, Q

0 (D ; R2 )

1

p
s

D

W(GR1˜cR) dx .

For any c�W 1, Q
0 (D ; R2 ), define u(y)4c(Ry). Since R is orthogonal and D is

the unit disk, it follows that u�W 1, Q
0 (D ; R2 ) and ˜u(y)4˜c(Ry) R . There-

fore, we see that

QW×(G)4 inf
u�W 1, Q

0 (D ; R2 )

1

p
s

D

W(GR1˜u) dy4QW(GR)4QW(F) . r

THEOREM 3.12. – Let F be such that

.
/
´

NF 1N21NF 1 QF 2NG12e ,

NF 2N21NF 1 QF 2NG11e ,
(3.13)
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or

.
/
´

NF 1N21NF 1 QF 2NG11e ,

NF 2N21NF 1 QF 2NG12e .
(3.14)

Then we have

QW(F)40 .(3.15)

PROOF. – Let us rewrite estimate (3.12) in view of Lemma 3.11. This yields
that for all G such that

NG 1N21NG 2N2

2
1G 1 QG 2G12e and

NG 1N21NG 2N2

2
2G 1 QG 2G11e

or

NG 1N21NG 2N2

2
1G 1 QG 2G11e and

NG 1N21NG 2N2

2
2G 1 QG 2G12e ,

we have

QW×(G)G
k 2

4
(NG 1N22NG 2N2 )2 .(3.16)

Let now F satisfy condition (3.13) with F 1 QF 2E0. Expressed in terms of
the associated matrix G , condition (3.13) reads

NG 2N21G 1 QG 2G12e and NG 2N22G 1 QG 2G11e .

Moreover, G is such that qR(G)4NG 1N22NG 2N2E0 (which implies G 2
c0). A

by now familiar argument leads us to pose a4 (G 2 )» , b4 (1 , 0 )T and we
obtain

qR(a7b)4NG 2N2D0 .

We thus find A and B with qR(A)4qR(B)40 and A 1 QA 24B 1 QB 24G 1 QG 2 .
Therefore, as in the proof of Proposition 3.9,

NA 1N24NB 1N24NA 2N24NB 2N24NG 2N2 .

Consequently,

NA 1N21NA 2N2

2
6A 1 QA 24

NB 1N21NB 2N2

2
6B 1 QB 24NG 2N26G 1 QG 2 ,
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and estimate (3.16) applies to A and B . Hence,

QW×(G)GlQW×(A)1 (12l) QW×(B)40 .

If qR(G)D0, we simply exchange the roles of G 1 and G 2 . r

REMARKS 3,13. – i) Let EQW4]F�M2, 2 ; QW(F)40( be the zero set of
QW . We have shown that EQW contains the set of all matrices F that satisfy
conditions (3.13) or (3.14). In the case k 340 and k 2D0, the quasiconvex enve-
lope of W was computed in [3]:

QW(F)4

.
`
/
`
´

0

k 1(tr C22)21k 2c12
2

k 1(tr C22)21k 2c12
2 2

(2k 1(tr C22)2k 2Nc12N)2

4k 11k 2

if tr CG2 and 2Nc12NG22tr C,

if tr CF2 and k 2Nc12NG2k 1(tr C22),

if tr CF2 and k 2Nc12NF2k 1(tr C22),

or tr CG2 and 2Nc12NF22tr C,

with C4F T F . If we perform our computations in this particular case, we ob-
tain first as in Proposition 3.9 that for all F with tr C4NF 1N21NF 2N2G2,

QW(F)Gk 2 (F 1 QF 2 )2 .

Then we can skip Proposition 3.10 and go directly to Theorem 3.12. We thus
obtain that for all G with NG 1N21NG 2N2G2,

QW×(G)G
k 2

4
(NG 1N22NG 2N2 )2 ,

and in the case F 1 QF 2E0, the condition on G that makes it possible to relax
the upper bound to zero using the matrices A and B is simply NG 2NG1. Ex-

pressed in terms of F this condition reads NF 1 N21NF 2N2

2
2F 1 QF 2G1. The case

F 1 QF 2D0 leads to the condition NF 1N21NF 2N2

2
1F 1 QF 2G1, so that we find that

QW(F)40 for all F such that

NF 1N21NF 2N2G2 and 2NF 1 QF 2NG22 (NF 1N21NF 2N2 ) .

These are exactly the same conditions as those found in [3], so that we con-
clude that our method is optimal in this particular case. Unfortunately, when
k 1 k 2 k 3D0, the results of [2], obtained via entirely different techniques, show
that this is not the case. The zero-set of the quasiconvex envelope contains ma-
trices that are not captured by our method. It is not clear that such matrices
can be recovered by using our kind of arguments.

ii) Instead of first relaxing the first term in the expression of the James-
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Ericksen stored energy function, we can start with the third term. In this way,
we obtain the bounds

QW(F)G4k 1 (NF 2N21e21)21k 2 (F 1 QF 2)2 for all F such that NF 1N22NF 2N2G2e ,

and

QW(F)G4k 1 (NF 1N21e21)21k 2 (F 1 QF 2)2 for all F such that NF 2N22NF 1N2G2e .

These bounds are slightly different from the previously obtained bounds in
that they cover the whole of M2, 2 , and not just a bounded region thereof. Un-
fortunately, it does not seem that the above bounds are much useful for the de-
termination of the whole quasiconvex envelope of W . One interesting feature
of these bounds is that they do not depend on k 3 . This indicates that the de-
pendence of QW on k 3 has to be quite mild, even though letting k 3 tend to in-
finity results in W tending to infinity almost everywhere.

A similar bound, which is valid for all F , is obtained by first relaxing the
second term:

QW(F)Gk 1 (NF 1N21NF 2N212NF 1 QF 2N22)21k 3gg NF 1N22NF 2N2

2
h2

2e 2h2

.

Note that this bound does not depend on k 2 . Roughly speaking, this tends to
show that the asymptotic behavior of QW for large F is governed by the terms
involving k 1 .

We can further relax these bounds along the same lines as above, but the
results do not improve those of Proposition 3.10 and Theorem 3.12. In fact, it
can be checked that all six different ways of successively relaxing the three
quadratic terms basically yield the same result in the end.

Let us conclude this article by showing how the case of functions depend-
ing on certain homogeneous functions of degree pc2 can be handled along
similar lines. Consider for example the function on M2, 2

h(F)4NF11N
p1NF21N

p2 (NF12N
p1NF22N

p ) ,(3.17)

with pD0. Then we have an adapted rank-one decomposition.

PROPOSITION 3.14. – Let a�R and F be such that W(F)ca . Then there
exists two matrices A and B and a scalar l� [0 , 1 ] such that F4lA1 (12
l) B , rank (A2B)G1 and h(A)4h(B)4a .

PROOF. – Assume to start with that h(F)Ga , aF0 and that F 1
c0.

Let

X4NF11N
p1NF21N

p and Y4NF12N
p1NF22N

p ,
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so that

XD0 and z4g a1Y

X
h1/p

F1 .

We take A4 ( (11lt) F 1NF 2 ) and B4 ( (11 (l21) t) F 1NF 2 ) with

t42z and l4
z21

2z
.

If now F 140, we take A4F1
1

2
( (0 , t)TN0) and B4F2

1

2
( (0 , t)TN0) with

t42(Y1a)1/p .
If h(F)Fa , we proceed as above, exchanging the roles of F 1 and F 2 .
Finally, if aG0, we apply the above to 2h . r

COROLLARY 3.15. – Let W : RKR such that inf
t�R

W(t)4mD2Q and

define W(F)4W(h(F) ). Then, for all F�M2, 2 ,

QW(F)4m .

PROOF. – Clear. r

Part of the work of the first author was carried out during several stays at
the Laboratoire d’Analyse Numérique of the Pierre et Marie Curie Universi-
ty. These stays were made possible by the Franco-Algerian 96MDU370 pro-
gram agreement.
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