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Bollettino U. M. I.
(8) 5-B (2002), 431-446

Some Results on Existence and Structure of Solution sets
to Differential Inclusions on the Halfline.

GRZEGORZ GABOR

Sunto. – Si studia la struttura topologica dell’insieme delle soluzioni di inclusioni dif-
ferenziali sulla semiretta per mezzo di risultati tipo Scorza-Dragoni e del metodo
dei sistemi inversi. Sono anche presentati alcuni nuovi risultati di esistenza di so-
luzioni per problemi al bordo asintotici.

Summary. – A topological structure of solution sets to multivalued differential pro-
blems on the halfline is studied by the use of Scorza-Dragoni type results and by the
inverse systems approach. Some new existence results for asymptotic boundary
value problems are also presented.

1. – Introduction.

The paper is mainly devoted to studying a topological structure of solution
sets to differential inclusions defined on the halfline. This research was moti-
vated by [1], where authors have proved some general existence results for
such multivalued problems by the use of a generalized Schauder linearization
method.

Some results on the structure of the solution sets have been obtained in [1],
[2] and [3]. Three main techniques have been used in proofs. The first one re-
lies on Scorza-Dragoni type results used for the Fréchet space of continuous
functions defined on the halfline (see e.g. [1]). The second one uses some pro-
perties of multivalued limit maps of inverse systems (see e.g. [2]). It is also
possible to apply some multivalued generalizations of the Browder-Gupta re-
sult (see [3]).

The paper developes the ideas presented in [1,2]. Some new applications
are given.

In Section 2 we recall the method presented in [1] and illustrate it by a new
existence result for a second order boundary value problem on the halfline. In
Section 3 we deal with target problems. The existence result for the second or-
der one is presented and a topological structure of the solution set to the first
order problem is also investigated. As a consequence, Theorems 4.2 and 5.4 in
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[2] are essentially generalized. Finally, in Section 4 we give some applications
of the inverse systems approach. Differential inclusions with retards and di-
scontinuous autonomous differential problems are studied. The results give a
more precise characterization of a topological structure of the solution sets of
such problems.

2. – Existence result for second order boundary value problem on the
halfline.

In this section we are interested in existence of solutions to the following
boundary value problem

.
/
´

x
..

(t)1x
.
(t)�F(t , x(t) ), for a.a. t�J4 [0 , Q)

x(0)40, lim
tKQ

x(t)40,
(1)

where F : J3Rn2i Rn satisfies the following assumptions:

(A) F is a u-Carathéodory map, that is, it has nonempty, compact and
convex values, F(Q , x) is measurable for every x�Rn and F(t , Q) is upper semi-
continuous for almost all t�J;

(B) lim
tKQ

a(t)40 and s
0

Q

a(t) dt4KEQ, where a(t)4 sup
v�Rn

NF(t , v)N (by

NF(t , v)N we mean the number sup ]yNy�F(t , v)().

We will use the technique applied to differential equations on noncompact
intervals in [5, 6] and developed in [1] for multivalued problems.

The following result is a slight modification of the one obtained in [1] for
scalar problems.

PROPOSITION 2.1 ([1], Corollary 2.37). – Consider the problem

(2)

.
/
´

x (n) (t)1 !
i40

n21

ai (t , x(t), R , x (n21) (t) )x (i) (t)

�F(t , x(t), R , x (n21) (t) ) for a.a. t�J

x�S ,

where J%R, S%C(J , Rm ), and ai , F are u-Carathéodory maps on J3Rmn

into R and Rm, respectively.
Suppose that there exists a u-Carathéodory map G : J3Rmn3Rmn2i Rm

such that, for every c�Rmn, G(t , c , c)%F(t , c) a.e. in J.
The problem (2) has a solution, if the following conditions are sati-

sfied:
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(i) There is a retract Q of the space C n21 (J , Rm ) such that, for every
q�Q, the following problem

(3)

.
/
´

x (n) (t)1 !
i40

n21

ai (t , q(t), R , q (n21) (t) )x (i) (t)

�G(t , x(t), R , x (n21) (t), q(t), R , q (n21) (t) ) for a.a. t�J

x�SOQ ,

has Rd-set of solutions;

(ii) There is a locally integrable function a : JKR such that, for every
i40, R , n21:

Nai (t , q(t), R , q (n21) (t) )NGa(t) a.e. in J

and

NG(t , x(t), R , x (n21) (t), q(t), R , q (n21) (t) )NGa(t) a.e. in J

for each (q , x)�Q3C n21 (J) satisfying (3);

(iii) For the multivalued map T : Q2i C(J , Rm ), which assigns to any
q�Q the set of solutions of (3), the set T(Q) is bounded in C(J , Rm ) and
its closure in C n21 (J , Rm ) is contained in S (in particular, this holds if
SOC n21 (J , Rm ) is closed in C n21 (J , Rm ) ).

THEOREM 2.2. – Under assumptions (A) and (B) problem (1) has a
solution.

PROOF. – Define Q4]q�C 1 (J , Rn )NNq(t)NG3K(. This set is convex and
closed in C 1 (J , Rn ).

For each q�Q we can consider the problem

.
/
´

x
..

(t)1x
.
(t)�F(t , q(t) ), for a.a. t�J

x(0)40, lim
tKQ

x(t)40 .
(4)

Denote Fq4F(Q , q(Q) ). Assumptions on F imply that there is a measurable
selection fq of Fq . Thus we have the problem

.
/
´

x
..

(t)1x
.
(t)4 fq (t), for a.a. t�J

x(0)40, lim
tKQ

x(t)40
(5)
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which has a unique solution of the form

x(t)42s
t

Q

fq (s) ds2e 2tu s
0

t

e s fq (s) ds2s
0

Q

fq (s) dsv .(6)

Notice that

(7) Nx(t)NGs
t

Q

Nfq (s)Nds1e 2tu s
0

t

e s Nfq (s)Nds1s
0

Q

Nfq (s)NdsvG

G (12e 2t )s
t

Q

a(s) ds1e 2ts
0

t

(e s11) a(s) ds4g(t)G3K .

Moreover,

x
.
(t)4e 2tu s

0

t

e s fq (s) ds2s
0

Q

fq (s) dsv ,

which gives

Nx
.
(t)NGe 2ts

0

t

e s a(s) ds1e 2ts
0

Q

a(s) ds4g 1 (t) .

Define S14]x�C 1 (J , Rn )NNx(t)NGg(t), Nx
.
(t)NGg 1 (t) for t�J(. From

(7) it follows that S1%Q. Moreover, (6) and (7) imply that, for the map T which
assigns to each q�Q the set of solutions to (4), we have T(Q)%S1 .

Existence of a solution to problem (5) implies that each T(q) is nonempty.
Moreover, by the convexity assumption on values of F, each T(q) is also com-
pact (since S1 is bounded in C 1 (J , Rn )) and convex.

Finally, notice that g(0)40 and

lim
tKQ

g(t)4 lim
tKQ

s0
t e s a(s) ds

e t
40 .

Therefore, S1%S and, since S1 is also closed in C 1 (J , Rn ), T satisfies as-
sumption (iii) of Proposition 2.1. Applying this proposition we end the
proof. r

Note that problem (1) with single-valued right-hand side F was studied by
using the linearization method in [7]. Above we have enlarged the class of con-
sidering problems (we include also a multivalued case) under stronger boun-
dedness assumptions on F. The problem of weakening these assumptions is
open.
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3. – Target problems.

The method presented in the previous section can be also applied for obtain-
ing an existence result for the following second order target problem:

.
/
´

x
..
�F(t , x)

lim
tKQ

x(t)4v ,

for a.a. t�J4 [0 , Q),
(8)

where F : J3Rn2i Rn is a u-Carathéodory map and v�Rn.
Instead of (B) in Section 2, assume that there exists rD0 such that

s
0

Q

ta r (t) dtEr2NvN ,

where a r (t)4 sup
NcNGr

NF(t , c)N. Assume also that the function a r is essentially

bounded on [0 , 1 ].

THEOREM 3.1. – Under the above assumptions, problem (8) has a
solution.

PROOF. – Consider the convex closed set

Q4]q�C 1 (J , Rn )NNq(t)NGr for every t�J(

and

S4]x�C(J , Rn )N lim
tKQ

x(t)4v( .

It is easy to see that S is not closed. Define the closed bounded subset S1 of
C 1 (J , Rn ) as follows

S14{x�C 1 (J , Rn ) NNx(t)2vNGs
t

Q

sa r (s)ds , Nx
.
(t)NG ta r (t), tF0} .

It is easy to check that S1%SOQ.
Now we can follow like in the proof of Theorem 2.2 and associate with (8)

the family of problems

.
/
´

x
..

(t)�Fq (t), for a.a. t�J

x�SOQ
(9)
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and the family of single-valued problems

.
/
´

x
..

(t)4 fq (t), for a.a. t�J

x�SOQ ,
(10)

where fq is a measurable selection of Fq .
The above problem (10) has a unique solution of the form

xq (t)4v1s
t

Q

(s2 t) fq (s) ds .

Therefore, the set of solutions to problem (9) is nonempty. Moreover, it is con-
vex and compact (like in the proof of Theorem 2.2). To end the proof it is suffi-
cient to notice that all solutions belong to S1, but this follows from the form of
solutions and a simple calculation. r

Now we are interested in a topological structure of the solution set to the
following first order target problem:

.
/
´

x
.
(t)�F(t , x(t) ), for a.a. t� [0 , Q),

lim
tKQ

x(t)4xQ , xQ�Rn ,
(11)

where F : J3Rn2i Rn is a u-Carathéodory map satisfying the following
growth condition:

NF(t , x)NGa(t)(11NxN), for all (t , x)�J3Rn ,

where a : JKJ is a globally integrable function.
In [2] authors proved that problem (11) admits a bounded solution (comp.

[2], Theorem 5.4). Below we give a more precise information on the set of all
solutions to (11).

THEOREM 3.2. – Under the above assumptions on the right-hand side F,
the set of solutions to (11) is a compact Rd set (1). Moreover, all solutions are
bounded by the same constant.

(1) We say that a metric space is an Rd-set, if it is homeomorphic to the intersection
of countable decreasing sequence of absolute retracts.
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PROOF. – Consider the u-Carathéodory map G : J3Rn2i Rn,

G(t , x)4
.
/
´

F(t , x) ,

Fgt , D
x

NxN
h ,

for NxNGD and t�J ,

for NxNFD and t�J ,

where

DF (NxQN1A) exp A , A4s
0

Q

a(t) dtEQ .

It is easy to see that G is (globally) integrably bounded by the function h(t)4
a(t)(11D). Using the Gronwall inequality one can check that problem (11) is
equivalent to the following one:

.
/
´

x
.
(t)�G(t , x(t) ), for a.a. t�J ,

lim
tKQ

x(t)4xQ , xQ�Rn ,
(12)

This means that the set of solutions S(F , xQ ) to (11) is equal to the set of
solutions S(G , xQ ) to (12).

By Proposition 4.1 in [1] there exists an almost upper semicontinuous
(a.u.s.c.) map G : J3Rn2i Rn with nonempty compact convex values and such
that

(i) G(t , x)%G(t , x) for every (t , x)�J3Rn;

(ii) If D%J is measurable, u : DKRn and v : DKRn are measurable
maps and u(t)�G(t , v(t) ) for almost all t�D, then u(t)�G(t , v(t) ) for almost
all t�D.

This implies that S(G , xQ )4S(G, xQ ), where S(G, xQ ) is a solution set to
the target problem with G as a right-hand side.

Theorem 4.2 in [1] implies an existence of the sequence ]Gk : J3Rn2i Rn(

of a.u.s.c. maps such that

(1) each Gk has measurable-locally lipschitz selector gk ,

(2) Gk11 (t , x)%Gk (t , x),

(3) G(t , x)4 1
k41

Q

Gk (t , x) for every (t , x)�J3Rn,

(4) each Gk is integrably bounded by h.
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By a standard calculation one can obtain that

S(G, xQ )4 1
k41

Q

S(Gk , xQ ) .(13)

We show that S(Gk , xQ ) is compact and contractible for every kF1.

STEP 1. – At first, we prove that S(gk , xQ ) is nonempty, where gk is a mea-
surable-locally lipschitz selector of Gk mentioned above.

To show this, consider the family of linear problems

.
/
´

x
.
(t)4gk (t , q(t) ), for a.a. t�J ,

x�QOS ,
(14)

where

S4]x�C(J , Rn )N lim
tKQ

x(t)4xQ(

and

q�Q4]q�C(J , Rn )NNq(t)NGNxQN1A(11D) for tF0( .

Put

S14{x�QNNx(t)2xQNG (11D)s
t

Q

a(s) ds for tF0} .

It is evident that S1 is a closed subset of S.
It is also easy to see that problem (14) has a unique solution of the

form

xq (t)4xQ1s
Q

t

gk (s , q(s) ) ds .

Denoting T(q)4xq we obtain a continuous compact operator T (see [1], Propo-
sition 2.32 or [6], Theorem 1.1) from Q into C(J , Rn ).

Notice that

Nxq (t)NGNxQN1s
0

Q

Ngk (s , q(s) )NdsGNxQN1A(11D)

and

Nxq (t)2xQNGs
t

Q

Ngk (s , q(s) )NdsG (11D)s
t

Q

a(s) ds ,
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what implies that, in fact, T(Q)%S1%Q and, by the Schauder-Tychonoff fixed
point theorem, there is a fixed point of T which belongs to S( gk , xQ ).

STEP 2. – Now, we check that S(gk , xQ ) is a singleton.
Notice that, if x�S(gk , xQ ), then x(t)�B4]y�Rn NNyNGNxQN1A(11D)(

for a.a. t�J, and B is compact. Since that, we may consider gk as a measurable-
lipschitz map and hence (comp. the construction of gk in [1], Proposition 4.13)
there exists a globally integrable function g : JKJ such that

Ngk (t , x)2gk (t , y)NGg(t)Nx2yN(15)

for each x , y�B and a.a. t�J.
Suppose that x , y�S(gk , xQ). We show that x4y. Since x and y are bound-

ed, it is sufficient to check that

Vx2yVB4 sup
t�J

e 22r(t) Nx(t)2y(t)N40 ,

where r(t)4s
t

Q

g(s)ds for every t�J.
We have

e 22r(t) Nx(t)2y(t)NG

Ge 22r(t)s
t

Q

Ngk (s , x(s) )2gk (s , y(s) )NdsG

Ge 22r(t)s
t

Q

g(s)Nx(s)2y(s)Nds4

4e 22r(t)s
t

Q

e 2r(s) g(s) e 22r(s) Nx(s)2y(s)NdsG

GVx2yVB e 22r(t)s
t

Q

e 2r(s) g(s) ds4

4
1

2
Vx2yVB e 22r(t) (e 2r(t)21)4

4
1

2
Vx2yVB (12e 22r (t) )G

G
1

2
Vx2yVB .
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Therefore

Vx2yVBG
1

2
Vx2yVB ,

what implies that Vx2yVB40.

STEP 3. – We are in a position to define a desired homotopy contracting
S(Gk , xQ ) to a single point. We put for every x�S(Gk , xQ ):

h(x , l)(t)4

.
`
/
`
´

x(t),

z(t),

x(t),

for tF
1

l
2l , lc0

for 0G tE
1

l
2l , lc0

for l40,

where x is a unique solution S(gk , xQ ) and z is a unique solution to the reverse
Cauchy problem

.
`
/
`
´

z
.
(t)4gk (t , z(t) ), for a.a. t� k0,

1

l
2ll ,

zg 1

l
2lh4xg 1

l
2lh .

(16)

One can see that h(S(Gk , xQ)3[0, 1] )%S(Gk , xQ) and h(x , 0)4x, h(x , 1)4x,
as required. Hence, the set S(Gk , xQ ) is contractible. Its compactness easily
follows from the convexity of values of the right-hand side and from the
growth condition. From (13) we obtain that S(F , xQ ) is Rd which ends the
proof. r

REMARK 3.3. – By the substitution t42t, the conclusion of the above theo-
rem is also true for the problem on the left halfline. Thus we can generalize
Remark 5.5 and Corollary 5.6 in [2].

4. – Illustrations of inverse systems approach.

Applications of inverse systems to differential inclusions were initiated in
[2], where problems on the halfline were considered. A motivation to such ap-
proach was taken from the fact that some spaces of functions defined on the
halfline may be considered as limits of inverse systems of Banach spaces of
functions defined on compact intervals. This observation allows us to obtain
some useful properties of operators associated with differential problems on
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the halfline by the use of properties of suitable operators connected with pro-
blems on intervals [0 , m].

The results below give more precise informations on a topological structure
of the solution sets to two multivalued differential problems on the halfline than
that in [2]. To this aim we use results from [8] concerning with a topological
structure of fixed point sets of multivalued limit maps. In the topological bac-
kground below details are omitted. They may be found in [8] (see also [2]).

By an inverse system (countable) of topological spaces we mean a family
S4]Xm , p m

p , N(, where Xm is a topological (Hausdorff) space for every m�N
and p m

p : XpKXm is a continuous mapping for each two elements m , p�N such
that mGp. Moreover, for each mGpGr, the following conditions should hold:
p m

m4idXm
and p m

p p p
r 4p m

r . A limit of such inverse system is the set

lim
J

S4](xm )�P m�N Xm Np m
p (xp )4xm for all mGp( .

The following property of inverse systems is very useful in applica-
tions.

PROPOSITION 4.1 ([8], Proposition 3.2). – Let S4]Xn , p n
p , N( be an inverse

system. If each Xn is a compact Rd-set, then lim
J

S is also compact Rd .

In particular, a limit of an inverse system of compact AR-spaces is Rd (it
does not need to be an AR). On the other hand, every Rd set can be obtained as
a limit of an inverse system of some AR-spaces (induced by inclusion
relations).

EXAMPLE 4.2. – C( [0 , Q), Rn ), C k ( [0 , Q), Rn ), L 1 ( [0 , Q), Rn ) are limits
of inverse systems of resp. C( [0 , m], Rn ), C k ( [0 , m], Rn ), L 1 ( [0 , m], Rn ),
where the bonding maps are of the form p m

p (x)4xN[0 , m] . We can easily in-
crease the list of examples. It is interesting that every Fréchet space can be
considered as a limit of an inverse system of Banach spaces.

By a map (self-map) of an inverse system S we mean a family of maps
]W n( : S2i S such that each W n : Xn2i Xn is a multivalued one. Every such
map induces a limit map W : lim

J
S2i lim

J
S,

W( (xn ) )4P n41
Q W n (xn )O lim

J
S .

The following result is crucial.

THEOREM 4.3 ([8], Theorem 3.9). – Let S4]Xn , p n
p , N( be an inverse

system and W : lim
J

S2i lim
J

S be a limit map induced by ]W n(. If Fix (W n ) are

compact acyclic (or Rd ), then Fix (W) is compact acyclic (resp. Rd ).



GRZEGORZ GABOR442

As applications of the above theorem we study a topological structure of
solution sets to two multivalued problems on the halfline. The first one extends
the one described in [9] to the case of the halfline [0 , Q). The second one is a
multivalued generalization of the results obtained in [4].

At first, consider the problem

.
`
/
`
´

x (k) (t)�W(t , A(t)x , A(t) x
.
, R , A(t) x (k21) ), for a.a. t�J1

xNJ2
4b ,

÷

x (k21)NJ2
4b (k21) ,

(17)

where J14 [0 , Q), J24 [r , 0 ], rE0, J4J1NJ2 , A : J1KC(C(J , Rn ),
C(J2 , Rn ) ) is defined as [A(t) x](s)4x(t1s) and b�C k21 (J2 , Rn ) is any
function.

Denote E24C(J2 , Rn )3R3C(J2 , Rn ), (k-times).

THEOREM 4.4 (comp. [2], Theorem 6.9). – Assume that W : J13E22i Rn is a
locally integrably bounded map with compact, convex values satisfying the
following conditions:

(A) For all x0 , R , xk21�C(J2 , Rn ), the map W(Q , x0 , R , xk21 ) is mea-
surable;

(B) )LF0(x0 , R , xk21 , y0 , R , yk21�C(J2 , Rn ) (t�J1 :

dH (W(t , x0 , R , xk21 ), W(t , y0 , R , yk21 ) )GL !
i40

k21

Vxi2yiV .

Then the set S(W , b) of all solutions to problem (17) is a limit of an inverse
system of compact absolute retracts. In particular, it is compact Rd .

PROOF. – Without loss of generality we assume that LF1. Consider the
map l : Lloc

1 (J1 , Rn )KC k21 (J , Rn ),

l(z)(t)4
.
/
´

!
j40

k21 t j

j!
b ( j) (0 )1s

0

t

s
0

s1

R s
0

sk21

z(s) dsdsk21 Rds1 ,

b(t) ,

for t�J1 ,

for t�J2 ,
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and a sequence of maps lm : L 1 ( [0 , m], Rn )KC k21 ( [r , m], Rn ),

lm (z)(t)4

.
/
´

!
j40

k21 t j

j!
b ( j) (0 )1s

0

t

s
0

s1

R s
0

sk21

z(s) dsdsk21 R ds1 ,

b(t) ,

for t� [0 , m] ,

for t�J2 .

Define the operator F : C k21 (J , Rn )2i C k21 (J , Rn ) as follows:

F(x)4]y�C k21 (J , Rn )Ny(t)4 l(z)(t)

and z(t)�W(t , A(t)x , A(t) x
.
, R , A(t)x (k21) ) a.a. in J1( .

We can similarly define a sequence of multivalued maps
F m : C k21 ( [r , m], Rn )2i C k21 ( [r , m], Rn ) as follows:

F m (x)4]y�C k21 ( [r , m], Rn )Ny(t)4 lm (z)(t)

and z(t)�W(t , A(t)x , A(t) x
.
, R , A(t) x (k21) ) a.a. in [0 , m]( .

It is easy to check that each F m is compact convex valued.
Consider in C k21 ( [r , m], Rn ) the equivalent norms

qm (x)4 !
i40

k21

max
t� [r , m]

(Nx (i) (t)Ne 2Lkt )

which induce the equivalent metric in C k21 (J , Rn ). Using such weighted
norms one can check (see [2]) that each F m is a multivalued contraction. By
the result of Ricceri (see [10]) it follows that the fixed point sets Fix(F m ) are
absolute retracts. Since all F m are compact valued, each Fix(F m ) is also com-
pact (see [11], Theorem 1).

Following Example 4.2 we can consider C k21 (J , Rn ) as a limit of an inver-
se system of C k21 ( [r , m], Rn ). Moreover the family of maps F m forms a map
of this system and F is its limit map. Hence, by Theorem 4.3, the set Fix (F) is
a limit of an inverse system of Fix (F m ).

Now, to end the proof it is sufficient to observe that Fix (F) is equal to
S(W , b). r

As the second illustration of the inverse systems approach consider the follow-
ing autonomous multivalued Cauchy problem:

.
/
´

x
.
(t)�W(x(t) ), for a.a. t�J4 [0 , Q) ,

x(0)4v .
(18)
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Here W : Rn2i Rn is a multivalued map of the form W(x)4c (t(x), x), where
t : RnKR is a single-valued map and c : J3Rn2i Rn is a multivalued
one.

THEOREM 4.5 ([2], Theorem 7.1). – Assume that

(i) The map t : RnKR is continuously differentiable (2) and c : R3Rn2i Rn

is a u-Carathéodory map,

(ii) For some compact, convex set K%Rn , at every point x, one has

W(x)%K , ˜t(x) QzD0, for every z�K .(19)

Then the Cauchy problem (18) has a solution.
If, additionally,

(iii) The gradient ˜t has bounded directional variation (3) w.r.t. the co-
ne G4]lzNlF0, z�K(,

then the set of solutions to problem (18) is compact Rd .

SKETCH OF THE PROOF. – Without loss of generality assume that v40. At
first we notice that under assumptions (i)-(ii) our problem considered on every
compact interval [0 , m] has nonempty compact and, under (i)-(iii), also Rd set
of solutions Sm (see [2]). Consider the family of maps C m : C( [0 , m], Rn )2i

C( [0 , m], Rn ), mF1,

C m (u)(t)4{ s
0

t

v(s) dsNv�L 1 ( [0 , m], Rn ) and v(s)�c(t(u(s) ), u(s) ),

for a.a. t� [0 , m]} .

Defining compact convex sets

Cm4{v�C( [0 , m], Rn )Nv(0)40,
v(t)2v(s)

t2s
�K , tDs}

one can show that C m maps Cm into Cm .

(2) The statement is true also with weaker assumption on the regularity of t, namely
if t is lipschitzian.

(3) The map u has a bounded directional variation w.r.t. the cone G if

supm!
i41

N

Nu(pi )2u(pi21 )NNNF1, pi2pi21�G , for every inEQ .
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Denote F m : Cm2i Cm , F m (u)4C m (u). Of course, Fix (F m )4Sm .
Notice that the set

C4{v�C(J , Rn )Nv(0)40,
v(t)2v(s)

t2s
�K , tDs}

can be considered as a limit of the inverse system ]Cm , p m
p (, where p m

p : CpK

Cm is a bonding map defined as follows p m
p (u)4uN[0 , m]. Moreover, the map

]F m( of the above system induces the limit map F : C2i C,

F(u)(t)4{ s
0

t

v(s)dsNv�Lloc
1 (J , Rn ) and v(s)�c(t(u(s) ), u(s) ),

for a.a. t�J} ,

with fixed point set Fix (F) which is equal to the solution set S of problem (18).
Now, a nonemptiness of S follows from the compactness of Sm (comp. [2], Pro-
position 2.1) while the Rd property is a consequence of Theorem 4. r
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[2] J. ANDRES - G. GABOR - L. GÓRNIEWICZ, Topological structure of solution sets to
multi-valued asymptotic problems, Z. Anal. Anwendungen, 19 (2000), 35-60.
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