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Bollettino U. M. 1.
(8) 5-B (2002), 405-430

Canonical Subgroups of H; X SL(2, R).

FiLippo DE MARI (*) - KrRZYSZTOF NOWAK (*)

Sunto. — Si classificano, a meno di coniugazione, tutti 1 sottogruppi dei prodotti semi-
diretti H; X{SL(2, R) e R2 X SL(2, R). I metodi utilizzati possono essere applicati
at gruppt di Lie localmente isomorfi ad essi.

Summary. — We classify, up to conjugation, all subgroups of the semidirect products
H; XISL(2, R) and R® X SL(2, R). Our methods can also be applied to all Lie
groups that are locally isomorphic to them.

1. — Introduction.

Let H; denote the three-dimensional Heisenberg group. The groups
H; X SL(2, R), RZXSL(2, R) and their double coverings play an important
role in time-frequency analysis, that is in phase space analysis in dimension
one (see [3]). Despite their basic relevance, no reference containing detailed
information about the structure of their subgroups is available in the literatu-
re. This paper fills this gap, providing convenient tables of all connected Lie
subgroups of H; X SL(2, R) and R% X SL(2, R) up to inner conjugation: for
each conjugacy class we exhibit a natural representative (that is a «canonical»
subgroup) together with its normalizer and centralizer.

The main step in the problem at hand is clearly to derive an explicit description
of the conjugacy classes of all Lie subalgebras of R? X [ (2, R) and §; X 3[(2, R)
under the adjoint actions of the corresponding connected Lie groups. The result
concerning f); X 3[(2, R) has also an interesting interpretation in terms of Pois-
son polynomial algebras. Indeed, it is well-known that §; X 3{ (2, R) is canonically
isomorphic, as a Lie algebra, to the algebra &, of polynomials in two indetermina-
tes and degree < 2 equipped with the usual Poisson bracket { f, g}. Under the iso-
morphism, the adjoint action corresponds to affine coordinate changes. Thus, we
classify Poisson subalgebras of &, up to affine coordinate changes.

Our approach can be applied to derive analogous classifications for all con-
nected Lie groups that are locally isomorphic to either H; X SL(2, R) or
R% X SL(2, R). The groups locally isomorphic to H; X SL(2, R) are of the form
H; X SL™ or Hy? ) SL™, where Hy? = H, /7 is the reduced Heisenberg

(*) Both authors were partially supported by the European Community TMR Re-
search Network «Harmonic Analysis», contract N. FMRX-CT97-0159.
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group and SL ™ is the m-sheet covering of SL(2, R), the case of countably ma-
ny sheets corresponding to the universal covering. The groups locally isomor-
phic to R? X SL(2, R) are its coverings R? X SL ™,

Our primary interest in these classification results comes from the issues ad-
dressed in [2], where complete lists are needed for different purposes. On the one
hand, we want to describe all possible reproducing formulas — for functions in
L*(R) — that arise by restricting the extended metaplectic (projective) representa-
tion of the double cover of R? X SL(2, R) to its subgroups. A reproducing formula
of this sort reflects, on the level of functions, the properties of those affine transfor-
mations of the time-frequency plane that are encoded in the given subgroup H . Mo-
reover, the appropriate notion of equivalence of two such formulas — in a sense ma-
de precise in [2] — may be translated into conjugacy of the corresponding groups.
Thus, the normalizers N(H) provide further useful information. In the same paper
we also analyze the commutative operator algebras consisting of bounded fun-
ctions of P", the Weyl pseudodifferential operator defined by a real polynomial P
of degree < 2. The sensible reduction procedure, in this case, is provided by the
classification up to inner conjugation of the one-parameter subgroups of
R? X SL(2, R), in the sense that any such operator algebra is conjugate to one of
the five canonical algebras corresponding to the five non-conjugate one-parameter
subgroups.

The paper is organized as follows. In Section 2 we introduce the groups and al-
gebras we shall be concerned with. In Section 3 we present our classification resul-
ts together with all the explicit parametrizations. In Section 4 we prove the main
theorems. Finally, in Section 5 we briefly discuss Poisson polynomial algebras and
covering groups.

2. — Preliminaries and notation.

The group SL(2, R) is the group of 2 x 2 real matrices with determinant
equal to one and its Lie algebra is identified with 3[(2, R), the space of 2 x 2
real, traceless matrices with commutator as bracket. The adjoint action of
SL(2, R) on 3[(2, R) is the usual matrix conjugation AdgX = gXg ~'. The li-
near action of SL(2,R) on R?® gives rise to the semidirect product
R% % SL(2, R), where the multiplication is defined by

(L] o) (L) = (0] o ) )

Consequently, the bracket of (X;, 4,),(X,, 4;) e R2X 3[(2, R) is
[(Xh A1), (XZ, Az)] = (Ale _A2X1, [A17 Az])-
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Observe that R? X SL(2, R) acts naturally on the time-frequency plane R? by

() o) )=o)+ )

The exponential mapping exp : R? X SL(2, R) > R? X 3((2, R) takes the form

t
expt(X, A) = ( fefAXdr, etA),

0

whereas the adjoint action of ([Z], g)eRZmSL@, R) on (X, A)eR® X 3((2, R) is

Ad([;],g)(X, A) = (gX—gAgl[Z], gAgl)-

Denote by H; the three-dimensional Heisenberg group, that is R? X R with
product:

1
(q1, p1> 1) (gs, P2, t3) = (fh + Q2 p1+ P2, i+l — E((Ilpz _p1(I2))~

Sometimes it is more convenient to write x = [Z] e R? and express the product
in terms of the simplectic form w. Thus if x;, 2, € R? and

(e, 22) ="1 J2s, J:[ 0 1],

-1 0

we have (xq, t1) (@, &) = (€] + 2, t; + 15 — %w(ml, 2)). The Lie algebra b, of
H; may be identified with R x R with bracket

[(X7, t1), (Xy, t2)] = (0, —w(X;, X5)).
The action of SL(2, R) on H; given by the automorphisms A-(x, t) = (Ax, t)
gives rise to the semidirect product H; X SL(2, R), where the multiplication is
given by

(21, t1); g1)((xa, )5 g2) = (21, t1) (g1 22, t2); 9192) -
so that the Lie algebra g = 0; X 3[(2, R) of H; X SL(2, R) has bracket
[(X7, )5 Ay, (X, 12); A2)] = (A1 Xy — A Xy, — (X, X5));[A, Az]).

The exponential mapping can be shown to be

13

t v
expt((X, u); A) = ( fe’AXdr, tu — %fw (X, fe’AXdr) dv); e)),
0

0 0
while the adjoint action of ((y, s); g) on (X, 2); A) e ) X 8[(2, R) is

1
©) ((gX—gAg‘ly,z—w(y,gX—EgAg‘ly));gAg‘l)-
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3. — Classification results.

3.1. Canonical subalgebras of R? X 3[(2, R).

As agreed, 3[(2, R) is the Lie algebra of 2 X 2 traceless matrices with com-
mutator as bracket. The elements

A TR I AR

satisfy [H, U] =2U and generate the algebras

f={t/:teR};
a={tH:teR};
n={tU:teR};

nXa={tH+uU:t,ueR}.
By means of the immersion X+ (0, X) of 3[(2, R) in R? X 3[(2, R) we shall
identify f, a, n, n X a and 3[(2, R) itself as subalgebras of R? X [ (2, R). Si-
milarly, by taking semidirect products with R?* we write

([ e
R2X(a= {([j],tH):r,s,teR];
R%:[([j],w)w,s,teR];

RZN(11><Ia)=[([S

Next, let

P

- {[rrerer, = {[]rer]ere

The subscripts ¢ and p come from thinking of the plane as phase-space, with

],tH+uU):7‘,s,t,ueR}.

position ¢ and momentum p. By means of the immersion [i] —> ([i] , 0) of R%in

R? X 38[(2, R) we shall identify R, with a subalgebra of R* X 5[(2, R). Thus,
we may consider

o [ e
(!

Ry X (nXa) = [([Z], tH+uU):s, t,ueR].
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It should be observed that 1 acts on R, by zero, so that their product is actually
direct, whereas f does not act on R,. Finally, consider the diagonal of R, x 1,
written

(] )

because the orbits of the corresponding group in the time-frequency plane are
parabolas (see Theorem 3.3). Its vector space direct sum with R, leads to the
abelian Lie algebra

oo {([]] ) rer.

The Lie algebras we have introduced, hereafter referred to as canonical,
exhaust a list of representatives for the conjugacy classes of subalgebras of
RZxs((2, R).

THEOREM 3.1. — Any proper Lie subalgebra § of R X 3[(2, R) is conjugate
to one of the following non-conjugate canonical Lie algebras, listed together
with §V=[9, 51, 1@ =[P, HV], bey=1, H)] and their algebraic structure.

dim/n. § Ho H® oy structure
(1.9) f 0 0 0 abelian
(1.22) a 0 0 0 abelion
(1.227) n 0 0 0 abelian
(1.av) ol 0 0 0 abelian
1w) IR, 0 0 0 abelian
@) nXa n 0 n solvable
(2.22) Ry X a R, 0 R, solvable
(2.117) Ry xn 0 0 0 abelion
2.av) RZ ®p 0 0 0 abelion
@2w) R 0 0 0 abelion
(8.9) R, X (mxXa)  R,xn 0 R, x 1 solvable
(3.11) 3((2, R) 30(2, R) 30(2, R) 3[(2, R) semisimple
(3.14%) RZXf R2 0 RrR? solvable
(8.1v) RZXa RrR? 0 RrR? solvable
8.v) RZXn R 0 Rz solvable
4.9) RZ» (nX a) Rg xn R, RZxn solvable

In the first columm, the first index denotes dimension.

3.2. Canonical subgroups of R% X SL(2, R).

By means of the exponential mapping it is easy to compute the connected
subgroups that correspond to the canonical Lie algebras described in Theo-
rem 3.1. For the reader’s convenience, we give explicit parametrizations of
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such groups. Most notations are self-explanatory. First of all, put

[ cos O sin
ko=exp0J = ) ;
| —sinf® cos 6
B H_—et 0 4 d- s 0 0.
at—expt __0 eit ’ an s_alogs_ 0 871 ’S> ’

w; = exptlU = ! t].
The above generate the canonical subgroups of SL(2, R), namely
K={ky,: 6eR} =80(2, R);
A={d;:s>0};
N={u:teR};
NA ={wdar:teR,s>0}.

Along with the above groups, we shall consider the following variants

e i
iN={[ ]:8=i1,teR};
0 ¢

a t
+NA = [ ]:a#O,teR ;
0 a!

A=+ A={diag(a,a ):a=0};

A= (A, J) (group generated by 4 and J).

The normalizer N(-) and centralizer Z(-) in SL(2, R) of the canonical groups
K, A and N of SL(2, R) and of the canonical algebras f, a and n of 3[(2, R)
are

NK)=Z(K)=K=N() =Z{1);
NA)=N(a)=4°, ZA)=Za)=4;
N(N)=Nn)==NA, Z(N)=Zn)= =N,

as one checks by direct computation. Finally,

= {([7] ) .02
p
9 q
R*XA= [([ ],ds):p,qeR,s>0];
p
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[fsrrenen]
([} o)
r-[ ([ o)

THEOREM 3.2. — Any connected Lie subgroup of R? X SL(2, R) is conjuga-
te to one of the following non-conjugate subgroups, listed together with their
normalizers N(-) and centralizers Z(+).

dim/n. group N() Z(*)
1.2) K K K

(1.29) A A° A
(Lii) N R, X + NA R,X + N
(1.av) P P P

(1) R, R, X + NA R, XN
@) NA +NA +]
(2.ii) R, XA Ry %4 I

(i) R, XN RZ X +NA R, XN
2.av) -P RExX N R, P
2.0) EZ G T

(3.4) R, X NA R, X + NA I

(3.11) SL(2, R) SL(2, R) +]
(3.227) RZXK RZX K I

(8.iv) R2 % A RZ % A4° I

B.w) RZx N RZ2X + NA I

4.2) R2 X NA R2X = NA I

In the first column, the first index denotes dimension.
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For some purposes (see [2]) it is of interest to describe the geometric natu-
re of the orbits of the various canonical groups in the time-frequency plane.
We shall also use such structures to show that the canonical groups are mu-
tually non-conjugate.

THEOREM 3.3. — The orbits of the canonical subgroups of R X{SL(2, R) on
the plane R? = [[Z] x, geR] relative to the action (1) are:

dim/n. group orbits

1.9) K circles centered at the origin; {0};

(1.42) A branches of hyperbola x&=cost. ; the four half axes; {0};
(1.i12) N points on the x-axis; horizontal lines;

1.aw) P parabolas of the form x = (1/2) E% + cost. ;

1w) R, the x axis;

(2.9) NA the half-planes £>0 and £<O0; the two half x-axes; {0};
(2.17) Ry XA the half-planes £ >0 and & <0; the x-axis;

(2.227) Ry x N horizontal lines;

2.av) -P the plane;

@2w) R the plane;

(3.2) R, XINA the half-planes € >0 and & <0; the x-axis;

(8.77) SL(2, R) the punctured plane; {0};

(8.1i1) RZX K the plane;

(8.1v) RZXA the plane;

B.v) RZx N the plane;

4.3) RZ X NA the plane.

3.3. Canonical subalgebras of §; X 3[(2, R).

As it is clear from the formula expressing the bracket in §); X 3[(2, R), its
center is

3=1{00,2);0):zeR}.

For a real parameter a, we put
f,= {0, at); tJ): teR};
a, = {0, at); tH): te R};

n, = {0, at); tU): te R};

nXa, = {0, at); tH +ulU): t, ueR}.
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If a =0, the corresponding subscript will be omitted. The first three are ob-
viously abelian, while 1} a, is solvable, its derived algebra being n. Next we
consider

3xf={(0,2);t)):t,zeR};

gxa={(0,z);tH): t,zeR};

gxn={0,2);tl):t,zeR};

gx (mXa)={0,z);tH+ul):t,u, ze R};

3xsl(2,R)={(0,2); tH+uU+wJ): t, u, w, ze R},
whose algebraic structure is readily seen: the first three are abelian and the
fourth is solvable since the central factor does not play any role; the last one is

reductive because it stands as the product of its center and its derived algebra,
which is semisimple. Other canonical semidirect products are:

(!
([ o e
(e
wacrsaor= (([] <)+ 40) 5. e

for which the algebraic structure is less obvious but follows by simple
computations and is stated in Theorem 3.4. By means of the immersion
[S] > (([S], 0); 0) of R? in B; X 3[(2, R) we shall identify R, as a subalge-
r r

bras of B; X 3[(2, R). Its direct sum with the center will be denoted for
short
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By means of R, and R,Z we define natural semidirect products

R, X a, = {((m at); tH):s, teR}, aeR;
R, X 11, = {(([Z] at);tU):s,teR}, aeR;

Ry X (X a,) = [(([Z], at);tH+uU):s,t,ueR}, aeR;

e (o)
wme(([] o)

ReZX (X a) = [(([Z], z); tH+uU) 18, t,u, zeR].

Notice that 1 acts on R, Z by zero, so that their semidirect product is actually
direct. Finally, the set-theoretic injection (X, A)—((X,0); A) of
R% X1 38((2, R) in b; X 3[(2, R) maps p into a subalgebra of the latter, denoted
in the same way. Therefore we write

oo
O o

The notation R, Z @ p reflects the fact that this algebra is the vector space di-
rect sum of R, Z and p and not their direct product as Lie algebras. As for the
algebraic structure, observe that 3 X p is abelian while R,Z @ p is nilpotent,
because [R,Z®p, R,Z® p] =3. It is isomorphic, but not conjugate, to the
Heisenberg algebra §,.

The Lie algebras we have introduced, hereafter referred to as canonical,
exhaust a list of representatives for the conjugacy classes of subalgebras of
h; X 3[(2, R), as stated in the next classification result.

THEOREM 3.4. — Any proper Lie subalgebra § of §; X 3[(2, R) is conjugate
to one of the following types of Lie algebras, listed together with §V = §;, =
(9, 51, §® =[5, 6], b2y =10, b1y] and their algebraic structure.
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dim/N. § Hv 5@ Beo) structure
(1.%) 3 0 0 0 abelion
(1.77) f,, aeR 0 0 0 abelion
(1.227) a,, aeR 0 0 0 abelion
1.iv) n,, aelR 0 0 0 abelion
1) P 0 0 0 abelion
1.1) R, 0 0 0 abelian
(2.7) 3xt 0 0 0 abelion
(2.11) 3xXa 0 0 0 abelion
(2.717) 3xn 0 0 0 abelion
2.2v) nxXa,, aelR n 0 n solvable
@2w) Ry X a,, aeR R, 0 R, solvable
(2.v1) R, x 1, ne {0, *1} 0 0 0 abelian
(2.v17) 3XDP 0 0 0 abelion
(2.v111) R, Z 0 0 0 abelian
(3.1) Ry X (X a,), aeR Ry x 1 0 Ry x1n solvable
(3.22) gxX (X a) n 0 n solvable
(3.112) RyZX a R, 0 R, solvable
(3.1v) RyZ xn 0 0 0 abelian
B.v) 3l(2, R) 3l(2, R) 3l(2, R) 3(2, R) semisimple
B.v1) R,Z©p 3 0 0 nilpotent
(8.vin) 0, 3 0 0 nilpotent
4.%) h Xt b, 3 b, solvable
(4.12) H Xa b, 3 b solvable
(4.297) H Xn R,Z 0 3 nilpotent
(4.07) R,ZX (X a) R, x 1t 0 R, xn solvable
(4.v) 3x3l(2, R) 3l(2, R) 3(2, R) 3((2, R) reductive
(5.7) b X (X a) Hi Xn Ry Z H Xn solvable

In the first column, the first index denotes dimension. Moreover, whenever a
parameter appears, algebras corresponding to distinct parameters are not
conjugate.
3.4. Canonical subgroups of H; XISL(2, R).

First of all, it is clear that

Z={0,2);I):zeR}.
is the center of H; X SL(2, R). The groups
K,={0,ta); k;):teR}, aeR;

A, ={0,ta); a): teR}, aeR;
N,={W0, ta); u;): teR}, aeR;
NA, = {0, sa), w;as): s, teR}, aeR.
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correspond to K, A, N and NA for a =0, in which case the subscript will be
omitted. Some groups arise as direct products of the form Z x H, where H is a
subgroup of SL(2, R), like Z X K, Z X A, Z X N, but also, for example Z X 4,
Z x A°. Lie groups containing semidirect factors like R, or R,Z are written in
the natural way, namely

RqX]Aa:[(([g],ta),at):q,teR], aeR;

q

0],ta),ut):q,teR], aeR;

q

([0],sa),utas):q,s,teR], aelR;

q

|:O:|5z);ut):q’t’z€R};

q

[],z);utdsl/z):q,t,zeR,s>0};

q et

( ,z); ):q,t,zeR,ezil ;
0 0 ¢
q a t

RqZX = NA = , 23 :q,t,zeR,a#0}.
0 0 a!

The last groups we need arise by starting from the Lie group P whose Lie al-
gebra is pc §; X 3[(2, R) (see subsection 3.3) and successively taking normali-
zers in H; XISL(2, R). They correspond to the algebras p, 3xXp and R,ZD b,
respectively, that is

1 2
P {(([1 ) ) e
t 12
1 2
ZxP= [(([( f2)e ], z+ i153),%): t, zeR} =N(P);
t 12
R,Z-P = [((m z) ut):q, t, zeR] —N(ZxP).
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It should be observed that the one-dimensional group P written above projects
onto the subgroup PcR? X SL(2, R) considered in subsection 3.2 under the quo-
tient map modulo the center Z. Indeed, H; X/ SL(2, R)/Z = R? X SL(2, R).
We are now in a position for stating the main classification result at the level

of groups.

THEOREM 3.5. — Any connected Lie subgroup of Hy X SL(2, R) is conjuga-
te to one of the following non-conjugate subgroups, listed together with their

normalizers N(-) and centralizers Z(-).

dim/n. group N() VAQ)

1.9) Z G G

(1.42) K,,aeR ZxK ZxK
(1.7%2) A,, aeR\{0} ZxA ZxA
(1.7v) A ZxA° ZxA
(1.w) N,, aeR\{0} R,ZX =N R,ZX +N
(1.vi) N R,ZX +NA R,ZX +N
(1.vi) P ZxXP ZxXP
(1.wite) R, R,ZX + NA R,Z x N
(2.2) Z XK ZXK Z XK
(2.11) ZxA ZxA° ZxA
(2.112) ZXN R,Z x +NA R,Zx =N
(2.1v) NA,, aeR Z X £NA Zx *1
2w) Ry XA, aeR R,ZX 4 Z

2.v1) R, x N R,ZX +NA R,Z x N
(2.v11) Ry X N, ne{+1} R,ZX =N R,Z x N
(2.vi17) ZXP R,Z-P ZxXP
(2.1) Ry Z H; X = NA R,Z x N
(3.7) R, X (NA,), aeR R,ZX +NA Z

(3.22) 7 x NA 7 x =NA 7 x x1
(3.112) R,ZX A RyZX 4 Z

3.1v) R,Z X N H; X = NA RyZ XN
B.w) SL(2, R) Z x SL(2, R) Zx =1
(8.v1) R,Z-P Hy XN Z

(B.vit) H; G Z

(4.7) Hy XK H, XK Z

(4.17) H; XA H; >}q4° Z

(4.122) H; XN H; X =+ NA Z

(4.v1) R,ZX NA R,ZX +NA Z

(4.v) Z x SL(2, R) Z x SL(2, R) Zx =1
(5.7) H; X NA H; X = NA Z

In the first columm, the first index denotes dimension.
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4. — Proofs.

4.1. Proof of Theorem 3.1.

In the course of the proof of Theorem 3.1 we shall use Proposition 4.2 be-
low, a variant of the next well-known result.

PROPOSITION 4.1. — Any non-trivial subalgebra of 3[(2, R) is conjugate to
either n, a, f or nXa.

Recall that the adjoint action of <[;], g) eR®2XSL(2,R) on (X,A)e
RZ x| s((2, R) is given by

Ad([q],g)(X,A) = (gX—gAg‘l[q], gAg‘l)-
p p

PROPOSITION 4.2. — Any subalgebra § of R% X 3((2, R) is conjugate to a su-
balgebra § for which wo(h) € {{0}, n, a, {, nX a, s[(2, R)}, where 7, is the
projection my(X, A) =A.

ProOF. — Observe that 7, is a Lie algebra homomorphism intertwining
the adjoint actions of RZX/SL(2, R) and SL(2, R), and apply Proposi-
tion 4.1. =

We shall prove that any subalgebra § of R? x| 3[(2, R) is conjugate to one
of the listed ones. The fact that they are mutually non-conjugate follows from
Theorem 3.2, where it is proved that the same property holds for the corre-
sponding connected subgroups by inspecting the structures of their orbits in
the time-frequency plane. We shall not write the explicit calculations leading

to the description of § =y, =[5, I, §® =[5, H™] and Hiz) =[5, b)),
nor shall we prove the assertions concerning the algebraic structures because
these are all straightforward matters.

Case 1: dim§ =1. In view of Proposition 4.2 we may assume that
wo(h) e {{0}, 1, a, f}.

® If w,(h) = {0}, then hc {([z], 0) 17, seR} is a one-dimensional sub-

space of R? so that = Ry up to the linear action of SL(2, R), that is up to
conjugation.

® Assume next w,(f) € {n, a, f}, and let A be either H, U or J. Then
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there exists (a, ) € R? such that

{2

If A=H, then g = ([f‘ ], I) conjugates ) to a. If A =J, then g = ([_f], I)

B
conjugates § to f.

o If A=U and 5 #0, conjugate first with the group element

0 ﬂl/S 0
g:([aﬁ—l/3:|’|: 0 ﬁ—1/3])

and then rename t' = 5%t to get p.

o If A=U and =0, then g = ([g], I) conjugates ) to .

Case 2: dim ) =2. In view of Proposition 4.2 we may assume that
72() e {{0}, n, a, f, n X a}.

® The case m5(h) = {0} is trivial and yields b = R®.

® Assume next 7,(h) e {u, a, f} and let A be either H, U or J. Here
two cases arise:

(a) b contains the line {(0, tA): teR};
(b) b does not contain the line {(0, tA): teR}.

In case (a) there exists a non-zero (a, 8) € R? such that

[ e

The bracket of two elements in §) takes the form

([l ) e [l = (e meoali] o

and the set {(u [g], tA) it,ue R} is a Lie algebra if and only if (a, ) is an ei-
genvector of A. If A = U, then («, ) = A(1, 0) for some 1 # 0 and we obtain
R,xn. If A=H, then either = {([g] tH): s, teR} or §=
{([g], tH): s, teR}. The first case is R, X a and the second reduces to

R, X a by conjugating with g = (0, J). The case A = J cannot occur because J
has no non-zero eigenvectors.
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In case (b), for some linear functional (s, ) we have

b= {(m r(s,r)A):fr, SER].

The bracket of two elements in [) takes the form

S s’ s’ S
[([ :|,‘L'(S,1")A), ([ ’],r(s’,r')A)]=(r(s,r)A[ ,]—t(s’,r’)A[ ],0)
P P r P

and the set {([ ], (s, ’I")A) i, seR} is a Lie algebra if and only if

S
»

s’ S
r(s,r)r(A[ ,D—r(s’,r’)r(A[ ]) =0
7 r

for all », s, ', s’ e R. This condition is equivalent to
v, ®'Av, ="Av, Q,,

where v, is the vector representing the functional (-, -), that is (s, ») =
<[S], v,>. The latter condition, in turn, holds if and only if v, is an eigenvector

of '{A. If A=U, then = {([j], OL?"U)Z?",SER} for some a#0, and g =
0,[0‘;/3 a?,3 ) conjugates b to R,®p. If A=H, then either 0=
{([i], arH): r, SER} or = {([j], asH): r, seR} for some a = 0. Take g =
([72_1], I) in the first case and g = ([72_1], J) in the second case to conjuga-

te § to Ry, X a. Again, the case A =.J cannot occur.

® Now we consider the case 7w,(5)) =n)ja. We can represent ) in the

form
([ =)ot v
h= SJtH+HuU |:t, ueRy,
o(t, u)

where o(t, u) and o(t, u) are linear functionals on R%. The bracket of two ele-
ments in ) takes the form

[([G(t,u)] ) ([O(t’,u’)] )]
,tH+uU |, UV HAuw U=
o(t, u) o', u")

ot',u")

ot u')

o(t, u

((tH+uU)[ ]—(t’H+u’U)[ ;],Z(tu’—t’u)U),
u

o(t,
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so that the condition

ot',u'")

(3)(tH+uU)[

2 P 4!
]—(t’H+ufU)[o(t’u)]:[0(0, (tw tu))]

ot',u") o(t, u) 0(0, 2(tu’ —t"u))

must be satisfied for all £, u, t', v’ € R. Let v, = (v;, v;) denote the vector re-
presenting o; equating the second coordinates in (3) forces v, = 0. Thus

« [([G(t,u)] ) ]
b= JtH+uU || t, uelR;.
vt

Conjugating with g = ([ 0 1]’ 1) leads to

a(t, u)
[([ 0 ],tHJruU): t,ueR}

with a new functional ¢. Let v; = (s;, s,) denote the vector representing o.
Equating now the first coordinates in (3) forces s, = 0. Conjugating with g =

([%1], I) the algebra {([Sét], tH+uU): t, ueR} leads to n X a.

Case 3: dim b = 3. In view of Proposition 4.2 we may assume that
wa(h) e{n, a,f, nXa, sl(2,R)}.
® The cases 7, (§) € {1, a, f} are trivial and lead to R* X 11, R* X a and
R% X f, respectively.
® Assume next 75(§)) =n)X a. Here two cases arise:
(a) b contains the line {(0, tH): teR};
(b) b does not contain the line {(0, tH): teR}.

In case (a), either

h= {(W[Z],tH+uU): t,u,weR}

for some non-zero vector [a] € RZ or

B

h= {([S], tH + w(s, r) U):"r,s, teR}
r

for some non-zero linear functional @ on R2  The set
{(w [;], tH + uU) tt,u, we R} is a Lie algebra if and only if the vector [Z] is

a simultaneous eigenvector of the matrices [é i‘t] for all t, e R. This im-
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plies =0 and bH=R;X(nnXa). On the other hand, the set
{([j], tH + w(s, r) U): r, s, teR} is a Lie algebra if and only if

’

w ((tH+w(s,1”) U)[ ]—(t '"H+w(s',r")U) [S]) =2(tw(s',r")—t ' w(s,r))
r

s
,rl
for all r,s,t,r’,s’,t"e R. Taking t=t' =0 we obtain

Vo ®thw :thw ®vw7

where v, represents w. Taking t =1, t' =0 we also obtain Hv, =2v,. Hence
v, =0, so that this case does not occur.
In case (b), for some linear functional v on R3

b= [([S], (s, r, u)H+uU):7",s,ueR}
r

and this set is a Lie algebra if and only if for all », s, u,r',s’,u’'eR

T ((r(s, r, uw)H + uU)[S ,] -
r

s
(z(s', r', u’)H+u’U)[ ], 2(z(s, r, w)u' —(s’, r', u’)u)) =0.
r
Let v, = (t;, t,, t3) € R? represent 7. For = %' = 0 the above relation reduces
to

V; ®tH’Ui :tH”U-;®”U%,

where (s, r) = ©(s, 7, 0). Thus v; = ({;, t,) is an eigenvector of 'H = H and ei-
ther t, =0 or {; = 0. A direct computation shows that if £, = 0 then also ¢, = 0.
This is not possible because dimz,(f)) = 2. Next, one shows that if ¢, = 0, then
tot; = 0. But since ¢, cannot vanish, necessarily ¢; = 0. Hence

h= {([S], ter+uU):7°, s, ueR}
r

and by conjugating with dilations we may assume ¢, =1. A final conjugation
0 .
with g=([ 1],1) gives =R, X (nXa).

e Finally, assume 7,(5) = 3[(2, R). Then, for some linear functionals o
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and ¢ on R?
o(t, u, w)
b= @ ) JtHHuU+wd | t, u, weR}.
olt, u, w

Now, since 1 X a is a subalgebra of 3[(2, R), necessarily

[([G(t, U, 0)] ) }
JtH+HuU | t, ueR
o(t, u, 0)

is a subalgebra of R% X [ (2, R). But this is precisely what we had in the case
dimbH=2 and m,(h)) =nXa. Therefore we may assume that both
(t, w) —o(t, u, 0) and (¢, u) = o(t, u, 0) are the zero functional and there
must exist (a, 8) € R? such that

aw
h= ([ ],tH+uU+wJ):t,u,weR}.
(5

It is easily seen that the above set is closed under taking brackets if and only if

aw’ aw —2a(tw' —t'w)
(tH+uU+wJ)[ ]—(t’H+u’U+w’J)[ ]z[ ]
pw’ Bw —2B8(tw' —t'w)

W
forall ¢, u, w,t’, u’, w’' e R. It is now straightforward to check that this may
happen if and only if a = =0. Hence § = 3[(2, R).

Case 4: dim ) =4. In view of Proposition 4.2 we may assume that
w(h) e {nXa, sl(2,R)}.

® The case m,(h) =1 X a is trivial and leads to R2 X (nX] a).

® Assume m,(f) = 3[(2, R). Then, for some linear functionals ¢ and o

on R*

o(s,t,u, w)

h= JHA+uU+wd | s, t,u, weRYE.
o(s, t, u, w)

Arguing as in the previous case, the set

o(s,t,u,0)
JtH+uU):s,t, ueR
Q(87 ta u, 0)
must also be a subalgebra of R? X 3[(2, R). This algebra is three dimensional
and projects under sz, onto 11 X a. Therefore, arguing as we did for this case,
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we may assume that for some real number ¢, and some functional ¢ on

R2
o(s, w)
b= JAH+uU+wJ | s, 6, u, weR}.
QoW

Conjugating with g = ([_OQO], I ) we obtain

ol (s, t, w)
h= 0 JH+uU+wJ ) s, t, u, weR
for some new functional o' on R®. Finally,

o'(s, t, w) o'(s",t",w")
([ s [ )] -

’

tof(s', t",w')—t'o'(s, t, w)
. JtHAuU+wJ, ' H+u' U+ w' J]

w'o' (s, t,w)—wo'(s',t", w
shows that w' o' (s, t, w) —wo'(s', ', w') =0 for all s, t,w,s’,t', w' eR.
Choosing w = w' = 1 implies that (s, t) — o' (s, t, 1) is the zero functional and
therefore ¢ depends only on w. But then §) would be three dimensional, a con-
tradiction. Hence this case does not occur.

Since there are no other cases, the proof is complete. =

4.2. Proof of Theorems 3.2 and 3.3.

Theorem 3.3 follows from direct computations, all of which are elementary.
As for Theorem 3.2, the list follows from Theorem 3.1 by taking exponentials,
and the structure of normalizers and centralizers may be established by strai-
ghtforward calculations. It only remains to be proved that all canonical sub-
groups are mutually non-conjugate, where conjugation in the group, namely
Ly=z2yz" ', 2, ye R XISL(2, R), is given by

R U ]

In particular, the SL(2, R)-component is given by the usual matrix conjuga-
tion. Let z e R x| SL(2, R) and denote by a,: R*— R? the action (1). If [z] eR?
and H is a subgroup of R? X SL(2, R), denote by Oﬁ the orbit

13

1 (] 2+
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If H and H' are conjugate subgroups, that is H' =4,(H) for some ze
R% % SL(2, R), then the following obvious relation holds:

@O = O fg)-
Thus conjugate groups have the same sets of orbits. This fact, together with
the observation that conjugate groups must share dimension and algebraic
structure, and must have conjugate SL(2, R)-components, shows, by simple
inspection, that all canonical subgroups are mutually non-conjugate.

4.3. Proof of Theorem 3.4.

The projection m: h; X 8[(2, R)=>R%X 3[(2, R) given by ((X, 2);
A) — (X; A) shows that §; X 3[(2, R)/3 is isomorphic to R? X 3[(2, R). This is
the key observation for the proof, in the form stated in following simple
result.

PROPOSITION 4.3. — Any subalgebra b of §; X 3[(2, R) is conjugate to a su-
balgebra b for which 7(0) is a canonical subalgebra of R* X 3[(2, R). Two su-
balgebras of H; X 3[(2, R) are conjugate only if they project onto conjugate
subalgebras in R% X 3((2, R).

ProOF. — Let P: H; XISL(2, R)—>R? X SL(2, R) denote the projection
(Y, s); g) —=(Y; g). Since dP = 7, or simply from (2), it follows that for X e
b X 8((2, R) and ge H; X SL(2, R) we have Ad (Pg)(n(X)) = n(AdgX). Let
now Pg be the group element that conjugates 7({)) to a canonical subalgebra of
R% X1 38[(2, R). Then b = Adg(h) satisfies the first assertion. If q; and g, are
two conjugate subalgebras in §; X $[(2, R), that is Adg(q;) = g, for some g e
H; XISL(2, R), then Ad(Pg)(«(a;))=7a(qz), whence the second asser-
tion. =

Thus we may assume that z(§)) is canonical. In the course of the proof we
see that at most two canonical subalgebras project to the same canonical alge-
bra. In any such case the two algebras have different dimensions and cannot
be conjugate. This establishes the fact that all algebras appearing in the list
are mutually non-conjugate.

Case 1: () = {0}. Clearly f=3.

Case 2: m(h) =f. There exist a, SR such that any X e ) can be written

X= (([g], at +ﬂz); tJ) for some t, ze R. If =0, then § = {,. Otherwise put

at+pz=w and § =3 xf.
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Case 3: n(§)) = a. There exist a, € R such that any X e [) can be written
X= (([8], at +6z); tH) for some t, zeR. If f=0, then §=qa,. Otherwise
put at +pz=w and H =3 xa.

Case 4: n(f) = n. There exist a, f e R such that any X e [) can be written

X= (([8]’ at+ﬂz); tU) for some t,zeR. If §=0, then §=n,. Otherwise
put at + fz=w and =3 x 1.

Case 5: 7(§) = p. There exist a, fe R such that any X e §) can be written
X= (([g], at +ﬂz); tU) for some ¢, z € R. Conjugating with (([3‘], O); [) this
lgecomes (([?],ﬁz); tU). If =0, then h=p. Otherwise put fz=w and

=3xp.

Case 6: 7(h) = R,. There exist a, f € R such that any X e ) can be written
X= (([(S)]’ as+ﬂz); 0) for some s,zeR. If #0, put as+ fz=w and § =
R, Z. Otherwise conjugate with (([ ° ], 0); 1) to get h=R,.

Case 7: n(§)) =nX a. There exist a, 5, y € R such that any X e f) can be
written X = (([g], at + pu + yz); tH+uU) for some t, u,zeR. If y#0,
then put at + fu + yz =wand § = 3 X (nX a). If y =0, it easily seen that for X
and X' in the above parametrization, [X, X']e bl only if f=0. Thus )=
X a,.

Case 8: () = R, X a. There exist «, 8, y e R such that any X e ) can be
written X = (([3], at + fBs + yz); tH) for some s, t, zeR. If y # 0, then put

at + s+ yz=wand H =R, ZX a.If y =0, it easily seen that for X and X' in
the above parametrization, it can be [X, X']el only if §=0. Thus §=

R, X a,.

Case 9: n(h)) = R, X n. There exist a, B, y € R such that any X e ) can be
written X = (([3], as + fu + yz); uU) for some s, u, ze R. If y # 0, then put
at+pBs+yz=w and h=R,Z xn. If y=0, conjugate with (([_?m], 0); at)
with ¢ =0 to get

2 2
(( ts + (a/t)(t*u) ’(ﬁ_la_)(ﬁu));(ﬁu) U)-
0 t2 2 2

Put v = (t?u) and w=ts + (a/t)(t?>u), obtaining

(=100
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By suitably choosing ¢ we may let (28—a?/2t*)e{0, +1}. Thus h=R,xn,.

Case 10: n(f) = R, ® p. There exist a, §, y € R such that any X e §) can be
written X = (([(t]]’ aq + Bt + yz); tU) for some ¢, t, ze R. It easily seen that
for X and X' in the above parametrization,

[X, X'1=((0,q't—qt"); 0),

so that necessarily ¢'t —qt' = a-0+ -0+ yz for all ¢, ¢, ¢, ' € R and some
z. This can only happen if y=0. Put then at+fs+yz=w and 0=
R,Z®p.

Case 11: m(5) = R2. There exist a, 8, y € R such that any X € § can be writ-
ten X = <([Z], aq + fp + yz); 0) for some p, q, z e R. It is easily seen that for

X and X' in the above parametrization,

[X, X'1=(0,q'p—gp'); 0),
so that necessarily ¢'p—gp’' =a-0+ -0+ yz for all ¢, p, q’, p’ €R and all
z. This can only happen if y # 0. Put then at + s + yz=w and § = b;.

Case 12: n() = R, X (1 a). There exist a, B, v, 6 € R such that any X e )
can be written X = (([g], at + fu + yq + 6z); tH+uU) for some q, t, u, ze

R. If 6 # 0 then put at + pu + yq+dz=w and H =R, ZX (X a). If 6 =0, it
easily seen that for X and X' in the above parametrization,

[X,X’]=(([tq _Ot q],O);Z(tu’—t’u) U),

so that necessarily O0=a-0+28(u" —t"u)+y(tq —t'q) for all
q,t,u,t’,u"eR. This can only happen if f=y=0. Thus b=
Ry X (X a,,).

Case 13: n(h) = 3[(2, R). There exist a, 3, y, 6 €R such that any Xe |

can be written X:(([g],a@+ﬁb+7/0+éz);[i‘ b

If 6 # 0 then put aa + b+ yc+ 0z =w and § = 3 X 3[(2, R). If 6 =0, it easily
seen that for X and X' in the above parametrization, [X, X'] € only if

O0=albc'—b'c)+2B(ab’ —a'b)+2y(ca’ —c’a)

]) for some a, b, c, zeR.

for all a,b,c,a’,b’,c’ €R, so that necessarily 0 =a=p=7y. Thus §=
3l(2, R).

Case 14: m(h) = R X . There exist a, 3, ¥, 6 € R such that any X e §) can
be written X = (([;], aq + Bp + yt + 62’); tJ) for some ¢, p,t,zeR. If 6 %0
then put aq + fp + yt + 0z =w and § = b; X f. If =0, it easily seen that for
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X and X' in the above parametrization, [X, X'] e} only if

pq' —qp’ =altp’ —t'p)+plgt’ —q'1)
for all p, q,t,p’, q',t" €R, which is impossible for all a, feR.

Case 15: () = R? X a. There exist a, 3, ¥, 6 € R such that any X € §) can
be written X = (([Z], aq + pp + vyt + 62); tH) for some q, p,t,zeR. If 620
then put ag+ Bp + vyt + 0z =w and § = b, X a. If 6 =0, it easily seen that for
X and X' in the above parametrization, [X, X'] €} only if

pq' —qp' =altq’ —t"q)+ p(pt’ —qp't)
for all p,q,t,p’, q¢',t" €R, which is impossible for all «, feR.

Case 16: n()) = R? X n. There exist a, 8, y, 0 € R such that any X € § can
be written X = (([g], aq + Bp + yu + 6z); uU) for some q, p, u,ze R. If § #
0 then put ag + fp +yt+0z=w and §=0; X(n. If 6 =0, it easily seen that
for X and X’ in the above parametrization, [X, X'] e §) only if

pq' —qp' =altp’ —t'p)
for all p, q,t,p’, q',t' € R, which is impossible for all a € R.

Case 17: n(h) = R? X (n)X a). There exist a, 3, v, , e R such that any

Xel can be written X = (([g], at + pu +yq + op +£z); tH+uU) for some

q,p,t,u,zeR. If ¢#0 then put at+pu+yqg+op+ez=w and bh=
h X (nX a). If e =0, it easily seen that for X and X' in the above parametriza-
tion, [X, X'] e} only if
pq —qp' =p0u’ —t'u)+y(tqg' —t' qg+up’' —u'p)+o(pt' —p't)
for all p,q,t,u,p',q’,t', u" eR, which is impossible for all 3, y, 6 e R.
Case 18: n(h) = R? X 3[(2, R). There exist a, 3, v, 5, &, w € R such that
3 — q |a b
any Xel can be written X = (([p], aa + b+ yc+6q+sp+wz),[c 7@])
for some q, p, a, b, ¢, ze R. If w # 0 then put aa + b+ yc+ 6q + ep + wz =
wand §=0; X 3[(2, R). If w =0, it easily seen that for X and X' in the above
parametrization, [X, X'] e §) only if
pq’ —qp’' =albc’ —b'c)+2B(ab’ —a'b)+2y(ca’ —c'a)
+0(aq' —a'qg+bp’' —b'p)+elcq’'—c'q+pa’ —p'a)
for all p,q,a,b,c,p’,q',a’,b’,c’'eR, which is impossible for all

a,B,y,0,ceR.
Since there are no other cases the proof is complete. =
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5. — Related issues.

5.1. Polynomial algebras.

The classification of Theorem 3.4 may be expressed in terms of (Poisson)
polynomial algebras. Let &, denote the Lie algebra consisting of all polyno-
mials of degree <2 in two indeterminates, equipped with the Poisson
bracket

of o of o
{f’g}:_f_g__f_gr
ox 05  O& o
Let @: §; X 3[(2, R) = &, be defined by

o ()

Explicitly, if A = [j _”a] € 30(2, R), then

@((([q],t);A))(x,§)= —£x2+ax§+ EEZ—prrq&—t.
P 2 2

It is easy to check that @ is a Lie algebra isomorphism. Observe that fj; is map-
ped by @ onto &, whereas 3[(2, R) corresponds to homogeneous polynomials
of degree 2. The adjoint action on & is given by affine coordinate change. In
other words, g = ((y, s); B) € G acts on R% by ((y, s); B)[x, E1=B [z, E] +y
and @(AdgH) = ®(H) - g ~!. Thus we identify Poisson subalgebras of &P, up to
affine coordinate changes. The explicit list is omitted.

The isomorphism (4) plays an important role in harmonic analysis in phase
space. Let ¢ denote the extended metaplectic representation of H; X SL(2, R)
(see e.g. [3] for more details) and let 0" denote the Weyl pseudo-differential
operator with symbol the tempered distribution o e S’ (R?) like, for example, a
polynomial. The following formula holds:

2mi(D(X))"
e(expX) = e2M X" Xeg.

Thus &, is a natural model for ¢ via the Weyl calculus. This correspondence
has been used in [2] in connection with the problem of describing the commu-
tative algebras generated by the restriction of ¢ to one-parameter subgroups
of H; XISL(2, R).

f(:)c’ 5)7 g(x7 g) € ‘(])2'

1 x q
- —[x §]JA[ ]—[w E]J[ ]—t
2 & P

5.2. Coverings.

Our results could be extended to all Lie groups locally isomorphic to either
G, =R2XSL(2, R) or Gy = H; X SL(2, R), because their Lie algebras are ei-
ther g; = R% X 3[(2, R) or g5 = b; X 3[(2, R). The matter reduces essentially
to the following steps:
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(a) Identify the universal coverings of G; and G, compute their discrete
central subgroups and then form the quotients of G; and G, modulo their di-
screte central subgroups. Such quotients exhaust the class of all Lie groups lo-
cally isomorphic to either G; or G,. This is easily done: for G, one gets the
groups Hj X SL ™ or H} »q SL ™, where Hy? = H, /Z is the reduced Heisen-
berg group and SL ™ is the m-sheet covering of SL(2, R). The case of counta-
bly many sheets corresponds to the universal covering SL *. The groups local-
ly isomorphic to G, are its coverings R% x| SL . The explicit construction of
the universal covering SL * may be found for example in [4], while the explicit
construction of the other groups, together with many useful formulas and ob-
servations, may be found in [1].

(b) Given a group H; locally isomorphic to G;, i =1, 2, compute the
exponential mapping exp : g;— H; and write the canonical subgroups corre-
sponding to the canonical subalgebras of g;.
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