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Invariant Harmonic Unit Vector Fields on Lie Groups (*).

J. C. GONZÁLEZ-DÁVILA - L. VANHECKE

Sunto. – In questo lavoro viene presentata una nuova caratterizzazione dei campi vet-
toriali armonici unitari sui gruppi di Lie dotati di metrica invariante a sinistra.
Ciò permette di dedurre risultati di esistenza e nuovi esempi di tali campi, in par-
ticolare sui gruppi di Lie con metrica bi-invariante, sui gruppi di Lie di dimensio-
ne 3, sui gruppi di Heisenberg generalizzati, sugli spazi di Damek-Ricci e su parti-
colari prodotti semi-diretti. In diversi casi si ottiene l’elenco completo di tutti i
campi di questo tipo; in molti esempi vengono determinate le applicazioni armoni-
che associate, il cui dominio è il gruppo considerato e il codominio è il relativo fi-
brato tangente unitario, con metrica di Sasaki.

Summary. – We provide a new characterization of invariant harmonic unit vector fields
on Lie groups endowed with a left-invariant metric. We use it to derive existence
results and to construct new examples on Lie groups equipped with a bi-invariant
metric, on three-dimensional Lie groups, on generalized Heisenberg groups, on
Damek-Ricci spaces and on particular semi-direct products. In several cases a
complete list of such vector fields is given. Furthermore, for a lot of the examples we
determine associated harmonic maps from the considered group into its unit tan-
gent bundle equipped with the associated Sasaki metric.

1. – Introduction.

Let (M , g) be a compact oriented Riemannian manifold and (T1 M , gS ) its
unit tangent bundle equipped with the corresponding Sasaki metric gS . A unit
vector field j on (M , g) determines, if it exists, a map from the manifold into
this unit tangent bundle and the energy of this map is called the energy of the
vector field [16].The critical point condition of this energy functional has been
considered in [5] and also in [15] where the total bending of the vector field is
studied. This total bending equals, up to constants, the energy of the vector
field. The obtained critical point condition also makes sense for a general Rie-
mannian manifold and a unit vector field which satisfies this condition is called
a harmonic vector field [5]. It should be noted already that this condition does
not automatically imply that the corresponding map is a harmonic map.

(*) Research supported by the Consejería de Educación del Gobierno de Cana-
rias.
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The harmonicity of a unit vector field and of the corresponding map has al-
ready been considered in [3], [4], [5], [8], [14] where several examples are
given. The main purpose of this paper is to continue this study. More precisely,
we study the existence and classification of invariant harmonic unit vector
fields on Lie groups equipped with a left-invariant metric. In Section 2, we re-
call some basic material and give some elementary examples of harmonic unit
vector fields on Riemannian manifolds by relating this notion to the one of
normal and strongly normal vector fields. Already here it will turn out that not
every harmonic unit vector field determines a harmonic map since we show
that this is the case on a surface if and only if the manifold is flat. In Section 3,
we then consider Lie groups, derive a new characterization of invariant har-
monic unit vector fields and specialize it to the case of unimodular and non-
unimodular Lie groups. These considerations yield some existence results.
For example, it is proved that every unimodular Lie group admits a left-inva-
riant harmonic unit vector field, a result which remains true for all odd-dimen-
sional Lie groups. Whether this also holds for even-dimensional non-unimodu-
lar Lie groups remains an open question.

In the rest of the paper we use the derived characterization to determine
the full set of solutions of the critical point condition, or at least, a lot of special
solutions for a series of particular cases. In Section 4, we start by considering
Lie groups with a bi-invariant metric and also prove that any invariant harmo-
nic unit vector field determines a harmonic map. Moreover, when the Lie
group G is compact and semisimple with Killing form B , then we obtain that
any invariant unit vector field determines a harmonic map of (G , g42B) into
its unit tangent bundle (T1 G , gS ).

In Section 5, we determine all examples on three-dimensional Lie groups.
It turns out that in the unimodular case, invariant harmonic unit vector fields
always exist and they determine harmonic maps if and only if they are eigen-
vectors of the Ricci operator. This contrasts to the non-unimodular case where
invariant harmonic unit vectors also exist in all cases but there are cases
where no invariant unit vector fields exist which determine harmonic maps.
Since several three-dimensional Lie groups are semi-direct products of the
form R3a R2 , we treat in Section 6 the general case of semi-direct products
R3a Rn .

In Section 7, we consider the critical point condition for the generalized Hei-
senberg groups of type H(1, r), determine the complete set of solutions and de-
rive when these solutions also determine harmonic maps. In Section 8, we consi-
der similar problems for the generalized Heisenberg groups of Kaplan-type, that
is, H-type groups. Here the problem turns out to be more difficult and we only
provide the set of all solutions for some special cases, more precisely, when the
dimension of the center of the two-step nilpotent Lie group equals one and also
for the six- and seven-dimensional H-type groups.
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The Damek-Ricci spaces are particular solvable extensions of H-type groups.
Our study in Section 9 shows that on these spaces there never exist invariant
unit vector fields such that the corresponding map into the unit tangent bundle is
harmonic, although harmonic invariant unit vector fields always exist.

We note that this study is quite similar to the one done for the critical point
condition for the volume functional, that is, the volume of submanifolds of
(T1 M , gS ) determined by unit vector fields on a compact oriented Riemannian
manifold. For a general Riemannian manifold, possibly non-compact or non-
orientable, a solution of the corresponding critical point condition is called a
minimal unit vector field [6]. This condition is satisfied if and only if the sub-
manifold is minimal. We refer to [6], [7] and the already mentioned papers for
more information and for further references about this topic of study. Here we
only mention that our detailed study shows that on three-dimensional unimo-
dular Lie groups, invariant unit vector fields are harmonic if and only if they
are minimal. In contrast, it follows that for the three-dimensional non-unimo-
dular Lie groups both notions are not always equivalent.

2. – Harmonic unit vector fields.

Let (M , g) be an n-dimensional smooth Riemannian manifold which we
suppose to be connected and let (T1 M , gS ) be its unit tangent bundle equipped
with the associated Sasaki metric gS . ˜ denotes its Levi Civita connection and
R the corresponding Riemannian curvature tensor taken with the sign con-
vention RXY4˜[X , Y]2 [˜X , ˜Y ] for all smooth X , Y . Furthermore, let J1 (M)
denote the set of all unit vector fields on M , supposed to be non-empty. We put
AV42˜V for V�J1 (M). Each unit vector field V can be regarded as the im-
mersion V : MKT1 M , xOVx , x�M , of M into T1 M . The pull-back metric
V * gS is given by

(V * gS )(X , Y)4g(X , Y)1g(AV X , AV Y) .

This shows that V is an isometry if and only if V is parallel. For a closed and
oriented manifold (M , g), the energy E(V) of V , that is, the energy of the map
V : (M , g)K (T1 M , gS ) [16], is given by

E(V)4
n

2
Vol (M , g)1

1

2
s

M

VAV V
2 dv .

Here, B(V)4s
M

VAV V
2 dv is known as the total bending of the vector field V

[15]. dv denotes the volume form on (M , g). In what follows we put

b(V)4
1

2
VAV V

24
1

2
tr A t

V AV .
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The unit vector field V is a critical point for the energy functional E if and
only if the one-form n V defined by

n V (X)4 tr (ZO (˜Z AV
t ) X)

vanishes on the distribution H V determined by the vector fields orthogonal to
V . For general Riemannian manifolds (M , g), a unit vector field satisfying this
condition is called a harmonic unit vector field. It follows easily that when V is
a Killing vector field, it is also harmonic if and only if it is an eigenvector of the
Ricci operator [5]. Furthermore, the map V : (M , g)K (T1 M , gS ) turns out to
be a harmonic map if and only if V is a harmonic unit vector field such that the
one-form nAV , defined by

nAV (X)4 tr (ZOR(AV Z , V) X) ,

vanishes for all vectors X [5].
Next, we recall some definitions from [7]. V�J1 (M) is said to be normal if

g(R(X , Y) Z , V)40 for all X , Y , Z� H V . It is called strongly normal if
g( (˜X AV ) Y , Z)40 for all X , Y , Z� H V . Since R and ˜AV are related by

RXY V4 (˜X AV )Y2 (˜Y AV ) X ,

it follows that any strongly normal vector field is also normal. Moreover, a unit
Killing vector field is strongly normal if and only if it is normal and in this case
V is harmonic. Now, we generalize this last result for geodesic vector fields,
that is, for vector fields whose integral curves are geodesics.

PROPOSITION 2.1. – Every strongly normal geodesic vector field V�J1 (M)
is harmonic. Moreover, the corresponding map is harmonic if and only if
nAV (V)40.

PROOF. – Let ]Ei , i41, R , n( be a local orthonormal basis with En4V
and let X� H V . First, note that when V is a geodesic field, (˜V A t

V ) X4

(˜V AV )t X� H V and AV X� H V . Then, we get

n V (X)4 !
i41

n21

g((˜Ei
AV )t X , Ei )4 !

i41

n21

g(X , (˜Ei
AV ) Ei ) .

Hence, n V (X)40 because V is strongly normal. For the second part we apply
the normality to get nAV (X)40 for all X� H V . r

As a consequence of this proposition and the results of [7], we obtain a lot
of examples of Riemannian manifolds equipped with a harmonic unit vector
field. Note also that the condition nAV (V)40 in Proposition 2.1 is satisfied when
V is a Killing vector field. In general, this fact does not occur; that is, a stron-
gly normal unit geodesic vector field does not always determine a harmonic
map. To illustrate this, we consider the simplest case of a two-dimensional ma-
nifold (M , g). So, let V�J1 (M) and let ]E1 , E24V( be a local orthonormal
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basis. Furthermore, we put l4g(˜V V , E1 ), m4g(˜E1
E1 , V). Then we have

AV E14mE1 , AV V42lE1 .

Hence, V is harmonic if and only if E1 (m)4V(l) (see [5, Proposition 16]) and it
is strongly normal if and only if E1 (m)42lm (see [7, Proposition 3.1]). This
implies that a geodesic unit vector field on (M , g) is harmonic if and only if it is
strongly normal. Furthermore, a harmonic unit vector field on (M , g) deter-
mines a harmonic map if and only if mK4lK40, where K denotes the Gauss
curvature; and this occurs if and only if (M , g) is flat. Nevertheless, there
exist examples of non-flat surfaces (M , g) equipped with a strongly normal
geodesic unit vector field. For example, let (H 2 , g) be the Poincaré half-plane
](y 1 , y 2 )Ny 1D0( with the metric

g4r 2 (y 1 )22](dy 1 )21 (dy 2 )2( ,

where r is constant. Then K42r 22 , and V4r 21 y 1 ¯

¯y 1
satisfies the requi-

red conditions.

3. – Invariant harmonic unit vector fields on Lie groups.

Now we turn to the consideration of invariant harmonic unit vector fields.
Let G be an n-dimensional connected Lie group equipped with a left-invariant
metric and let S denote its Lie algebra. Then a left-invariant metric g on G de-
termines an associated inner product a , b on S . Furthermore, let S be the unit
sphere of S with respect to a , b. For V� S, AV , n V and nAV are invariant by left
translations. Therefore they can be viewed as tensors on S and b as a function
on S. The distribution H V is also invariant by left translation and is identified
with the orthogonal complement V » of V in S . V » may also be naturally iden-
tified with the tangent space TV S of the unit sphere S at V . Hence, a left-inva-
riant unit vector field V is harmonic if and only if the one-form n V on S vani-
shes on V »

`TV S and it determines a harmonic map if and only if in addition
nAV vanishes on S .

Next, we determine a characterization of invariant harmonic vector fields
by using the differential db of the function b on S. For X�TV S, we have

dbV (X)42
1

2
tr (A t

V ˜X1 (˜X)t AV )42tr (A t
V ˜X) .

On the other hand, we have

n V (X)4 !
i41

n

]a˜Ei
(A t

V X), Ei b2 aA t
V ˜Ei

X , Ei b(

42 tr adAV
t X2 tr (A t

V ˜X)

where ]Ei , i41, R , n( is an orthonormal basis of S . Hence, we have
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PROPOSITION 3.1. – For X�TV S, we have

n V (X)4dbV (X)2 tr adA t
V X(3.1)

and V is harmonic if and only if

dbV (X)4 tr adA t
V X(3.2)

for all X�TV S.

First, let G be a unimodular Lie group, that is, tr adX40 for all X�S [11].
Then we have the following criterion.

PROPOSITION 3.2. – A left-invariant unit vector field V on a unimodular
Lie group G is harmonic if and only if V is a critical point of the function b
on S.

This yields at once the following existence result.

COROLLARY 3.3. – Any unimodular Lie group admits a left-invariant har-
monic unit vector field.

Next, let G be a non-unimodular Lie group with left-invariant metric and
denote by c its unimodular kernel, that is,

c4]X�SNtr adX40( .

c is an ideal of codimension one. Let H be a unit vector orthogonal to c . Then
the linear transformation adH restricted to c is a derivation of c and for all X�
S we have

tr adX4 ( tr adH )aH , Xb .

Moreover, we have

˜H H40 , ˜H X4
1

2
( adH2adH

t ) X

for all X�c . See [11] for the details. Note that AV H40 when adHNc is symme-
tric. Hence, we have

PROPOSITION 3.4. – A left-invariant unit vector field V on a non-unimodu-
lar Lie group is harmonic if and only if

dbV (X)4 ( tr adH )aAV H , Xb(3.3)

for all X�TV S. Moreover, if adHNc is a symmetric endomorphism of c with re-
spect to a , b, then V is harmonic if and only if it is a critical point of the fun-
ction b on S.
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Taking into account that H is a geodesic vector on (G , g), we get the
following

COROLLARY 3.5. – The unit vector H on a non-unimodular Lie group is
harmonic if and only if it is a critical point of the function b on S.

In the next sections we shall provide several applications of these results.
But before we do this, we prove another existence result.

PROPOSITION 3.6. – Let G be an odd-dimensional Lie group with left-inva-
riant Riemannian metric g . Then there exists a left-invariant harmonic
unit vector field on G .

PROOF. – Let S be the unit sphere in the corresponding Lie algebra S of G .
For V� S we define the vector

NV4n V
J2n V (V) V

where n V
J denotes the dual vector of n V with respect to the inner product a , b on

S . Then NV is orthogonal to V and hence it may be viewed as a tangent vector
of S at V . In this way we obtain a smooth vector field on S. Since dim S is even,
there exists a point V� S such that NV40. At this point n V

J4n V (V) V and
hence n V (X)40 for X�V » . Hence, this V is harmonic. r

4. – Lie groups with bi-invariant metrics.

In this section we determine the full set of invariant harmonic unit vector
fields on a (connected) Lie group G equipped with a bi-invariant metric. We
refer to [12] for details about this kind of Lie groups and recall here some ba-
sic formulas.

An inner product a , b on the Lie algebra S of G defines a bi-invariant metric
if and only if adX is skew-symmetric for every X , or equivalently, if one of the
following conditions hold:

aX , [Y , Z]b

˜X Y

4

4

a[X , Y], Zb ,

1

2
[X , Y]

(4.1)

for all X , Y , Z�S . Hence, G is unimodular. Furthermore, the tensor AV is
given by

AV4
1

2
adV(4.2)
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for all V� S. From (4.1) it follows that AV is skew-symmetric and hence, V de-
termines a left-invariant unit Killing vector field. Moreover, the Riemannian
curvature tensor is given by

RXY Z4
1

4
[ [X , Y], Z](4.3)

and hence, for the Ricci tensor r of type (0 , 2 ) we get r42
1

4
B where B deno-

tes the Killing form given by B(X , Y)4 tr ( adX adY ). Using (4.2), we then get

b(V)42
1

8
B(V , V) .(4.4)

First, we prove

PROPOSITION 4.1. – Every harmonic left-invariant unit vector field on a
Lie group with bi-invariant metric determines a harmonic map into its unit
tangent bundle.

PROOF. – From (4.1) and (4.3), and taking into account that adV is a Lie de-
rivation, we get

aRXY Z , Vb4
1

2
a[AV X , Y]1 [X , AV Y], Zb

for X , Y , Z�S . Then, applying (4.1) and (4.2), it yields

nAV (X)42
1

4
B(AV X , V)(4.5)

for all X�S . Since B( [X , Y], Z)4B(X , [Y , Z] ) we then obtain nAV (X)40 and
so the result follows. r

It is well-known that a connected Lie group G is compact and semisimple if
and only if its Killing form B is negative definite. Then 2B provides a bi-inva-
riant Riemannian metric on G , making (G , g42B) into an Einstein space of
strictly positive scalar curvature. Note that when G is moreover simple, every
bi-invariant metric g is essentially unique. Indeed, it takes the form g4bB for
some bE0. Using the notes made in Section 2 and also Proposition 4.1, we
then have

COROLLARY 4.2. – On a compact and semisimple Lie group G with Killing
form B , all unit left-invariant vector fields determine a harmonic map of
(G , g42B) into its unit tangent bundle (T1 G , gS ).
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For a general Lie group with a bi-invariant metric, the orthogonal comple-
ment of any ideal in S is itself an ideal. (See [11] for details.) So S can be
expressed as an orthogonal direct sum

S4Z(S)5S15R5Sl

where its center Z(S) is isomorphic to Rk for some k , and S1 , R , Sl are com-
pact simple ideals. Then the inner product a , b on S is of the form

a , b4a , b0»b 1 B1»R»b l Bl(4.6)

where a , b0 is the standard inner product of Rk , Bi (i41, R , l) is the restric-
tion of the Killing form B to Si3Si and b iE0. Put dim Si4ni and let
]ej0

, ej1
, R , ejl

; 1G j0Gk , 1G jpGnp , p41, R , l( be an orthonormal basis
adapted to the above decomposition. Then V can be written as

V4 !
j041

k

xj0
ej0

1 !
j141

n1

xj1
ej1

1R1 !
jl41

nl

xjl
ejl

.

From (4.4) and applying Proposition 3.2 for the orthonormal vectors to V given by

Uj0

jp42xj0
ejp

1xjp
ej0

, Ujp

jq42 xjp
ejq

1xjq
ejp

, p , q� ]1, R , l( ,

we obtain that V is harmonic if and only if

xj0
xjp

40, g 1

b p

2
1

b q
h xjp

xjq
40

for all 1G j0Gk , 1G jpGnp , 1G jqGnq , p , q41, R , l . Hence, we have

PROPOSITION 4.3. – Let G be a Lie group equipped with a bi-invariant me-
tric a , b as in (4.6). Then we have

(i) if all the b i are equal, then the set of left-invariant harmonic unit
vector fields is ]Z(S)NS15R5Sl(OS;

(ii) if all the b i are different, then the set of left-invariant harmonic
unit vector fields is ]Z(S)NS1NRNSl(OS.

Any other case is obtained by combining (i) and (ii).

5. – Three-dimensional Lie groups.

The purpose of this section is to determine all invariant harmonic unit vec-
tor fields on three-dimensional Lie groups and to determine which of them de-
termine harmonic maps. We use the treatment given in [11] and consider sepa-
rately the unimodular and the non-unimodular cases.
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A. Unimodular Lie groups.

Let G be a three-dimensional unimodular Lie group, S its Lie algebra and
g a left-invariant metric on G . Then there exists an orthonormal basis
(e1 , e2 , e3 ) of S such that

[e2 , e3 ]4l 1 e1 , [e3 , e1 ]4l 2 e2 , [e1 , e2 ]4l 3 e3(5.1)

where l 1 , l 2 , l 3 are constants. Let u i , i41, 2 , 3 , be the dual one-forms of ei ,
i41, 2 , 3 . Then the Levi Civita connection ˜ is determined by

˜e14m 3 e27u 32m 2 e37u 2 ,

˜e242 m 3 e17u 31m 1 e37u 1 ,(5.2)

˜e34m 2 e17u 22m 1 e27u 1

where

m i4
1

2
(l 11l 21l 3 )2l i , i41, 2 , 3 .

Furthermore, the curvature two-forms V i
j , i , j41, 2 , 3 , are given by

V i
j (X , Y)42

1

2
u i (RXY ej ), X , Y�S

and the second structure equations yield

V 1
24]m 3 (m 11m 2 )2m 1 m 2( u 1Ru 2 ,

V 1
34]m 2 (m 11m 3 )2m 1 m 3(u 1Ru 3 ,(5.3)

V 2
34]m 1 (m 21m 3 )2m 2 m 3( u 2Ru 3 .

Hence, the Ricci tensor r is given by

r42]m 2 m 3 u 17u 11m 1 m 3 u 27u 21m 1 m 2 u 37u 3( ,

which shows that (e1 , e2 , e3 ) is a basis of eigenvectors for r . (See [1] for more
details.)

Now, let V� S and put V4x1 e11x2 e21x3 e3 . Then we get

AV4m 1 (x3 e22x2 e3 )7u 11m 2 (x1 e32x3 e1 )7u 21m 3 (x2 e12x1 e2 )7u 3

and this yields

b(V)4
1

2
](m 2

21m 3
2 ) x1

21 (m 1
21m 3

2 ) x2
21 (m 1

21m 2
2 ) x3

2( .
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Using Proposition 3.2 and computing db(U i
j )40 for U 1

2 42x2 e11x1 e2 , U 1
3 4

2x3 e11x1 e3 and U 2
342x3 e21x2 e3 , we find that V is harmonic if and only if

x1 x2 (m 1
22m 2

2 )40 , x1 x3 (m 1
22m 2

3 )40 , x2 x3 (m 2
22m 2

3 )40 .

From this, we then obtain

LEMMA 5.1. – We have the following cases:

(i) if m 1
24m 2

24m 3
2 , then every left-invariant unit vector field is

harmonic;

(ii) if m i
24m j

2
cm k

2 , where i , j , k� ]1, 2 , 3( and ic jckc i , then the
set of left-invariant harmonic unit vector fields is given by ]6ek(N (SO
]ei , ej(R ) where ]ei , ej(R denotes the plane spanned by ei and ej ;

(iii) if m 1
2
cm 2

2
cm 3

2
cm 1

2 , then the left-invariant harmonic unit vector
fields are 6ei , i41, 2 , 3 .

In function of the curvature two-form V i
j , nAV is expressed as

nAV42 !
i , j41

ic j

3

V i
j (AV ej , V) u i(5.4)

and then, by using (5.3), we obtain

nAV4x2 x3]m 2
2 (m 12m 3 )1m 3

2 (m 22m 1 )(7u 1(5.5)

1x1 x3]m 1
2 (m 32m 2 )1m 3

2 (m 22m 1 )(7u 2

1x1 x2]m 1
2 (m 32m 2 )1m 2

2 (m 12m 3 )(7u 3 .

Following [11] and according to the signs of l 1 , l 2 , l 3 , we have six kinds of
Lie algebras as described in Table I.

Using this classification, Lemma 5.1 and (5.5), we have the following result,
the proof of which is now straightforward.

TABLE I.

signs of l 1 , l 2 , l 3 associated Lie groups

1 , 1 , 1
1 , 1 , 2
1 , 1 , 0
1 , 0 , 2
1 , 0 , 0
0 , 0 , 0

SU(2) or SO(3)
SL(2 , R) or O(1 , 2 )

E(2)
E(1 , 1 )

Heisenberg group
R5R5R
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PROPOSITION 5.2. – Let G be a three-dimensional unimodular Lie group
with left-invariant metric and let ]ei , i41, 2 , 3( be an orthonormal basis of
the Lie algebra satisfying (5.1). Moreover, assume that the signs of l 1 , l 2 , l 3

are chosen as in Table I and let l 1Fl 2 ,Fl 3 . Then the left-invariant harmo-
nic unit vector fields and those determining harmonic maps are given in
Table II.

TABLE II.

G conditions for
l i

the sets of invariant
harmonic unit vector fields

harmonic maps
V : (G , g)K (T1 G , gS )

SU(2) l 14l 24l 3
l 1Dl 24l 3
l 14l 2Dl 3
l 1Dl 2Dl 3

S

6e1 , SO]e2 , e3(R
6e3 , SO]e1 , e2(R
6e1 , 6e2 , 6e3

S

6e1 , SO]e2 , e3(R
6e3 , SO]e1 , e2(R
6e1 , 6e2 , 6e3

SL(2 , R) l 14l 2
l 1Dl 2

6e3 , SO]e1 , e2(R
6e1 , 6e2 , 6e3

6e3 , SO]e1 , e2(R
6e1 , 6e2 , 6e3

E(2) l 14l 2
l 1Dl 2

6e3 , SO]e1 , e2(R
6e3 , SO]e1 , e2(R

6e3 , SO]e1 , e2(R
6e1 , 6e2 , 6e3

E(1 , 1 ) 6e2 , SO]e1 , e3(R 6e1 , 6e2 , 6e3

Heisenberg
group

S 6e1 , SO]e2 , e3(R

R5R5R S S

Using [13], we also get

COROLLARY 5.3. – A left-invariant unit vector field on a three-dimensional
unimodular Lie group is harmonic if and only if it is minimal.

Another immediate consequence is as follows.

COROLLARY 5.4. – Every three-dimensional unimodular Lie group admits
left-invariant unit vector fields which determine harmonic maps into its
unit tangent bundle. More precisely, a left-invariant unit vector field deter-
mines a harmonic map if and only if it is an eigenvector of the Ricci
operator.

B. Non-unimodular Lie groups.

We now turn to the case of a non-unimodular three-dimensional Lie group.
In this case, let e1 be a unit vector orthogonal to the unimodular kernel c for
which we choose an orthonormal basis (e2 , e3 ) which diagonalizes the symme-
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tric part of ade1 Nc . Then the bracket operation can be expressed as

[e1 , e2 ]4ae21be3 , [e1 , e3 ]42be21de3 , [e2 , e3 ]40(5.6)

where a , b , d are real constants. a and d are the eigenvalues of the symmetric
part of ade1 Nc . If necessary, by changing e1 into 2e1 or alternating e2 and e3 , we
may assume

a1dD0, aFd .

Furthermore, let u i , i41, 2 , 3 , be the dual one-forms of ei , i41, 2 , 3 . Then
˜ is given by

˜e142ae27u 22de37u 3 ,

˜e24ae17u 21be37u 1 ,

˜e34de17u 32be27u 1

and for the curvature two-forms, we have

V 1
242a 2 u 1Ru 2 ,

V 1
342d 2 u 1Ru 3 ,(5.7)

V 2
342adu 2Ru 3 .

See [1]. So, we obtain

r42](a 21d 2 ) u 17u 11a(a1d) u 27u 21d(a1d) u 37u 3(

and

˜X r4 (a2d)]2b(a1d) u 1 (X)(u 27u 31u 37u 2 )2

adu 2 (X)(u 17u 21u 27u 1 )1adu 3 (X)(u 17u 31u 37u 1 )( .

From this we get

V˜rV242(a2d)2]b 2 (a1d)212a 2 d 2( .(5.8)

Now, let V4x1 e11x2 e21x3 e3� S. Then AV is given by

AV4b(x3 e22x2 e3 )7u 11a(x1 e22x2 e1 )7u 21d(x1 e32x3 e1 )7u 3(5.9)

and we have

b(V)4
1

2
](a 21d 2 ) x1

21 (a 21b 2 ) x2
21 (b 21d 2 ) x3

2( .
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By using Proposition 3.4 we see that V is harmonic if and only if

x1](b 22d 2 ) x22b(a1d) x3(

x1]b(a1d) x22 (a 22b 2 ) x3(

b(x 2
2 1x3

2 )2 (a2d) x2 x3

4

4

4

0 ,

0 ,

0 .

(5.10)

Furthermore, from (5.4), (5.7) and (5.9) we get

(5.11) nAV4](a 31d 3 ) x1
21a 3 x2

21d 3 x3
2(7u 11ax1 (d 2 x22abx3 )7u 21

dx1 (bdx21a 2 x3 )7u 3 .

These formulas yield

PROPOSITION 5.5. – Let G be a three-dimensional non-unimodular Lie
group with left-invariant metric and let ]ei , i41, 2 , 3( be an orthonormal
basis of the Lie algebra satisfying (5.6). Then the left-invariant harmonic
unit vector fields on G and those determining harmonic maps are given in
Table III, where U is the vector field given by

U4 (a 32d 3 )21/2](2d 3 )1/2 e21sign b(a 3 )1/2 e3(

and the sets A and B are defined as follows:

A =the set of unit vector fields of the plane determined by
bx22ax340;

B =the set of unit vectors x2 e21x3 e3 where x2 and x3 satisfy
(a2d) x2 x34b .

TABLE III.

conditions for
a and d

conditions for
b

the sets of invariant
harmonic unit vector fields

harmonic maps

a4d b40
bc0

6e1 , ]e2 , e3(ROS

6e1

R

aDdD0 6e1 , B R

aDd40 b40
bc0

]e1 , e2(ROS, 6e3
6e1 , B

6e3 ,
R

aD0Dd b 21ad40
(a 21d 21ad)2 b 2

1a 3 d 340
in the other cases

A, B

6e1 B

6e1 , B

R
6U

R
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REMARKS 5.6. – A. For b4d40, the corresponding simply connected
Lie group is isomorphic to the product R3H 2 (2a 2 ) of Lie groups where
H 2 (2a 2 ) denotes the Poincaré half-plane with Gauss curvature equal to 2a 2 .

Here, the vector fields 6
d

dt
tangent to R are the unique left-invariant unit

vector fields which define corresponding harmonic maps.

B. Following [13] we have that if a4d (that is, (G , g) has constant sec-
tional curvature (see, for example, [1])), then a left-invariant unit vector field
is minimal if and only if it is harmonic. Nevertheless, there exist non-unimodu-
lar Lie groups where these conditions are not equivalent.

Note that 6e1 are minimal and harmonic unit vector fields in all cases.

Finally, from Table III and (5.8) we obtain

PROPOSITION 5.7. – A three-dimensional non-unimodular Lie group G ad-
mits a left-invariant unit vector field such that the corresponding map into
its unit tangent bundle is harmonic if and only if

V˜rV242(a 21d 21ad)22 a 2 d 2 (a2d)2 (a 21d 2 )[2(a 21d 2 )13ad]

and G is not of constant curvature.

6. – The semi-direct product R3a Rn.

Several three-dimensional Lie groups are semi-direct products of the form
R3a R2 . In this section we consider the general case of Lie groups of type
R3a Rn .

Let (Rn114R3Rn , g) be the standard Riemannian product on the vector
space Rn11 and a : RnKRn a linear map. We consider an orthonormal basis
]e0 , e1 , R , en( on R3Rn such that e1 , R , en diagonalize the symmetric part

of a . Then c i
j 42c i

j , ic j , i , j� ]1, R , n(, where a(ei )4 !
j41

n

c i
j ej . We define

a bracket operation by

[e0 , ei ]4a(ei ) , [ei , ej ]40 , i , j41, R , n .

This bracket makes Rn11 into a Lie algebra R1a Rn which is called the semi-
direct sum of R and Rn . The unique connected, simply connected Lie group
R3a Rn associated to this Lie algebra is called the semi-direct product of the
Lie groups R and Rn . It is unimodular if and only if tr a40. For tr ac0, the
class of semi-direct products R3a Rn coincides with the set of the connected
simply connected non-unimodular Lie groups whose unimodular kernel is



J. C. GONZÁLEZ-DÁVILA - L. VANHECKE392

Abelian. Using the Koszul formula, we get for the Levi Civita connection ˜ of g :

˜e0
e040 ,

˜ei
e042 ci

i ei ,

˜e0
ei4 !

j41, ic j

n

c i
j ej ,

˜ei
ei4ci

i e0 ,

the other covariant derivatives being zero.
It follows that V4e0 is a geodesic vector and from [7, Proposition 3.6] we

know that it is strongly normal. So, from Proposition 2.1 we have

PROPOSITION 6.1. – V4e0 is a harmonic vector field on R3a Rn . Moreover,
it defines a harmonic immersion into its unit tangent sphere bundle if and

only if !
i41

n

(ci
i )340.

Next, we determine the complete set of left-invariant harmonic unit vector
fields on R3a Rn for the case where a is a symmetric operator. Then c j

i 40 for

all ic j . Let V be a unit vector of R1a Rn given by V4x0 e01 !
i41

n

xi ei . Then
we have

b(V)4
1

2
!
i41

n

(ci
i )2 (x0

21xi
2 ) .

It follows from Proposition 3.2 and Proposition 3.4 that V is harmonic if and
only if

x0 xp !
i41, icp

n

(ci
i )2

xp xq](cp
p )22 (cq

q )2(

4

4

0 ,

0
(6.1)

for all p , q� ]1, R , n(. In the Abelian case (af0), every left-invariant unit
vector field is harmonic. Furthermore, for dim V0Gn21, where V04Ker a ,
we denote by l 1 , R , l k the different non-vanishing eigenvalues of a put in or-
der to satisfy

l 142l 2 , R , l 2 l2142 l 2 l , l 2 l11 , Rl k

where l ic2l j for all i , j� ]2 l11, R , k( and 0G lG k

2
. Here l40 means

that all the Nl mN , m� ]1, R , k(, are different. Furthermore, let V1 , R , Vk

denote the corresponding eigenspaces. With these notations, we get from
(6.1):

PROPOSITION 6.2. – Let R3a Rn be the semi-direct product of R and Rn

where a is a linear symmetric map. Then we have
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(i) every left-invariant unit vector field is harmonic when n41
or af0;

(ii) for nF2, the set of left-invariant harmonic unit vector fields is
(V0N ]e0 , e1(R )OS if dim V04n21 and e1�Im a , and

]6e0(N ]V0N (Vl 1
5Vl 2

)NRN (Vl 2 l21
5Vl 2 l

)NVl 2 l11
NRNVl k

(OS

if dim V0En21.

7. – The generalized Heisenberg groups H(1 , r).

The three-dimensional Heisenberg group H(1 , 1 ) has been generalized in
two different directions. On the one hand, one introduced the groups H(1 , r)
[9] and on the other hand the groups H(r , 1 ) appear as a special case of the ge-
neralized Heisenberg groups considered in [10]. Their geometries have diffe-
rent features. Here we shall study the harmonicity of invariant unit vector
fields and we start with the groups H(1 , r). The other ones will be considered
in the next section.

H(1 , r) is the Lie group of matrices of the form

a4uIr

0
0

A t

1
0

B t

c
1
v

where Ir denotes the identity matrix of type (r , r), A4 (a1 , R , ar )�Rr ,
B4 (b1 , R , br )�Rr and c�R . It is a connected, simply connected nilpotent
Lie group of dimension 2r11 and the dimension of its center is r .

The following coordinates (x i , y i , z), 1G iGr , provide a system of global
coordinates:

x i (a)4ai , y i (a)4bi , z(a)4c

and a basis of left-invariant one-forms is given by

a i4dx i , b i4dy i2x i dz , g4dz .

For the dual left-invariant vector fields, we then have

Xi4
¯

¯x i
, Yi4

¯

¯y i
, Z4

¯

¯z
1!

j41

r

x j ¯

¯y j
.

The Lie bracket is given by

[Xi , Z]4Yi , i41, R , r ,

the other brackets being zero. On H(1 , r) we consider the Riemannian metric
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for which these vectors form an orthonormal basis at each point. Then H(1 , r)
is a unimodular Lie group and the corresponding Levi Civita connection is de-
termined by

˜Xi
Yi

˜Xi
Z

˜Yi
Z

4

4

4

˜Yi
Xi

2˜Z Xi

˜Z Yi

4

4

4

2
1

2
Z ,

1

2
Yi ,

1

2
Xi

where the remaining covariant derivatives of the basic vectors vanish. For the
non-vanishing components of the curvature tensor R we then obtain

R(Xi , Xj , Yi , Yj )

R(Xi , Yj , Xj , Yi )

R(Xi , Z , Xi , Z)

R(Yi , Z , Yi , Z)

4

4

4

4

2
1

4
, ic j ,

1

4
,

2
3

4
,

1

4
.

Now, let V be a unit vector of the Lie algebra. It can be written in the
form

V4 !
i41

r

(Vi Xi1Vi1r Yi )1V2r11 Z .

Then we obtain

AV4
1

2
!
i41

r

](Vi1r Z2V2r11Yi )7a i1(ViZ2V2r11Xi )7b i1(ViYi2Vr1iXi )7g(

and this yields

b(V)4
1

4
m!

i41

r

(Vi
21Vr1 i

2 )1rV2r11
2 n .

From this, it is easy to see that V is harmonic if and only if

(r21) Vi V2r1140 , (r21) Vr1 i V2r1140, i41, R , r .
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As has been seen already in Section 5, we see that for r41, all left-invariant
unit vector fields are harmonic. For rF2, we have

PROPOSITION 7.1. – The set of left-invariant harmonic unit vector fields on
H(1 , r), rF2, is given by ]6Z(N ]SOZ »(.

Using the given expression for the curvature tensor and for AV , we
obtain

nAV4
1

4
!
i41

r

](22r) Vr1 i V2r117a i1 (12r) Vi V2r117b i2Vi Vr1 i7g( .

As already proved, we see that for r41 the set of left-invariant unit vectors
which determine a harmonic map into the unit tangent bundle is ]6Y(N
(SO]X , Z(R ). For rF2, we have

PROPOSITION 7.2. – The set of left-invariant unit vector fields on H(1 , r),
rF2, for which the corresponding maps into the unit tangent bundles are
harmonic is given by ]6Z(NA, where A is the set of the unit vectors

!
i41

r

(Vi Xi1Vr1 i Yi ) such that !
i41

r

Vi Vr1 i40.

8. – H-type groups.

Now, we consider the class of generalized Heisenberg groups introduced
in [10] and first recall some basic facts. We refer to [2] for more details about
these H-type groups.

Let d and h be real vector spaces of dimensions n , m�N , respectively. On
the direct sum Z4d5h we consider an inner product a , b such that d and h are
perpendicular, and an R-algebra homomorphism J : hKEnd (d), ZO JZ which
satisfies

aJZ U , Vb1 aU , JZ Vb40 , J 2
Z42aZ , Zb idd(8.1)

for all U , V�d , Z�h . Then we have

aJX U , JY Ub4VUV

2 aX , Yb, aJX U , JX Vb4VXV

2 aU , Vb(8.2)

and

JX JY1JY JX42 2aX , Yb idd ,(8.3)

aJX U , JY Vb1 aJY U , JX Vb42aU , Vb aX , Yb(8.4)



J. C. GONZÁLEZ-DÁVILA - L. VANHECKE396

for all U , V�d and X , Y�h . Furthermore, we define a Lie algebra structure
on Z by

[U1X , V1Y]4 [U , V]

where [ , ] : d3 dK h is the bilinear map given by

a[U , V], Zb4 aJZ U , Vb .(8.5)

Then Z becomes a two-step nilpotent Lie algebra with center h . Such an Z is
said to be a generalized Heisenberg algebra and the connected, simply con-
nected Lie group N with Lie algebra Z and with the induced left-invariant me-
tric g is called a generalized Heisenberg group. Clearly, N is unimodular.

From now on and as before, we suppose that U , V , W�d and X , Y , Z�h .
For the Levi Civita connection of (N , g) we obtain

˜V1Y (U1X)42
1

2
JX V2

1

2
JY U2

1

2
[U , V](8.6)

and the corresponding curvature tensor R is given by

(8.7) R(U1X)(V1Y) (W1Z)42
1

4
J[V , W] U1

1

4
J[U , W] V1

1

2
J[U , V] W

2
1

4
JY JZ U1

1

4
JX JZ V1

1

2
JX JY W

1
1

2
aX , Yb W1

1

4
[V , JX W]2

1

4
[U , JY W]

2
1

2
[U , JZ V]1

1

2
aU , Vb Z .

Put j4j d1j h�d5h for a unit vector j of Z . Using (8.6), we then get

Aj (U1X)4
1

2
(JX j d1Jj h

U1 [j , U] ) .(8.8)

On Z we consider an orthonormal basis adapted to the decomposition d5h and
which is given by ]U1 , R , Up , JX1

U1 , R , JX1
Up , X1 , R , Xm( where n42p .
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Using (8.1)-(8.5), we then obtain

[Ui , JX1
Ui ]

[Ui , Uj ]

[Ui , JX1
Uj ]

4

4

4

X1 ,

2[JX1
Ui , JX1

Uj ]

2[Uj , JX1
Ui ]

4

4

!
a42

m

cij
a Xa ,

!
a42

m

cip1 j
a Xa , ic j ,

(8.9)

where i , j41, R , p and c a
ij , c a

ip1 j , a42, R , m , are real numbers which sati-
sfy the relations cij

a42cji
a , cip1 j

a 42cjp1 i
a .

Now, we are ready to prove our results.

PROPOSITION 8.1. – On a generalized Heisenberg group N with Lie algebra
Z4d5h , every harmonic unit vector belonging to dNh defines a harmonic
map into its unit tangent bundle.

PROOF. – First, let j�dOS. Then Aj (U1X)4 1

2
(JX j1 [j , U] ) and from

(8.5) and (8.7) we get

nAj (U1X)4 nAj (X)4
1

8
tr (VO Jadj V JX j) .

Choosing an orthonormal basis as before with U14j , from (8.5) we ob-
tain

nAj (X1 )4
1

8
!
i41

p

]a[JX1
U1 , Ui ], [U1 , Ui ]b1 a[JX1

U1 , JX1
Ui ], [U1 , JX1

Ui ]b( .

Hence and by using (8.9), we have nAj (X1 )40 which shows that j determines a
harmonic map.

Finally, let j�hOS. Then Aj (U1X)4 1

2
Jj U . Hence, using (8.1), (8.3)

and (8.7), we obtain at once nAj (U1X)40. This completes the proof. r

PROPOSITION 8.2. – Any left-invariant unit vector field j�h defines a har-
monic map into its unit tangent bundle.

PROOF. – From (8.1) and (8.8) we get Aj
t42Aj . Furthermore, we have

(˜V1Y Aj )(U1X)4
1

4
( [Jj , JY ] U1Jj JX V2 [Jj U , V] )
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and from this, we derive

a(˜V Aj )(U1X), Vb42
1

4
VVV2 aX , jb ,

a(˜Y Aj )(U1X), Yb40 .

This shows that n j (X)40 for all X orthogonal to j . So j is harmonic and the
result follows from Proposition 8.1. r

Now, we put j4 !
i41

p

(xi Ui1xp1 i JX1
Ui )1 !

a41

m

xn1a Xa .

LEMMA 8.3. – With the above notations, we have

(8.10) 8b(j)4n !
a41

m

x 2
n1a1 (m11) !

l41

n

xl
21

!
a42

m

!
i41

p

!
j41, jc i

p m[ (cij
a )21 (cip1 j

a )2 ](xj
21xp1 j

2 )1

2 !
k41, kc i , j

p

[ (cij
a cik

a1cip1 j
a cip1k

a )(xj xk1xp1 j xp1k )1

xj xp1k (cij
a cip1k

a 2cip1 j
a cik

a ) ]n .

PROOF. – From (8.2), (8.5) and (8.8) we get

b(j)4
1

8
]nVj h V

21mVj d V
21 tr (UO Jadj U j d )( .

Since

tr (UO Jadj U j d )4 !
i41

p

(V[Ui , j]V21V[JX1
Ui , j]V2 )

and, by using (8.9),

[Ui , j]

[JX1
Ui , j]

4

4

xp1 i X11 !
a42

m g !
j41, jc i

p

(xj cij
a1xp1 j cip1 j

a )h Xa ,

2xi X11 !
a42

m g !
j41, jc i

p

(xj cip1 j
a 2xp1 j cij

a )h Xa ,

a straightforward computation yields (8.10). r



INVARIANT HARMONIC UNIT VECTOR FIELDS ETC. 399

When dim h41, Z is isomorphic to a classical Heisenberg algebra. The
corresponding Heisenberg group is isomorphic to the group of matrices
H(p , 1 ), with n42p , of the form

a4u1

0

0

A

Ip

0

c

B t

1

v
where Ip denotes the identity matrix of type p3p and where
A4 (a1 , R , ap )�Rp , B4 (b1 , R , bp )�Rp and c�R . In this case, (8.10) redu-
ces to

b(j)4
1

8
gnxn11

2 12 !
l41

n

xl
2h

and then, using Proposition 3.2, j is a harmonic unit vector if and only if

(n22) xn11 xk40, k41, R , n .

Then, putting Z4X1 and applying Proposition 8.1, we have

PROPOSITION 8.4. – Let N`H(p , 1 ) be the classical Heisenberg group of
dimension 2p11. For p41, every left-invariant unit vector field is harmo-
nic. For pF2, the set of left-invariant harmonic unit vector fields is given by
]6Z(N (SOd) and they all determine harmonic maps into the unit tangent
bundle.

In principle, we can also determine by using Proposition 3.2, all left-inva-
riant harmonic unit vector fields on N when dim hF2 and by considering case
by case. Here, we restrict to the case n44. Then the corresponding non-iso-
morphic and non-classical generalized Heisenberg algebras have dim h42 or
3 [2]. (8.10) then takes the form

b(j)4
1

8
m4 !

a41

m

x 2
n1a1cm !

k41

4

xk
2n

where cm411m1 !
a42

m

](c12
a )21 (c14

a )2( for m42 or 3 . So, j is harmonic if and
only if

(42cm ) xk xn1a40 , k41, R , 4 and a41, R , m .

Hence, we have the following two propositions.

PROPOSITION 8.5. – Let N 6 be the six-dimensional generalized Heisenberg
group and let ]Ui , JX1

Ui , X1 , X2 ; i41, 2( be an orthonormal basis of its Lie
algebra satisfying (8.9). Then we have:
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(i) every left-invariant unit vector field is harmonic if and only if
(c12

2 )21 (c14
2 )241;

(ii) in the other cases, the set of left-invariant harmonic unit vector fiel-
ds is SO(dNh).

PROPOSITION 8.6. – Let N 7 be the seven-dimensional non-classical genera-
lized Heisenberg group and let ]Ui , JX1

Ui , X1 , X2 , X3 ; i41, 2( be an ortho-
normal basis of its Lie algebra satisfying (8.9). Then we have:

(i) every left-invariant unit vector field is harmonic if and only if
c12

2 4c14
2 4c12

3 4c14
3 40;

(ii) in the other cases, the set of left-invariant harmonic unit vector fiel-
ds is SO(dNh).

REMARK 8.7. – We refer to [7], [13] for some results concerning minimal
unit fields on generalized Heisenberg groups of both types.

9. – Damek-Ricci spaces.

The Damek-Ricci spaces are a particular class of solvable extensions of ge-
neralized Heisenberg groups. They have a remarkable geometry and play an
important role in several topics of study. We refer to [2] for more information.
Here we study again the harmonicity of invariant unit vector fields and start
with some needed basic material.

Let Z4d5h be a generalized Heisenberg algebra, M a one-dimensional
real vector space and A a non-zero element of it. On the direct sum a4Z5M

we define an inner product a , b and a Lie bracket [ , ] by

aU1X1rA , V1Y1sAb4 aU1X , V1YbZ1rs ,

[U1X1rA , V1Y1sA]4 [U , V]Z1
1

2
rV2

1

2
sU1rY2sX ,

where the index Z denotes the corresponding product and bracket on Z . As
before, U , V�d , X , Y , Z�h and r , s are real numbers. The corresponding
connected, simply connected Lie group S with Lie algebra a and with the indu-
ced left-invariant metric g is called a Damek-Ricci space.

We have

adA (U1X1rA)4
1

2
U1X , tr adA4

n

2
1m .
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S is non-unimodular, Z is its unimodular kernel and adANZ is a symmetric endo-
morphism of Z with respect to a , b.

The Levi Civita connection ˜ of (S , g) is given by

(9.1) ˜V1Y1sA (U1X1rA)42
1

2
JX V2

1

2
JY U2

1

2
rV2

1

2
[U , V]

2rY1
1

2
aU , Vb A1 aX , Yb A .

Now, let j4j d1j h1lA�d5h5M be a unit vector of a . Using (9.1), we
then obtain

(9.2) Aj (U1X1rA)4
1

2
(Jj h

U1JX j d1lU1 [j d , U]2 aU , jb A)1

lX2 aX , jb A .

First, we prove a non-existence result.

PROPOSITION 9.1. – On a Damek-Ricci space there do not exist left-inva-
riant unit vector fields such that the corresponding map into its unit tangent
bundle (T1 S , gS ) is harmonic.

PROOF. – We show that nAj (A)c0 for all j� S. To do this, we use the follo-
wing formula for the curvature tensor R :

(9.3) R(U1X1rA , V1Y1sA) A4
1

4
(JY U2JX V2sU1rV)1

1

2
[U , V]2sX1rY .

Then, by using (8.1), (8.5) and (9.2) we get

nAj (A)42
1

8
](n18)Vj h V

21(2m11)Vj d V
21(8m1n) l 21tr (UO Jadjd U j d )( .

Since the last term in the brackets is positive, the result follows at
once. r

Next, we have
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PROPOSITION 9.2. – Any left-invariant unit vector field on (S , g) belonging
to the set dNhN ]6A( is harmonic.

PROOF. – From (9.2) and for j�d we have

Aj
t (U1X1rA)4

1

2
(JX j2rj1 [j , U] ) .

Now, it easy to check with (9.1) that n j (X1rA)40. So j is harmonic.
For j�h we have

Aj
t (U1X1rA)42g 1

2
Jj U1rjh

and again n j (U1rA)40.
In a similar way we get that 6A are harmonic vectors. r

When dim h41, the Damek-Ricci spaces are isometric to complex hyper-
bolic spaces. Denote by Z a unit vector of h . Then we have

PROPOSITION 9.3. – The set of left-invariant harmonic unit vector fields
on a Damek-Ricci space with one-dimensional center h is given by
(]A , Z(RNd)OS.

PROOF. – From (9.2) we have

b(j)4
1

8
m(n14)Vj h V

212Vj d V
21 (n14) l 21 tr (UO Jadjd U j d )n .

On a we consider the orthonormal basis adapted to the decomposition
d5h5M given by ]U1 , R , Up , JZ U1 , R , JZ Up , Z , A( where n42p , and we

put j4!
i41

p

(xi Ui1xp1i JZ Ui )1 xn11 Z1xn12 A . Then, from (8.9) we obtain

b(j)4
1

8
m3 !

l41

n

xl
21 (n14)(xn11

2 1xn12
2 )n .

Hence, Proposition 3.4 then yields that j is harmonic if and only if

xk xn1140, xk xn1240, k41, R , n .

This shows that the required result holds. r

REMARK 9.4. – In [7] it has been shown that the left-invariant vector field A
on a Damek-Ricci space is always minimal.
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