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Bollettino U. M. 1.
(8) 5-B (2002), 377-403

Invariant Harmonic Unit Vector Fields on Lie Groups (*).

J. C. GONZALEZ-DAVILA - L. VANHECKE

Sunto. — In questo lavoro viene presentata una nuova caratterizzazione dei campi vet-
toriali armonici unitari sui gruppi di Lie dotati di metrica invariante a sinistra.
Ci0 permette di dedurre risultati di esistenza e nuovi esempi di tali campi, in par-
ticolare sui gruppt di Lie con metrica bi-invariante, sui gruppi di Lie di dimensio-
ne 3, sut gruppi di Heisenberg generalizzati, sugli spazi di Damek-Ricci e su parti-
colari prodotty semi-diretti. In diversi casi si ottiene l'elenco completo di tutti 1
campi di questo tipo; i molti esempt vengono determinate le applicazioni armoni-
che associate, il cui dominio € il gruppo considerato e il codominio € il relativo fi-
brato tangente unitario, con metrica di Sasaki.

Summary. — We provide a new characterization of invariant harmonic unit vector fields
on Lie groups endowed with a left-invariant metric. We use it to derive existence
results and to construct new examples on Lie groups equipped with a bi-invariant
metric, on three-dimensional Lie groups, on generalized Heisenberg groups, on
Damek-Ricct spaces and on particular semi-divect products. In several cases a
complete list of such vector fields is given. Furthermore, for a lot of the examples we
determine associated harmonic maps from the considered group into its unit tan-
gent bundle equipped with the associated Sasaki metric.

1. — Introduction.

Let (M, g) be a compact oriented Riemannian manifold and (T, M, g5) its
unit tangent bundle equipped with the corresponding Sasaki metric gg. A unit
vector field £ on (M, ¢g) determines, if it exists, a map from the manifold into
this unit tangent bundle and the energy of this map is called the energy of the
vector field [16].The critical point condition of this energy functional has been
considered in [5] and also in [15] where the total bending of the vector field is
studied. This total bending equals, up to constants, the energy of the vector
field. The obtained critical point condition also makes sense for a general Rie-
mannian manifold and a unit vector field which satisfies this condition is called
a harmomnic vector field [5]. It should be noted already that this condition does
not automatically imply that the corresponding map is a harmonic map.

(*) Research supported by the Consejeria de Educacion del Gobierno de Cana-
rias.
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The harmonicity of a unit vector field and of the corresponding map has al-
ready been considered in [3], [4], [5], [8], [14] where several examples are
given. The main purpose of this paper is to continue this study. More precisely,
we study the existence and classification of invariant harmonic unit vector
fields on Lie groups equipped with a left-invariant metric. In Section 2, we re-
call some basic material and give some elementary examples of harmonic unit
vector fields on Riemannian manifolds by relating this notion to the one of
normal and strongly normal vector fields. Already here it will turn out that not
every harmonic unit vector field determines a harmonic map since we show
that this is the case on a surface if and only if the manifold is flat. In Section 3,
we then consider Lie groups, derive a new characterization of invariant har-
monic unit vector fields and specialize it to the case of unimodular and non-
unimodular Lie groups. These considerations yield some existence results.
For example, it is proved that every unimodular Lie group admits a left-inva-
riant harmonic unit vector field, a result which remains true for all odd-dimen-
sional Lie groups. Whether this also holds for even-dimensional non-unimodu-
lar Lie groups remains an open question.

In the rest of the paper we use the derived characterization to determine
the full set of solutions of the critical point condition, or at least, a lot of special
solutions for a series of particular cases. In Section 4, we start by considering
Lie groups with a bi-invariant metric and also prove that any invariant harmo-
nic unit vector field determines a harmonic map. Moreover, when the Lie
group (¢ is compact and semisimple with Killing form B, then we obtain that
any invariant unit vector field determines a harmonic map of (G, g = —B) into
its unit tangent bundle (7, G, gs).

In Section 5, we determine all examples on three-dimensional Lie groups.
It turns out that in the unimodular case, invariant harmonic unit vector fields
always exist and they determine harmonic maps if and only if they are eigen-
vectors of the Ricei operator. This contrasts to the non-unimodular case where
invariant harmonic unit vectors also exist in all cases but there are cases
where no invariant unit vector fields exist which determine harmonic maps.
Since several three-dimensional Lie groups are semi-direct products of the
form R x,R?, we treat in Section 6 the general case of semi-direct products
R x,R™.

In Section 7, we consider the critical point condition for the generalized Hei-
senberg groups of type H(1, r), determine the complete set of solutions and de-
rive when these solutions also determine harmonic maps. In Section 8, we consi-
der similar problems for the generalized Heisenberg groups of Kaplan-type, that
is, H-type groups. Here the problem turns out to be more difficult and we only
provide the set of all solutions for some special cases, more precisely, when the
dimension of the center of the two-step nilpotent Lie group equals one and also
for the six- and seven-dimensional H-type groups.
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The Damek-Ricci spaces are particular solvable extensions of H-type groups.
Our study in Section 9 shows that on these spaces there never exist invariant
unit vector fields such that the corresponding map into the unit tangent bundle is
harmonie, although harmonic invariant unit vector fields always exist.

We note that this study is quite similar to the one done for the critical point
condition for the volume functional, that is, the volume of submanifolds of
(T1 M, gg) determined by unit vector fields on a compact oriented Riemannian
manifold. For a general Riemannian manifold, possibly non-compact or non-
orientable, a solution of the corresponding critical point condition is called a
minimal unit vector field [6]. This condition is satisfied if and only if the sub-
manifold is minimal. We refer to [6], [7] and the already mentioned papers for
more information and for further references about this topic of study. Here we
only mention that our detailed study shows that on three-dimensional unimo-
dular Lie groups, invariant unit vector fields are harmonic if and only if they
are minimal. In contrast, it follows that for the three-dimensional non-unimo-
dular Lie groups both notions are not always equivalent.

2. — Harmonic unit vector fields.

Let (M, g) be an n-dimensional smooth Riemannian manifold which we
suppose to be connected and let (T, M, gg) be its unit tangent bundle equipped
with the associated Sasaki metric gg. V denotes its Levi Civita connection and
R the corresponding Riemannian curvature tensor taken with the sign con-
vention Rxy = Vix, y;— [Vx, Vyl for all smooth X, Y. Furthermore, let X' (M)
denote the set of all unit vector fields on M, supposed to be non-empty. We put
Ay = —VV for Ve X'(M). Each unit vector field V can be regarded as the im-
mersion V: M—T M, x—V,, xeM, of M into T; M. The pull-back metric
V*gg is given by

V*go)X, Y) =9(X, V) + g4y X, AyY).

This shows that V is an isometry if and only if V is parallel. For a closed and
oriented manifold (M, g), the energy E(V) of V, that is, the energy of the map
V:(Ma g) - (TIM) gS) [16]y is giVen by

1
E(V) = ZVol(M, g)+ f”AV”Zdv-
2 2,

Here, B(V) = f Ay |Pdv is known as the total bending of the vector field V
M

[15]. dv denotes the volume form on (M, g). In what follows we put

1 1
b(V) = E“AVHZ = EtrAIt/AV-
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The unit vector field V is a critical point for the energy functional £ if and
only if the one-form vy defined by

vi(X) =tr (Z— (V4A}) X)

vanishes on the distribution IV determined by the vector fields orthogonal to
V. For general Riemannian manifolds (M, g), a unit vector field satisfying this
condition is called a harmonic unit vector field. It follows easily that when V is
a Killing vector field, it is also harmonic if and only if it is an eigenvector of the
Ricci operator [5]. Furthermore, the map V: (M, g) — (T1 M, g5) turns out to
be a harmonic map if and only if V is a harmonic unit vector field such that the
one-form vy, defined by

(X)) =tr(Z—~RAyZ, V) X),

vanishes for all vectors X [5].

Next, we recall some definitions from [7]. Ve X' (M) is said to be normal if
gRX,VZ,V)=0 for all X,Y,Zed". It is called strongly normal if
9(VxA) Y, Z)=0 for all X, Y, Ze IC". Since R and VA are related by

RXYV: (VXAV)Y— (VYAV) X y

it follows that any strongly normal vector field is also normal. Moreover, a unit
Killing vector field is strongly normal if and only if it is normal and in this case
V is harmonic. Now, we generalize this last result for geodesic vector fields,
that is, for vector fields whose integral curves are geodesics.

PROPOSITION 2.1. — Every strongly normal geodesic vector field Ve X' (M)
18 harmonic. Moreover, the corresponding map is harmonic if and only if

(V) =0.

Proor. — Let {E;,i=1, ..., n} be a local orthonormal basis with £, =V
and let Xe 9CV. First, note that when V is a geodesic field, (V,A)) X =
(VyAp)' X e IV and Ay X e 9. Then, we get

n—1

n—1
vi(X) = 21 9(Vg,Ay)' X, E;) = 21 9&X, (Vg Ay) E;) .

Hence, v/(X) = 0 because V is strongly normal. For the second part we apply
the normality to get 7,(X) =0 for all XeI(”. =

As a consequence of this proposition and the results of [7], we obtain a lot
of examples of Riemannian manifolds equipped with a harmonic unit vector
field. Note also that the condition v,(V) = 0 in Proposition 2.1 is satisfied when
V is a Killing vector field. In general, this fact does not occur; that is, a stron-
gly normal unit geodesic vector field does not always determine a harmonic
map. To illustrate this, we consider the simplest case of a two-dimensional ma-
nifold (M, g). So, let Ve X'(M) and let {E;, E; =V} be a local orthonormal
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basis. Furthermore, we put A =g(VyV, Ey), u=9g(Vg E,, V). Then we have
AyE,=ul,, AyV=—-AE].

Hence, V is harmonic if and only if £, (u«) = V(1) (see [5, Proposition 16]) and it
is strongly normal if and only if E,(u) = —Au (see [7, Proposition 3.1]). This
implies that a geodesic unit vector field on (M, g¢) is harmonic if and only if it is
strongly normal. Furthermore, a harmonic unit vector field on (M, g) deter-
mines a harmonic map if and only if uK = AK = 0, where K denotes the Gauss
curvature; and this occurs if and only if (M, g) is flat. Nevertheless, there
exist examples of non-flat surfaces (M, g) equipped with a strongly normal
geodesic unit vector field. For example, let (H?, g) be the Poincaré half-plane
{(y', y® |y' >0} with the metric

g= TZ(yl)—Z{(dyl)Z + (dyZ)Z},
where 7 is constant. Then K= —r "%, and V=7 "'y' — satisfies the requi-
red conditions. o

3. — Invariant harmonic unit vector fields on Lie groups.

Now we turn to the consideration of invariant harmonic unit vector fields.
Let G be an n-dimensional connected Lie group equipped with a left-invariant
metric and let g denote its Lie algebra. Then a left-invariant metric g on G de-
termines an associated inner product (,) on g. Furthermore, let S be the unit
sphere of g with respect to (,). For Ve S, Ay, vy and vy are invariant by left
translations. Therefore they can be viewed as tensors on g and b as a function
on 8. The distribution 3" is also invariant by left translation and is identified
with the orthogonal complement V+ of Vin g. V* may also be naturally iden-
tified with the tangent space Ty S of the unit sphere S at V. Hence, a left-inva-
riant unit vector field V is harmonic if and only if the one-form v on g vani-
shes on V* = TS and it determines a harmonic map if and only if in addition
vy vanishes on ¢.

Next, we determine a characterization of invariant harmonic vector fields
by using the differential db of the function b on S. For X e TyS, we have

dby(X) = — étr (ALVX + (VX)Ay) = —tr (A} VX).
On the other hand, we have
v = 3 (V5 (ALX), B) - (ALY, X, B))
= —tradygy — tr (A} VX)

where {E;,i=1, ..., n} is an orthonormal basis of q. Hence, we have
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ProrosITION 3.1. — For X e TyS, we have
3.1) vy(X) = dby(X) — tr adarx
and V is harmonic if and only if
3.2) dby(X) = tr adarx
for all XeTyS.

First, let G be a unimodular Lie group, that is, tr ady = 0 for all X e g [11].
Then we have the following criterion.

PROPOSITION 3.2. — A left-invariant unit vector field V on a unimodular
Lie group G is harmonic if and only if V is a critical point of the function b
on S.

This yields at once the following existence result.

COROLLARY 3.3. — Any unimodular Lie group admits a left-invariant har-
monic unit vector field.

Next, let G be a non-unimodular Lie group with left-invariant metric and
denote by 1 its unimodular kernel, that is,

u={Xeg|trady=0}.

1t is an ideal of codimension one. Let H be a unit vector orthogonal to 1. Then
the linear transformation ady restricted to 11 is a derivation of 1 and for all X
q we have

tr ady = (tr ady XH, X).

Moreover, we have
1
VHH =0 , VHX: E(adH - ad};) X

for all X e u. See [11] for the details. Note that A;;H = 0 when adH|u is symme-
tric. Hence, we have

PROPOSITION 3.4. — A left-invariant unit vector field V on a non-unimodu-
lar Lie group is harmonic if and only if
(3.3) dby(X) = (tr ady XAy H, X)
Jor all X e TyS. Moreover, if ady, is a symmetric endomorphism of W with re-

spect to {(,), then V is harmonic if and only if it is a critical point of the fun-
ction b on S.
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Taking into account that H is a geodesic vector on (G, g), we get the
following

COROLLARY 3.5. — The unit vector H on a non-unimodular Lie group is
harmonic if and only if it is a critical pont of the function b on S.

In the next sections we shall provide several applications of these results.
But before we do this, we prove another existence result.

PROPOSITION 3.6. — Let G be an odd-dimensional Lie group with left-inva-
riant Riemannian metric g. Then there exists a left-invariant harmomnic
unit vector field on G.

PrOOF. — Let S be the unit sphere in the corresponding Lie algebra g of G.
For Ve S we define the vector

Ny=vi-vy(NHV

where v{ denotes the dual vector of v with respect to the inner product (,) on
g. Then Ny is orthogonal to V and hence it may be viewed as a tangent vector
of S at V. In this way we obtain a smooth vector field on S. Since dim S is even,
there exists a point Ve S such that Ny, =0. At this point v# =v (V) V and
hence v(X) =0 for XeV*. Hence, this V is harmonic. =

4. — Lie groups with bi-invariant metrics.

In this section we determine the full set of invariant harmonic unit vector
fields on a (connected) Lie group G equipped with a bi-invariant metric. We
refer to [12] for details about this kind of Lie groups and recall here some ba-
sic formulas.

An inner product (,) on the Lie algebra g of G defines a bi-invariant metric
if and only if ady is skew-symmetric for every X, or equivalently, if one of the
following conditions hold:

<X’[Y, Z]> = <[Xy Y], Z>’

4.1
@D L %[X, Y]

for all X, Y, Zeqg. Hence, G is unimodular. Furthermore, the tensor Ay is
given by

1
(4.2) AV = E adV
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for all Ve S. From (4.1) it follows that Ay is skew-symmetric and hence, V de-
termines a left-invariant unit Killing vector field. Moreover, the Riemannian
curvature tensor is given by

1
4.3) RyyZ = Z[[X, Y], Z]

and hence, for the Ricei tensor o of type (0, 2) we get o = — iB where B deno-
tes the Killing form given by B(X, Y) = tr (adyady). Using (4.2), we then get

1
(4.4) b(V) = - §B(V’ V).

First, we prove

PRrROPOSITION 4.1. — Every harmowic left-invariant unit vector field on a
Lie group with bi-invariant metric determines a harmonic map into its unit
tangent bundle.

PrOOF. — From (4.1) and (4.3), and taking into account that ady is a Lie de-
rivation, we get

1
(RxyZ, V)= E([AVX, Y1+ [X, AyY), Z)
for X, Y, Zeg. Then, applying (4.1) and (4.2), it yields
. 1
4.5) y(X) = — ZB(AVX » V)

for all X e g. Since B([X, Y], Z) = B(X,[Y, Z]) we then obtain v,(X) =0 and
so the result follows. =

It is well-known that a connected Lie group G is compact and semisimple if
and only if its Killing form B is negative definite. Then — B provides a bi-inva-
riant Riemannian metric on G, making (G, g = —B) into an Einstein space of
strictly positive scalar curvature. Note that when G is moreover simple, every
bi-invariant metric ¢ is essentially unique. Indeed, it takes the form g = 8B for
some 5 < (0. Using the notes made in Section 2 and also Proposition 4.1, we
then have

COROLLARY 4.2. — On a compact and semisimple Lie group G with Killing
form B, all unit left-invariant vector fields determine a harmonic map of
(G, g = —B) into its unit tangent bundle (T, G, gg).
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For a general Lie group with a bi-invariant metrie, the orthogonal comple-
ment of any ideal in g is itself an ideal. (See [11] for details.) So g can be
expressed as an orthogonal direct sum

g=2Z(g)Dg,D...Dg;

where its center Z(g) is isomorphic to R* for some k, and qy, ..., g, are com-
pact simple ideals. Then the inner product (,) on g is of the form

(4.6) GY=GhoLlpiBiL... LB

where (,), is the standard inner product of R*, B, (i=1, ..., ) is the restric-
tion of the Killing form B to g; X q; and §;<0. Put dim g;=n; and let
{€jp €jys ---r €5 1<jy<k,1<j,<m, p=1, ..., 1} be an orthonormal basis
adapted to the above decomposition. Then V can be written as

k Ny n
V= ;21%% + 721% e, + ...+ 7‘21%‘6]" .
Jo— J1— J1 =

From (4.4) and applying Proposition 3.2 for the orthonormal vectors to V given by

U; i e, + T ey, Uj; X e, + v €, P, qe {1, ..., 1},

we obtain that V is harmonie if and only if

90] ﬁﬂjp—o, ﬂ_p _ﬂ_q xjpqu—o
for all 1 <jo<k,1s<j,sn, 1sj,<n, p,q=1,...,1. Hence, we have

PRrOPOSITION 4.3. — Let G be a Lie group equipped with a bi-invariant me-
tric (,) as in (4.6). Then we have

(1) of all the B; are equal, then the set of left-invariant harmonic unit
vector fields is {Z(q)U g1 PB... B g} NS;

(i) if all the B; are different, then the set of left-invariant harmonic
unit vector fields is {Z(gq)U g U...U g} NS.

Any other case is obtained by combining (1) and (ii).

5. — Three-dimensional Lie groups.

The purpose of this section is to determine all invariant harmonic unit vec-
tor fields on three-dimensional Lie groups and to determine which of them de-
termine harmonic maps. We use the treatment given in [11] and consider sepa-
rately the unimodular and the non-unimodular cases.
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A. Unimodular Lie groups.

Let G be a three-dimensional unimodular Lie group, g its Lie algebra and
g a left-invariant metric on G. Then there exists an orthonormal basis
(eq, €9, e3) of g such that

(6.1) [es, 3] =116y, [eg, e1]1 = Azes, [e1, 2] =363

where A1, 1, A5 are constants. Let 8%, i =1, 2, 3, be the dual one-forms of ¢;,
1=1, 2, 3. Then the Levi Civita connection V is determined by

Ve, =36, ® 0% — re3® 6%,
(52) Vezz—u361®03+/1163®91,

Ves=15,®60% —u16,06"

where
1 .
/M=§(;L1+3~2+13)_Ai, 2=1,2,3.
Furthermore, the curvature two-forms Q}, 1,7=1,2,3, are given by
; 1 .
-Q]L(ny)z _EQZ(RXYej)y Xa YEg

and the second structure equations yield
Qb= {usu,+us) —upz} 01 N6%,
(6.3) Qb= {us(uy+puy) —uruz} 0" N6?,
QF = {u1(ua+us) —pous} 0* N6,
Hence, the Ricci tensor o is given by
0=2{usu30'®0" +u1u30*°R 0% + 111, 0° 6%},

which shows that (e;, e,, e3) is a basis of eigenvectors for o. (See [1] for more
details.)
Now, let Ve S and put V=ux;,e; + 2265 + x5¢5. Then we get

Ay =, (x3es— Te3) @O + (13— 0301) @ 0% + uz(itze — a1 65) @ 6°

and this yields

1
b(V) = 5{(ﬂ§+#§)xf+ (Ui +pud) ad + (Wi +ud) ai}.
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Using Proposition 8.2 and computing db(U}') =0 for U3 = —wse, + @, €2, Ug =

—x5e;+a,e3 and UZ= —x3e,+2ye5, we find that V is harmonic if and only if
wpa(ui—ud) =0, wasui-ud) =0, wusi-ud)=0.

From this, we then obtain

LEMMA 5.1. — We have the following cases:

G) if ui=ud=u3, then every left-invariant unit vector field is
harmonic;

(i) if w3 =u3 = us, where i,j, ke {1,2,3} and i #j =k =1, then the
set of left-invariant harmonic unit vector fields is given by {+e;} U (SN
{ei, ¢;}r) where {e;, ¢;}r denotes the plane spanned by e; and e;;

(i) of w% = u%=us=us, then the left-invariant harmonic unit vector
fields are *e;, 1=1, 2, 3.

In function of the curvature two-form Q, ¥y is expressed as
(5.4) =2 2 QiAve, V)0

L)=
1]

and then, by using (5.3), we obtain
(5.5) vy =wpta {us (g —pg) + ud(us —uq)} @61
iy {ui (s —pe) + ui(us —ur)} ® 6%

ey ap {ud (g —us) +us(u —us)} ®6°.

Following [11] and according to the signs of A, 45, 15, we have six kinds of
Lie algebras as described in Table I.

Using this classification, Lemma 5.1 and (5.5), we have the following result,
the proof of which is now straightforward.

TABLE 1.

signs of 1, A5, 43 associated Lie groups
+, +, + SU(2) or SO(3)
+, +, — SL(2, R) or O(1, 2)
+,+,0 E(2)
+ ) 07 - E(la 1)
+,0,0 Heisenberg group
0,0,0 RERSR
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PropoSITION 5.2. — Let G be a three-dimensional unimodular Lie group
with left-invariant metric and let {e;, 1 =1, 2, 3} be an orthonormal basis of
the Lie algebra satisfying (5.1). Moreover, assume that the signs of 11, Ao, A3
are chosen as in Table I and let 11 = Ao, = A3. Then the left-invariant harmo-
nic unit vector fields and those determining harmonic maps arve given in

Table 11.

TABLE II.
G conditions for the sets of invariant harmonic maps
A harmonic unit vector fields V:(G, g)— (TG, g5)
/11>/12:/13 ielrsm{e%ef%}ﬁ ielrsm{eZ’eii}R
Ai=2Ay> 23 *eg, SN{er, eafr *eg, SN{er, ealr
Al>ﬂ'2>}'3 i@l, i@z, i@g iel, i@z, i@g
SL(2,R) /11:/12 ie3,80{61,e2}1{ i@3,80{€1,62}R
Ai>A, *ep, *ey, Teg +ep, *ey, Teg
E(2) 11:/12 ieg,Sﬂ{el,ez}R ieg,Sﬂ{el,ez}R
A1> 2, *eg, SN{ey, e }r *ey, Tep, Teg
E(1,1) ey, SN{er, e3tr tep, *ep, Teg
Heisenberg S +ep, SN{es, e3}r
group
RAERBR S S

Using [13], we also get

COROLLARY 5.3. — A left-invariant unit vector field on a three-dimensional
unimodular Lie group is harmonic if and only if it is minimal.

Another immediate consequence is as follows.

COROLLARY 5.4. — Every three-dimensional unimodular Lie group admits
left-invariant unit vector fields which determine harmonic maps into its
unit tangent bundle. More precisely, a left-invariant unit vector field deter-
mines a harmonic map if and only if it is an eigenvector of the Ricci
operator.

B. Non-unimodular Lie groups.

We now turn to the case of a non-unimodular three-dimensional Lie group.
In this case, let e; be a unit vector orthogonal to the unimodular kernel u for
which we choose an orthonormal basis (e,, e;) which diagonalizes the symme-
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tric part of ad,, . Then the bracket operation can be expressed as
(6.6)  le, el =aex+ ey, [er, e3]1= —Pex+0e3, ez, €31=0

where a, 3, 0 are real constants. a and ¢ are the eigenvalues of the symmetric
part of ad,, |,. If necessary, by changing e, into —e; or alternating e, and ez, we
may assume

a+d6>0, a=o0.

Furthermore, let 67, i =1, 2, 3, be the dual one-forms of ¢;, i = 1, 2, 3. Then
V is given by

Ve, = — aes ® 02 — 0es 63,
V@2:a61®02+ﬂ63®01,
V€3=661®03_ﬂ€2®01

and for the curvature two-forms, we have
5.7 Q= -520'N63,

See [1]. So, we obtain
o= — {(a2+62) 'R0+ ala+9) 2®R 6%+ d(a + 0) 03®03}
and
Vyo=(a—8){-Bla+09) 0 (X)N0*°R®R 6%+ 0°R0%) —
adfi(X)(0'® 6%+ 0°R0") + add*(X)(0'® 6%+ 0°R0")).
From this we get
(5.8) Vol = 2(a — 62 {B%(a + 0)* + 2a2 62}
Now, let V=1ue; + &35 + 23e5€ S. Then Ay is given by
(5.9) Ay =305 — X2e3) RO + oy 65 — X201) @ O% + Sy 65 — x301) @ O3

and we have

b(V) = %{(a2+52).%'12+ (a®+B%) w3 + (B*+0%) af}.
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By using Proposition 3.4 we see that V is harmonie if and only if

(5.10)

@ {(B% = 0%y — fla+ )z} =0,
i {fla+0)ay— (a®—=B%) x5} =0,
Bas +af) — (@ — O) wa iy =0.

Furthermore, from (5.4), (56.7) and (5.9) we get

(B11D) vp={(a®+ 0¥ al+ aPxf+0%0F} ® 0 + awy (0% wy — afrs) ® 6% +

These formulas yield

69(;1(ﬂ69(;2 + az.')Cg) ®63

ProPOSITION 5.5. — Let G be a three-dimensional non-unimodular Lie
group with left-invariant metric and let {e;, i=1, 2, 3} be an orthonormal
basis of the Lie algebra satisfying (5.6). Then the left-invariant harmonic
unit vector fields on G and those determining harmonic maps are given in
Table 111, where U is the vector field given by

U= (a3_ 63)71/2{(_63)1/262_’_ 51gn ﬂ(a3)1/263}

and the sets A and B are defined as follows:

A =the set of unit vector fields of the plane determined by
B, — axs =0;

B =the set of unit vectors x,e, + x5e5 where x, and x5 satisfy

(a—0) a3 =p.
TaBLE III.
conditions for conditions for the sets of invariant harmonic maps
a and 0 B harmonic unit vector fields
a=9 B=0 ey, {€, e3}g NS %}
p=0 *e
a>0>0 *e;, B %]
a>06=0 B=0 {er, e} NS, *eg *eg,
B#0 +e;, B %)}
a>0>0 BE+ad=0 a, 9 %)
(a®+ 0%+ ad)?*p? +e; B +U
+a383=0

in the other cases *e, B

Q




INVARIANT HARMONIC UNIT VECTOR FIELDS ETC. 391

REMARKS 5.6. — A. For =0 =0, the corresponding simply connected
Lie group is isomorphic to the product R X H%(—a?) of Lie groups where

H?(—a?) denotes the Poincaré half-plane with Gauss curvature equal to —a?.

Here, the vector fields =+ % tangent to R are the unique left-invariant unit

vector fields which define corresponding harmonic maps.

B. Following [13] we have that if « = (that is, (G, ¢g) has constant sec-
tional curvature (see, for example, [1])), then a left-invariant unit vector field
is minimal if and only if it is harmonic. Nevertheless, there exist non-unimodu-
lar Lie groups where these conditions are not equivalent.

Note that *=e; are minimal and harmonic unit vector fields in all cases.

Finally, from Table III and (5.8) we obtain

PROPOSITION 5.7. — A three-dimensional non-unimodular Lie group G ad-
mits a left-invariant unit vector field such that the corresponding map into
its unit tangent bundle is harmonic if and only if

||VQ||2 =2+ 0%+ ad)2a%0%(a — 0 (a? + dD)[2(a? + 62) + 3ad]

and G is not of constant curvature.

6. — The semi-direct product R x,R".

Several three-dimensional Lie groups are semi-direct products of the form
R x,R?. In this section we consider the general case of Lie groups of type
R %, R".

Let (R"*1 =R x R", g) be the standard Riemannian product on the vector
space R"*! and a : R*—R" a linear map. We consider an orthonormal basis
{eo, €1, ..., €,} on R X R" such that ey, ..., e, diagonalize the symmetric part

n

of a. Then ¢/ = —c¢f, i#j,1,je {1, ..., n}, where a(e;) = > c/e;. We define
a bracket operation by =1

leg, ;] =ale;), [e;, e]1=0, 1, =1, ..., n.

This bracket makes R"*! into a Lie algebra R +,R" which is called the semi-
direct sum of R and R". The unique connected, simply connected Lie group
R x,R" associated to this Lie algebra is called the semi-direct product of the
Lie groups R and R". It is unimodular if and only if tr o = 0. For tr o = 0, the
class of semi-direct products R x,R" coincides with the set of the connected
simply connected non-unimodular Lie groups whose unimodular kernel is
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Abelian. Using the Koszul formula, we get for the Levi Civita connection V of g:

n

Veoe(]:O, Veoei:< 2 ,Cf@jy
j=1,1#j
_ i _ i
Vieo=—cle, Ve =cle,

the other covariant derivatives being zero.
It follows that V = ¢, is a geodesic vector and from [7, Proposition 3.6] we
know that it is strongly normal. So, from Proposition 2.1 we have

PROPOSITION 6.1. — V = ¢, is a harmonic vector field on R x,R". Moreover,
it defines a harmonic immersion into its unit tangent sphere bundle if and

only if > (¢iP=0
=1

Next, we determine the complete set of left-invariant harmonic unit vector
fields on R %, R" for the case where « is a symmetric operator. Then ¢ =0 for

all +#7. Let V be a unit vector of R +,R" given by V = x,e, + E x;e;. Then
we have

1 n
MW—EE (6} (i + ?)

It follows from Proposition 3.2 and Proposition 3.4 that V is harmonic if and
only if
n

x(]xp 2 (C'i)2 :0’
(6.1) i=1,i#%p

w2 {(c)) = (¢} =0

for all p, ge {1, ..., n}. In the Abelian case (a =0), every left-invariant unit
vector field is harmonie. Furthermore, for dim V,<n — 1, where V;= Kera,
we denote by 11, ..., 4, the different non-vanishing eigenvalues of « put in or-

der to satisfy
Ai=—Aoy oy hog1= = Aoy Aoy - Ay

where 1;# —4; for all ¢, je {20+1, ..., k} and OSZ<§. Here [ = 0 means

that all the |4,,|, me {1, ..., k}, are different. Furthermore, let V3, ..., V;
denote the corresponding eigenspaces. With these notations, we get from
(6.1):

ProOPOSITION 6.2. — Let R X, R" be the semi-direct product of R and R"
where a is a linear symmetric map. Then we have
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() every left-invariant unit vector field is harmonic when n =1
or a=0;

(ii) for m =2, the set of left-invariant harmonic unit vector fields is
(VoU {eg, e1}r) NS if dim Vy=n—1 and e;eIm a, and

{xe}U{VVUV,, @&V, )U..UlV, &V, )uUV,, U.. .UV, NS
Zfdlm V0<7’L—1.

7. — The generalized Heisenberg groups H(1, 7).

The three-dimensional Heisenberg group H(1, 1) has been generalized in
two different directions. On the one hand, one introduced the groups H(1, 7)
[9] and on the other hand the groups H(r, 1) appear as a special case of the ge-
neralized Heisenberg groups considered in [10]. Their geometries have diffe-
rent features. Here we shall study the harmonicity of invariant unit vector
fields and we start with the groups H(1, 7). The other ones will be considered
in the next section.

H(1, r) is the Lie group of matrices of the form

I, A' B!
a=1|0 1 c
0 0 1

where I, denotes the identity matrix of type (r,r), A= (a4, ..., a,)eR’,
B= (b, ...,b.)eR and ceR. It is a connected, simply connected nilpotent
Lie group of dimension 27+ 1 and the dimension of its center is 7.

The following coordinates (x?, %, ), 1 <i <, provide a system of global
coordinates:

e(@)=a;, y'(a)=0b, za)=c
and a basis of left-invariant one-forms is given by
a;=dx', B;=dy'—x'dz, y=dz.

For the dual left-invariant vector fields, we then have

0 ) S
Xi: 84, Yi: -, :—+2x'7—,.
ox' oy’ oz j=1 oy’

The Lie bracket is given by
[X;,, Z]1=Y;,, i=1,...,r,

the other brackets being zero. On H(1, r) we consider the Riemannian metric
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for which these vectors form an orthonormal basis at each point. Then H(1, 7)
is a unimodular Lie group and the corresponding Levi Civita connection is de-
termined by

1
VX[Yi = VY[Xi == EZ’

1
VX,-,Z =-V, X, = EYiy

1
VYiZ = VZYi = EXL

where the remaining covariant derivatives of the basic vectors vanish. For the
non-vanishing components of the curvature tensor R we then obtain

1
R(XD)(jy Yi) Y}'):_Z) 2¢.]a

1
R(Xia Y’/’ )(j’ YZ) = Z’
3
R(Xi,Z,Xi,Z) = —Z,
1
R(Yi, Z, Yi’ Z) = Z .

Now, let V be a unit vector of the Lie algebra. It can be written in the
form

V= S (VX4 Vi Y0+ Vo Z
Then we obtain
Ay= % g {ViirZ=V5 1 Y)®a i+ (ViZ = V5 (1 X)) QB i+ (VY =V, X)) Ry}
and this yields

1 T
b(V) = Z{z (sz + V72+i) + VV221~+1} .

=1
From this, it is easy to see that V is harmonic if and only if

(T_l)ViV27+1:09 (T_I)Vr+iV21"+l:07 /I::]'?"",I/.'



INVARIANT HARMONIC UNIT VECTOR FIELDS ETC. 395

As has been seen already in Section 5, we see that for » =1, all left-invariant
unit vector fields are harmonic. For = 2, we have

ProposITION 7.1. — The set of left-invariant harmonic unit vector fields on
H(1,7), r=2, is given by {*Z}U{SNZ*}.

Using the given expression for the curvature tensor and for Ay, we
obtain

- 1 N
Vy = Z Z:l{(z—?”) ViiiVor1®a;+(1—7) ViV2r+1®ﬂi_Vin+i®V}-

As already proved, we see that for » =1 the set of left-invariant unit vectors
which determine a harmonic map into the unit tangent bundle is { =Y} U
(SN{X, Z}g). For r=2, we have

PROPOSITION 7.2. — The set of left-invariant unit vector fields on H(1, r),
r=2, for which the corresponding maps into the unit tangent bundles are
harmonic is given by {+Z} U @A, where Q 1is the set of the unit vectors

i r

> (V:X;+V,...Y:) such that >, V;V,,.;=0.
i=1 i=1

8. — H-type groups.

Now, we consider the class of generalized Heisenberg groups introduced
in [10] and first recall some basic facts. We refer to [2] for more details about
these H-type groups.

Let b and 3 be real vector spaces of dimensions 7, m € N, respectively. On
the direct sum 1 = b @ 3 we consider an inner product (,) such that b and 3 are
perpendicular, and an R-algebra homomorphism J : 3 — End (v), Z+ J, which
satisfies

8.1) J,UWVY+(U, I, Vy=0, Ji=—(Z, Z)id,
for all U, Vebv, Ze 3. Then we have

(82) <JX U’ JY U) = ||UH2<X7 Y>9 <JX U7 JXV> = HX||2<U7 V>
and
(83) Jny+JyJX: —2<X, Y>idm

(8.4) (IxU, JIyV)+(JyU, JxV) =2(U, VXX, Y)
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for all U, Vep and X, Y e 3. Furthermore, we define a Lie algebra structure
on 1 by

(U+X,V+Y]=[U,V]
where [,]:b X b— 3 is the bilinear map given by
(8.5) (LU, V1, z)={J,U, V).
Then n becomes a two-step nilpotent Lie algebra with center 3. Such an n is
said to be a generalized Heisenberg algebra and the connected, simply con-
nected Lie group N with Lie algebra n and with the induced left-invariant me-
tric g is called a generalized Heisenberg group. Clearly, N is unimodular.
From now on and as before, we suppose that U, V, Wevand X, Y, Z 3.

For the Levi Civita connection of (V, g) we obtain

1 1 1
(86) VV+Y(U+X): _EJXV_ EJYU_E[U’V]

and the corresponding curvature tensor R is given by

1 1 1
—lJJU+1JJV+1JJW
PRARL 10Xz 5 /xJy
1 1 1
+E<Xa Y)W+ Z[V, JXW]—Z[U, Jy W]

1 1
__[U) JZV]+ —<U, V)Z
2 2
Put £=£,+&,eb @3 for a unit vector & of n. Using (8.6), we then get
1
(8.8) AE(U+X)=E(JX§U+J§5U+[§, Ul).

On 1 we consider an orthonormal basis adapted to the decomposition b @ 3 and
which is given by {Uy, ..., U,, Jx, Uy, ..., Jx, U,, Xi, ..., X,,} where n=2p.
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Using (8.1)-(8.5), we then obtain

LU;, Ix, Uil =Xy,

m
(8.9) LU, Uj] = —[JX1 U, JX1 Uj] = agz Ci;'LXa’
m
[U;, Ix, U;1= —1U;, Jx, U;] = 22 Cip+iXay 1#],
where i, j=1, ..., p and ¢, ¢y, ;, a =2, ..., m, are real numbers which sati-
sty the relations ¢ = —cf, ¢y, ;= — ¢

Now, we are ready to prove our results.

ProposITION 8.1. - On a generalized Heisenberg group N with Lie algebra
n =03, every harmonic unit vector belonging to b U 3 defines a harmonic
map nto its unit tangent bundle.

ProoF. - First, let £e b N 8. Then A:(U + X) = %(JX.S + [&, U]) and from
(8.5) and (8.7) we get

. 3 1
Ve(U+X) = 7:(X) = gtr(VHJadSvJXE).

Choosing an orthonormal basis as before with U, =&, from (8.5) we ob-
tain

. 1<
R0 = ZIWXI Uy, UL LUy, U + ([, Us,y Ty UL LU, Ty, Ui}

Hence and by using (8.9), we have v:(X;) = 0 which shows that & determines a
harmonic map.
Finally, let §€3N 8. Then A:(U+X) = %Js U. Hence, using (8.1), (8.3)

and (8.7), we obtain at once v:(U + X) = 0. This completes the proof. =

PROPOSITION 8.2. — Any left-invariant unit vector field & € 3 defines a har-
monic map mto its unit tangent bundle.

ProoF. — From (8.1) and (8.8) we get A§= —A;. Furthermore, we have

1
(VyiyA)(U +X) = Z([ng JylU+JeJxV—[J:U, V])
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and from this, we derive
1
(VpA (U +X), V) = - Z”VHZ(X’ &)

(VyA)(U+X),Y)=0.
This shows that v:(X) = 0 for all X orthogonal to &. So & is harmonic and the
result follows from Proposition 8.1. m

P
NOW, we pUt 5: E (90[ Ui+mp+iJX1 Uz) + E x7z+aXa'
i=1 1

o=

LeEMMA 8.3. — With the above notations, we have

(8.10) 8b(&) =n 2 x3+a+(m+1)12 af +
a=1 =1

p P

DD {[(cg)2+(cizﬂ)zl(xfw,?mH

a=2i=1j=1, =i

/4
2 > ‘[(ngci%"'Ci(;)+jci7a+k)(90jxk+xp+jxp+k)+
J

k=1,k#1,

;1 1 (Cf i+ — €y +jci%)]} :

PrOOF. — From (8.2), (8.5) and (8.8) we get
1
b(&) = g{nllééllz+mllév||2+tr<UHJadEU§n>}.

Since
p
tr (U Jog,v80) = El(H[Ui, EP + L%, U;, E1P)
and, by using (8.9),

[U7?§] :xp+iX1+ E

a=2

P
( 2 (xjci?+xp+jci?)+j)) X(u

j=1j=i

p
( 2 (e - %wcz:(f)) Xo»

j=1=i

[Jx, U, §1= —a; Xy + 2

a=2

a straightforward computation yields (8.10). =
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When dim 3 =1, n is isomorphic to a classical Heisenberg algebra. The
corresponding Heisenberg group is isomorphic to the group of matrices
H(p, 1), with n =2p, of the form

1 A ¢
a=|(0 I, B!
0 0 1

where [, denotes the identity matrix of type pXxXp and where
A=(t, ..., a,) eRP, B=(by, ..., b,) e R and c e R. In this case, (8.10) redu-
ces to

_ 1 2 < 2
b(E) = g(mcmﬁzl;xl)

and then, using Proposition 3.2, £ is a harmonic unit vector if and only if
n—=2)x, 12,=0, k=1,...,n.

Then, putting Z = X; and applying Proposition 8.1, we have

ProposITION 8.4. — Let N = H(p, 1) be the classical Heisenberg group of
dimension 2p + 1. For p =1, every left-invariant unit vector field is harmo-
nic. For p =2, the set of left-invariant harmonic unit vector fields is given by
{£Z} U (SNv) and they all determine harmonic maps into the unit tangent
bundle.

In principle, we can also determine by using Proposition 3.2, all left-inva-
riant harmonic unit vector fields on N when dim 3 = 2 and by considering case
by case. Here, we restrict to the case n = 4. Then the corresponding non-iso-
morphic and non-classical generalized Heisenberg algebras have dim 3 =2 or
3 [2]. (8.10) then takes the form

1 m 4
b(é) = _{4 2 x5+a+cm 2 xkz}
8 a=1 k=1
where c,, =1+m+ 2 {(c%)*+ (cfy)?} for m =2 or 3. So, £ is harmonic if and
only if “=2
(4-c,)xr2,,,=0, k=1,...,4 and a=1,...,m.
Hence, we have the following two propositions.

PROPOSITION 8.5. — Let N°© be the six-dimensional generalized Heisenberg
group and let {U;, Jx, U;, X1, Xo; 1 =1, 2} be an orthonormal basis of its Lie
algebra satisfying (8.9). Then we have:
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(i) every left-invariant unit vector field is harmonic if and only if
(i) + (i) =1;

(ii) wm the other cases, the set of left-invariant harmonic unit vector fiel-
ds is SN(b U 3).

PROPOSITION 8.6. — Let N be the seven-dimensional non-classical genera-
lized Heisenberg group and let {U;, Jx, U;, X1, X5, X35 1 =1, 2} be an ortho-
normal basis of its Lie algebra satisfying (8.9). Then we have:

(1) every left-invariant uwit vector field is harmonic if and only if
2 _ L2 _ .3 _ .3 (.
Clz=Crg=Ciz = ¢y = 0;
(ii) in the other cases, the set of left-invariant harmonic unit vector fiel-
ds is SN(b U 3).

REMARK 8.7. — We refer to [7], [13] for some results concerning minimal
unit fields on generalized Heisenberg groups of both types.

9. — Damek-Ricci spaces.

The Damek-Ricci spaces are a particular class of solvable extensions of ge-
neralized Heisenberg groups. They have a remarkable geometry and play an
important role in several topics of study. We refer to [2] for more information.
Here we study again the harmonicity of invariant unit vector fields and start
with some needed basic material.

Let n=0&3 be a generalized Heisenberg algebra, a a one-dimensional
real vector space and A a non-zero element of it. On the direct sum s =nda
we define an inner product (,) and a Lie bracket [,] by

(U+X+7A, V+Y+sA)=(U+X,V+Y), +rs,
1 1
[U+X+rA, V+Y+sA]l=[U, V], + E?"V— ESU—F’V‘Y—SX,

where the index 1 denotes the corresponding product and bracket on n. As
before, U, Veb, X,Y, Ze3 and r, s are real numbers. The corresponding
connected, simply connected Lie group S with Lie algebra $ and with the indu-
ced left-invariant metric ¢ is called a Damek-Ricei space.

We have

1
adA(U+X+rA)=EU+X, tradAzgan.
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S is non-unimodular, 1 is its unimodular kernel and ad,, is a symmetric endo-
morphism of n with respect to (,).
The Levi Civita connection V of (S, g) is given by

1 1 1 1
(9.1) VV+Y+SA(U+X+’I"A)= —EJXV— EJYU_ETV_E[U,V]

-rY + %(U, WA+(X, V)A.

Now,let §=§&,+&,+ 1A eb®3Da be a unit vector of 5. Using (9.1), we
then obtain

1
92) A (U+X+7A)= E(JESUJrJXgD +AU+[&,, U1-(U, & A)+
X—-(X,EA.
First, we prove a non-existence result.

ProPOSITION 9.1. — On a Damek-Ricci space there do not exist left-inva-
riant unit vector fields such that the corresponding map into its unit tangent
bundle (T, S, gs) is harmonic.

ProoF. — We show that v:(A) = 0 for all £ S. To do this, we use the follo-
wing formula for the curvature tensor R:

1
93) RU+X+7rA, V+Y+sA)A= Z(JYU—JXV—SU+7‘V)+

%[U, V]—-sX+rY.
Then, by using (8.1), (8.5) and (9.2) we get
- 1
Ve(A)=— g{(n+8)||§8\|2+ 2m + 1)||E,|P+ (8m+n) /’Lz+tr(U'—>Jad§DU§n)}.

Since the last term in the brackets is positive, the result follows at
once. ®H

Next, we have
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ProPOSITION 9.2. — Any left-invariant unit vector field on (S, g) belonging
to the set U3 U { A} is harmonic.

Proor. — From (9.2) and for £eb we have
1
Ag(U‘f‘X'f"V’A) = E(Jx§_7”§+ (&, U)).

Now, it easy to check with (9.1) that v (X +7A4) =0. So & is harmonic.
For £e3 we have

AU +X+7A) = —(%JEUwL%E)

and again v:(U +7r4) =0.
In a similar way we get that =A are harmonic vectors. =

When dim 3 =1, the Damek-Ricei spaces are isometric to complex hyper-
bolic spaces. Denote by Z a unit vector of 3. Then we have

PRrROPOSITION 9.3. — The set of left-invariant harmonic unit vector fields
on a Damek-Ricci space with one-dimensional center 3 1is given by

({A, Z}xUp)NSs.

ProoF. — From (9.2) we have
1
b(&) = g{(n+4>H§5IF+2H§DHZ +(n+4) 2+ tr (U Jo,, v&0)) -

On 3 we consider the orthonormal basis adapted to the decomposition
D@g@apgﬁven by {Ui, ..., U,, I, Uy, ..., I, U,, Z, A} where n = 2p, and we

put £= ) (x; Ui+apiJ,U)+ 21 Z+2,.2A. Then, from (8.9) we obtain
i=1
1 n
b6 = =3 3 5t + 0+ i+ )],
=1

Hence, Proposition 3.4 then yields that & is harmonie if and only if
mkxn-*—l:()’ 90;69077,4_2:0, kzl,-“)n'

This shows that the required result holds. =

REMARK 9.4. — In [7] it has been shown that the left-invariant vector field A
on a Damek-Ricei space is always minimal.
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