ANDREI DUMA, MARIUS STOKA

Geometric probabilities for non convex lattices. II

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_2_363_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.
Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2002.
Geometric Probabilities for non Convex Lattices (II).

Andrei Duma - Marius Stoka (*)

Sunto. – Si risolvono problemi di tipo Buffon per un reticolo avente per cellula fondamentale un poligono non convesso, utilizzando come corpo test un segmento ed un cerchio.

Summary. – We solve problems of Buffon type for a lattice with elementary tile a non-convex polygon, using as test bodies a line segment and a circle.

In a previous work [3] we dealt with a lattice having as elementary tile a non–convex polygon. In this paper we examine another lattice.

Let be given, in the Euclidean plane E_2, a lattice \mathcal{R} whose elementary tile is a concave polygon, formed by five squares of side a, as in figure 1.

At first we want to determine the probability p that a segment of constant length l and random position in E_2 intersects one of the sides of a fundamental cell of the lattice \mathcal{R}. We assume that the segment is uniformly distributed in a bounded region of the plane.

We denote by \mathcal{R} the family of segments s, of length l, whose midpoints lie inside a fixed tile C_0 of the lattice \mathcal{R} and by \mathcal{N} the set of segments s, of length l, which are completely contained in C_0. With these notations we have [6], p. 53

\[p_l = 1 - \frac{\mu(\mathcal{N})}{\mu(\mathcal{R})} \]

where μ is the Lebesgue measure.

The measures $\mu(\mathcal{N})$ and $\mu(\mathcal{R})$ are computed by means of the kinematic measure in the Euclidean plane [4], p. 126

\[dK = dx \wedge dy \wedge d\varphi , \]

where x and y are the coordinates of the midpoint of the segment s and φ is an angle of rotation.

Assuming the segment s «small» compared to the lattice \mathcal{R}, i.e. $l < a$, the

(*) Work partially supported by C.N.R.-G.N.S.A.G.A..
The notion of «non-small» segment and «non-small» circle with respect to a planar lattice with elementary tile a convex polygon was first defined in the works [1] and [2]. Subsequently it was generalized to a convex test body \mathcal{K} and a lattice having as fundamental cell a concave polygon (we refer to the quoted work [3] for more details). By applying this latter definition to the lattice \mathcal{R} in figure 1, we have that the segment s is «non–small» with respect to the lattice in the following cases:

1) $a < l < a\sqrt{2}$;
2) $a\sqrt{2} < l < 2a$;
3) $2a < l < \sqrt{5}a$;
4) $\sqrt{5}a < l < 2\sqrt{2}a$;
5) $2\sqrt{2}a < l < 3a$;
6) $3a < l < \sqrt{10}a$.

Taking into account the symmetries of the polygon C_0 we can confine ourselves to consider $\varphi \in [0, \pi/4]$. Thus

$$\mu(\mathcal{K}) = \int_0^{\pi/4} d\varphi \int_{\{(x, y) \in C_0\}} dx \, dy = \int_0^{\pi/4} \text{area}(C_0) \, d\varphi = \frac{5\pi}{4} a^2.$$

Figure 1

The probability of intersection is

$$p_l = \frac{12}{5\pi} \frac{l}{a} - \frac{2}{5\pi} \left(\frac{l}{a} \right)^2. \tag{2}$$

This result was found by S. Rizzo [5], p. 14.
For any fixed value of the angle φ, we denote by $C_0(\varphi)$ the (convex or concave) domain determined by the midpoints of the segments s entirely contained in C_0 in each one of the limit positions, so that

$$
\mu(N) = \int_0^{\pi/4} d\varphi \int_{\{(x, y) \in C_0(\varphi)\}} dx \, dy = \int_0^{\pi/4} \text{area}(C_0(\varphi)) \, d\varphi .
$$

By formulas (1), (3) and (4) we get

$$
p_l = 1 - \frac{4}{5\pi a^2} \int_0^{\pi/4} \text{area}(C_0(\varphi)) \, d\varphi .
$$

Theorem 1. If $a < l < a\sqrt{2}$, the probability that a segment s, of length l, intersects a side of one of the tiles of the lattice R is

$$
p_l = \frac{4}{5\pi} \left(2 \arccos \frac{a}{l} + 1 \right) + \frac{4l}{5\pi a} - \frac{8(l^2 - a^2)}{5\pi a} + \frac{2l^2}{5\pi a^2} .
$$

Proof. Let $\varphi_0 := \arccos \frac{a}{l}$. We have to consider the cases $0 < \varphi < \varphi_0$ and $\varphi_0 < \varphi < \frac{\pi}{4}$.

If $0 < \varphi < \varphi_0$, we get (see figure 2)

$$
\text{area } C_0(\varphi) = 2 \frac{(a - a \tan \varphi) + (a - l \sin \varphi + a \tan \varphi)}{2} (2a - l \cos \varphi)
$$

$$
+ (a - l \sin \varphi)(l \cos \varphi - a)
$$

$$
= 3a^2 - al(\sin \varphi + \cos \varphi) .
$$

Whereas when $\varphi_0 < \varphi < \frac{\pi}{4}$ we find (see figure 3)

$$
\text{area } C_0(\varphi) = 2a(a - l \sin \varphi) + 2a(a - l \cos \varphi)
$$

$$
+ (a - l \sin \varphi)(a - l \cos \varphi) + 2 \frac{l \sin \varphi \cdot l \cos \varphi}{2}
$$

$$
= 5a^2 - 3al(\sin \varphi + \cos \varphi) + l^2 \sin 2\varphi .
$$
Formula (4) then yields

\[\mu(N) = \int_{\varphi_0}^{\varphi_0} \left[3a^2 - al(\sin \varphi + \cos \varphi) \right] d\varphi \]

\[+ \int_{\varphi_0}^{\pi/4} [5a^2 - 3al(\sin \varphi + \cos \varphi) + l^2 \sin 2\varphi] d\varphi \]

\[= \left(\frac{5}{4} \pi - 2 \varphi_0 - 1 \right) a^2 - al + 2a \sqrt{l^2 - a^2} - \frac{1}{2} l^2 \]

and formula (5) gives the probability (6). ■

Remark 1. – When \(l = a \) formulas (2) and (7) give the probability
\[p_t = \frac{2}{\pi}. \]
THEOREM 2. – If $a \sqrt{2} < l < 2a$, the probability that a segment s, of length l, intersects a side of one of the tiles of the lattice R is

$$p_i = \frac{1}{5} + \frac{2}{5\pi} \left(2 \arcsin \frac{a}{l} - 1 \right) + \frac{4\sqrt{l^2 - a^2}}{5\pi a} + \frac{4l}{5\pi a} - \frac{l^2}{5\pi a^2}.$$ \hspace{1cm}(7)$$

PROOF. – Let $\varphi_1 := \arcsin \frac{a}{l}$. We have to examine the cases $0 < \varphi < \varphi_1$ and $\varphi_1 < \varphi < \frac{\pi}{4}$.

If $0 < \varphi < \varphi_1$, we have (see figure 2)

$$\text{area } C_0(\varphi) = 3a^2 - al(\sin \varphi + \cos \varphi).$$

If $\varphi_1 < \varphi < \frac{\pi}{4}$, we get

$$\text{area } C_0(\varphi) = 2 \frac{(a - a \tan \varphi) + (a - l \sin \varphi + a \tan \varphi)}{2} \left(2a - l \cos \varphi \right)$$

$$= 4a^2 - 2al(\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi.$$
Hence formula (4) yields

\[
\mu(N) = \int_{0}^{\varphi_1} [3a^2 - al(\sin \varphi + \cos \varphi)] d\varphi
\]

\[
+ \int_{\varphi_1}^{\pi/4} [4a^2 - 2al(\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi] d\varphi
\]

\[
= a^2(\pi - \varphi_1 + \frac{1}{2}) - a\sqrt{l^2 - a^2} - al + \frac{1}{4}l^2
\]

and formula (5) gives the probability (7). ■

Remark 2. – When \(l = a\sqrt{2} \) formulas (6) and (7) coincide, having the same value \(p_l = \frac{2}{5} + \frac{4\sqrt{2}}{5\pi} \).

Theorem 3. – If \(2a < l < \sqrt{5}a \), the probability that a segment \(s \), of length \(l \), intersects a side of one of the tiles of the lattice \(\mathcal{R} \) is

\[
p_l = \frac{1}{5} - \frac{2}{\pi} + \frac{4}{5\pi} \arcsin \frac{a}{l} + \frac{4\sqrt{l^2 - a^2}}{5\pi a} + \frac{12l}{5\pi a} - \frac{3l^2}{5\pi a^2}.
\]

Proof. – Let \(\varphi_2 := \arccos \frac{2a}{l} \). As \(l < \sqrt{5}a \) we have \(\varphi_2 < \varphi_1 \), so we must consider the following three cases:

\[0 < \varphi < \varphi_2, \quad \varphi_2 < \varphi < \varphi_1, \quad \varphi_1 < \varphi < \frac{\pi}{4} \, . \]

When \(0 < \varphi < \varphi_2 \) we have

area \(C_0(\varphi) = (3a - l \cos \varphi)(a - l \sin \varphi) \)

\[= 3a^2 - al(3 \sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi \, . \]

When \(\varphi_2 < \varphi < \varphi_1 \) we find (see figure 2)

area \(C_0(\varphi) = 3a^2 - al(\sin \varphi + \cos \varphi) \).

Finally when \(\varphi_1 < \varphi < \frac{\pi}{4} \) we get (see figure 4)

area \(C_0(\varphi) = 4a^2 - 2al(\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi \, . \)
Hence formula (4) yields
\[
\mu(N) = \int_0^{\varphi_2} [3a^2 - al(3 \sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi] \, d\varphi
\]
\[
+ \int_{\varphi_1}^{\varphi_2} [3a^2 - al(3 \sin \varphi + \cos \varphi)] \, d\varphi
\]
\[
+ \int_{\varphi_1}^{\pi/4} [4a^2 - 2al(\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi] \, d\varphi
\]
\[
= a^2 \left(\frac{5}{2} - \varphi_1 + \pi \right) - a \sqrt{l^2 - a^2} - 3al + \frac{3}{4} l^2.
\]
and, taking into account (1) and (3) we immediately find the stated probability (8).

Remark 3. – It is easily checked that (7) and (8) give the same probability
\[
p_l = \frac{1}{3} + \frac{2}{5\pi} + \frac{4\sqrt{3}}{5\pi} \quad \text{when } l = 2a.
\]
THEOREM 4. – If $\sqrt{5}a < l < 2\sqrt{2}a$, the probability that a segment s, of length l, intersects a side of one of the tiles of the lattice R is

$$p_l = \frac{1}{5} + \frac{2}{\pi} + \frac{16}{5\pi} \arccos \frac{2a}{l} - \frac{12}{5\pi} \arcsin \frac{a}{l} + \frac{12l}{5\pi a}$$

$$- \frac{12}{5\pi a} \sqrt{l^2 - a^2} - \frac{8}{5\pi a} \sqrt{l^2 - 4a^2} + \frac{l^2}{5\pi a^2}.$$

PROOF. – This time the angle φ_1 is less than φ_2 because we are now assuming $l > a\sqrt{5}$, thus we have to consider three possible ranges of variation for the angle φ:

$$0 < \varphi < \varphi_1, \quad \varphi_1 < \varphi < \varphi_2, \quad \varphi_2 < \varphi < \frac{\pi}{4}.$$

In the first case, $0 < \varphi < \varphi_1$, we have (see figure 5)

$$\text{area } C_0(\varphi) = 3a^2 - al(3 \sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi.$$

In the second case, $\varphi_1 < \varphi < \varphi_2$, we find $\text{area } C_0(\varphi) = 0$ because $C_0(\varphi) = 0$.

In the third case, $\varphi_2 < \varphi < \frac{\pi}{4}$, we get (see figure 4)

$$\text{area } C_0(\varphi) = 4a^2 - 2al(\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi.$$

Figure 5
By applying formula (4) to obtain the value of the measure of the set \(\mathcal{N} \) we find

\[
\mu(\mathcal{N}) = \int_{0}^{\frac{\pi}{4}} [3a^2 - al(3 \sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi] d\varphi
\]

\[
+ \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} [4a^2 - 2al(\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi] d\varphi
\]

\[
= a^2 \left(\pi - \frac{5}{2} - 4\varphi_2 + 3\varphi_1 \right) - 3al + 3a \sqrt{l^2 - a^2} + 2a \sqrt{l^2 - 4a^2} - \frac{l^2}{4}
\]

and formula (5) gives the probability (9).

Remark 4. – When \(l = a\sqrt{5} \) both formula (8) and (9) become

\[
p_l = \frac{1}{5} + \frac{12\sqrt{5} - 17}{5\pi} + \frac{4}{5\pi} \arcsin \frac{1}{\sqrt{5}}.
\]

Theorem 5. – If \(2\sqrt{2}a < l < 3a \), the probability that a segment \(s \), of length \(l \), intersects a side of one of the tiles of the lattice \(\mathcal{R} \) is

(10) \[
p_l = 1 - \frac{12}{5\pi} \arcsin \frac{a}{l} + \frac{2}{5\pi} - \frac{12l}{5\pi a} - \frac{12}{5\pi a} \sqrt{l^2 - a^2}.
\]

Proof. – If \(0 < \varphi < \varphi_1 \), we find (see figure 5)

\[
\text{area } C_0(\varphi) = 3a^2 - al(3 \sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi.
\]

As the set \(C_0(\varphi) \) is empty when \(\varphi_1 < \varphi < \frac{\pi}{4} \) we simply have

\[
\mu(\mathcal{N}) = \int_{0}^{\varphi_1} [3a^2 - al(3 \sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi] d\varphi
\]

\[
= 3a^2 \arcsin \frac{a}{l} - 3al + 3a \sqrt{l^2 - a^2} - \frac{5a^2}{2}
\]

and this value immediately yields the probability (10).
REMARK 5. – When \(l = 2\sqrt{2}a \), formulas (9) and (10) give the same probability

\[
p_l = 1 - \frac{12}{5\pi} \arcsin \frac{1}{2\sqrt{2}} + \frac{2(1 + 12\sqrt{2} - 6\sqrt{7})}{5\pi}.
\]

THEOREM 6. – If \(3a < l < \sqrt{10}a \), the probability that a segment \(s \), of length \(l \), intersects a side of one of the tiles of the lattice \(\mathcal{R} \) is

\[
p_l = 1 + \frac{4}{\pi} - \frac{12}{5\pi} \left(\arcsin \frac{a}{l} - \arccos \frac{3a}{l} \right)
- \frac{4(l^2 - 9a^2 + \sqrt{l^2 - a^2})}{5\pi a} + \frac{2l^2}{5\pi a^2}.
\]

PROOF. – Let \(\varphi_3 := \arccos \frac{3a}{l} \). As we are assuming \(l < \sqrt{10}a \), we have \(\varphi_3 < \varphi_1 \) and therefore the different ranges of variation of the angle \(\varphi \) which we have to consider are

\[0 < \varphi < \varphi_3, \quad \varphi_3 < \varphi < \varphi_1, \quad \varphi_1 < \varphi < \frac{\pi}{4}.\]

In the first and in the latter case the set \(C_0(\varphi) \) is empty and consequently area \(C_0(\varphi) = 0 \). When \(\varphi_3 < \varphi < \varphi_1 \) we find (see figure 5)

\[
\text{area } C_0(\varphi) = 3a^2 - al(3\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi.
\]

Formula (4) gives

\[
\mu(\mathcal{N}) = \int_{\varphi_3}^{\varphi_1} [3a^2 - al(3\sin \varphi + \cos \varphi) + l^2 \sin \varphi \cos \varphi] \, d\varphi
= 3a^2 \left(\arcsin \frac{a}{l} - \arccos \frac{3a}{l} \right) - 5a^2
+ a(\sqrt{l^2 - 9a^2} + 3\sqrt{l^2 - a^2}) - \frac{l^2}{2}
\]

and (5) yields the probability (11). ■
Remark 6. – If we substitute \(l = 3a \) in (10) and (11) we find the same probability

\[
p_l = 1 - \frac{12}{5\pi} \arcsin \frac{1}{3} + \frac{2(19 - 12\sqrt{2})}{5\pi}.
\]

Next we choose as test body a circle \(\gamma \) of constant radius \(r \). We denote by \(C_0(r) \) the set of points \(P \in C_0 \) with the property that the circle of center \(P \) and radius \(r \) is completely contained in the elementary tile \(C_0 \). Taking into account formula (1), the probability \(p_r \) of intersection between a random circle (of constant radius \(r \)), uniformly distributed in a bounded region of the plane, and one of the sides of an elementary tile of the lattice \(R \) is

\[
p_r = 1 - \frac{\text{area } C_0(r)}{\text{area } C_0} = 1 - \frac{\text{area } C_0(r)}{5a^2}.
\]

The circle \(\gamma \) is «small» with respect to the lattice \(R \) if and only if

\[
2r < a.
\]

Theorem 7. – If \(r \) satisfies condition (13), the probability that a circle \(\gamma \) intersects one of the sides of an elementary tile of the lattice \(R \) is

\[
p_r = \frac{12r}{5a} - \frac{(8 - \pi) r^2}{5a^2}.
\]

Proof. – From figure 6 we get

\[
\text{area } C_0(r) = 2(3a - 2r)(a - 2r) - (a - 2r)^2 + 4r^2 - \pi r^2
\]

\[= 5a^2 - 12ar + (8 - \pi) r^2.
\]

Using this value of area \(C_0(r) \) in formula (12) we obtain the probability (14).

Recalling the definition of «non-small» circle with respect to the lattice \(R \), we can say that this case occurs exactly when

\[
a < 2r < \sqrt{2}a.
\]
THEOREM 8. – If \(r \) satisfies condition (15), the probability that a circle \(\gamma \) intersects one of the sides of an elementary tile of the lattice \(\mathcal{R} \) is

\[
 p_r = \frac{4}{5} - \frac{\pi r^2}{5a^2} + \frac{4r^2}{5a^2} \arcsin \frac{a}{2r} + \frac{1}{5a} \sqrt{4r^2 - a^2}.
\]
PROOF. – Using the notations of figure 7 we can write
\[4 \cdot \frac{\pi r^2}{4} - 4 \text{area } C_1 + \text{area } C_0(r) = a^2, \]

hence
\[\text{(17)} \quad \text{area } C_0(r) = a^2 - \pi r^2 + 4 \text{area } C_1. \]

From figure 8 we get
\[\text{area } C_1 = 2 \int_0^r \sqrt{r^2 - x^2} dx = r^2 \left[\frac{\pi}{2} - \arcsin \frac{a}{2r} - \frac{4}{4r^2} \sqrt{4r^2 - a^2} \right]. \]

By substituting this value in (17) we obtain
\[\text{area } C_0(r) = a^2 + \pi r^2 - 4r^2 \arcsin \frac{a}{2r} - a \sqrt{4r^2 - a^2} \]

and formula (12) yields the probability (16).

REMARK 7. – When \(r = \frac{a}{2} \) formulas (14) and (16) give the same probability \(p_r = \frac{4}{5} + \frac{\pi}{20}. \)

REFERENCES

Andrei Duma: FB Mathematik, der Fernuniversität-GHS
Lützowstr. 125, D-58084 Hagen, Germany

Marius I. Stoka: Dipartimento di Matematica
Università di Torino, via Carlo Alberto 10, I-10123 Torino, Italy

Pervenuta in Redazione
il 23 febbraio 2000