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Approximate Smoothings of Locally Lipschitz Functionals (*).

ALEKSANDER ĆWISZEWSKI - WOJCIECH KRYSZEWSKI

Sunto. – L’articolo tratta il problema dell’approssimazione di funzionali localmente
Lipschitziani. Viene proposto un concetto di approssimazione che si basa sull’idea
dell’approssimazione in grafico del gradiente generalizzato. Si prova l’esistenza di
tali approssimazioni per funzionali localmente Lipschitziani definiti in domini
aperti di RN . Infine, si presenta un procedimento di approssimazione normale re-
golare di insiemi regolari (introdotti in [13]).

Summary. – The paper deals with approximation of locally Lipschitz functionals. A
concept of approximation, based on the idea of graph approximation of the genera-
lized gradient, is discussed and the existence of such approximations for locally
Lipschitz functionals, defined on open domains in RN , is proved. Subsequently, the
procedure of a smooth normal approximation of the class of regular sets (contai-
ning e.g. convex and/or epi-Lipschitz sets) is presented.

1. – Introduction.

In the paper we investigate locally Lipschitz functionals defined on open
domains in the real N-dimensional Euclidean space RN and their (Clarke ge-
neralized) differentiability properties in the context of approximation theory.
Our purpose is twofold. First, we determine whether given a locally Lipschitz
f : UKR , where U%RN is open, it is possible to approximate (in an appropria-
te way) its Clarke generalized gradient ¯f (see Section 2 for details concerning
notation and preliminaries) by gradients of C 1-smooth functions. Our interest
in the question is motivated by applications to problems of smooth approxima-
tions of sets in RN and the celebrated Whitney theorem [30] (see also e.g. [22])
saying:

Given a C 1-smooth function f : UKR and a continuous function e : UK

(0 , 1Q), there is a CQ (or even an R-analytic) function g : UKR such that

(i) Nf (x)2g(x)NEe(x), for all x�U ;

(ii) N˜f (x)2˜g(x)NEe(x), for all x�U.

(*) Supported by KBN Grant 2 P03A 03315.
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It is natural to ask to what extent this result may be generalized for a local-
ly Lipschitz f . We shall also address the problem of the subgradient represen-
tation of a set-valued map. Suppose that W : U2i RN is a set-valued map (with
nonempty values). We say that W has (Lipschitz) variational structure if the-
re is a locally Lipschitz function f : UKR such that, for each x�U , ¯f (x), the
Clarke generalized gradient of f at x , is contained in W(x). We also say that f is
a (Lipschitz) potential of W. There are several results providing sufficient con-
ditions for W to have such a structure (see e.g. [7, Sec. 2.5] for an up to date
survey of the problem).

It appears that both problems have much in common and, in fact, may be
answered simultaneously. The key to such an answer is provided by the con-
cept of graph approximation of set-valued maps (see for instance, the second
author’s survey [20], [19] or [21]). Namely, in Section 3, we shall prove

THEOREM. – An upper semicontinuous set-valued map W : U2i RN with
compact convex values has a (Lipschitz) variational structure if and only if,
for any eD0, there is a C Q-function g : UKR such that ˜g is an e-approxi-
mation (on the graph) of W. More precisely a locally Lipschitz function
f : UKR is a potential of W if and only if, for any eD0, there is a C Q-fun-
ction g : UKR such that

(i) Nf (x)2g(x)NEe on U ;

(ii) ˜g is an e-approximation on the graph of W.

Such a function g shall be referred to as the e-approximate smoothing of f .
It is clear that this result constitutes a locally Lipschitz counterpart of the
Whitney theorem.

To explain our view-point let us recall that due to the Rademacher theorem
a locally Lipschitz f is almost everywhere (a.e.) differentiable and, for
x�U ,

(1) ¯f (x)4 conv mp�RN Np4 lim
nKQ

˜f (xn ), xnKx and (n ˜f (xn ) existsn .
The lack of continuity of the a.e. defined gradient implies that in general ¯f (x)
is essentially a set and excludes its (uniform) approximability by gradients of
smooth functions. For instance, if R�xO f (x) »4NxN , then

¯f (x)4
.
/
´

21

[21, 1]

1

if xE0 ,

if x40 ,

if xD0 .

This example shows that indeed one can expect neither the existence of uni-
form continuous approximations of ¯f nor their required particular, i.e. gra-
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dient like, form. But ¯f admits continuous graph approximations (this holds for
any upper semicontinuous set-valued map with closed convex values in view of
the Cellina theorem [8]) and it makes sense to ask whether there are graph-
approximations of ¯f being gradients of some smooth real functions. It also ap-
pears that our approach has much in common with the notion of a derivate
container introduced by Warga in [26] (comp. [27]) in the context of non-
smooth controllability problems – see Remark 3.8 below.

Secondly, in section 4, we shall provide some examples of applications. Ac-
tually, as any approximation result, ours has numerous applications; we have
recently used it in the context of partial differential equations with disconti-
nuous nonlinearities [14] as well as in the theory of generalized hamiltonian
systems. Here we shall study the following issue. If K is a closed subset of RN ,
then the distance function dK is (globally) Lipschitz but not differentiable (e.g.
on the boundary bd K of K). Approximate smoothings of dK on RN 0K provide
appropriate regularizations of K . More generally, assume that K»4]x�
UNf (x)G0( is closed in the open domain U of a locally Lipschitz function f .
Taking a properly chosen approximate smoothing g of f in U0K , appropriate
sublevel sets of g provide a sequence ]Kn(n41

Q of outer approximations of K
converging to K (in a well-defined sense) and allowing to study the normal (or
tangent) cones to K in terms of the limit behavior of normal (or tangent) cones
to Kn . Our interest in these issues has been inspired by the recent papers of
Cornet and Czarnecki [11, 12] and Benoist [5]. Our methods allow to obtain
more general results by simpler means.

Finally, in Appendix we prove a quantitative version of a deformation lem-
ma valid for locally Lipschitz functionals.

2. – Preliminaries.

As usual, N QN and aQ , Qb denote the Euclidean norm and the inner product in
RN , respectively. Let A%RN ; for x�RN , d(x , A)4dA (x) »4 inf

a�A
Nx2aN .

Given eD0, B(A , e) »4]x�RN NdA (x)Ee(, D(A , e) »4]x�RN NdA (x)Ge(.
The closure, the boundary, the interior of A and the convex hull of A are de-
noted by cl A , bd A , int A and conv A , respectively. By A7»4]x�RN N( a�A
ax , abG0( we denote the (negative) polar cone of A . Clearly A77»4 (A7) 7 is

the smallest closed convex cone containing A , i.e. A774 clg 0
lF0

l Qconv Ah . The

distance between A and B%RN is defined as dist (A , B) »4 inf
a�A , b�B

Na2bN . By

the support function of A we mean the function s A : RNKRN]1Q( given by

s A (v) »4 sup
a�A

aa , vb , v�RN .
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It is clear that s A is a lower semicontinuous gauge function (i.e. it is subadditi-
ve and positively homogeneous); moreover cl conv A4]x�RN N( v�RN

ax , vbGs A (v)(; s A is continuous and finite if and only if A is bounded. Any
lower semicontinuous gauge s determines a closed convex (and bounded whe-
never s is finite) set B4]x�RN N( v�RN ax , vbGs(v)( and then s B4s .

Consider an open U%RN and a locally Lipschitz function f : UKR . The di-
rectional derivative (in the sense of Clarke) of f at x�U in the direction v�
RN is defined by

f 7(x ; v) »4 lim sup
yKx , hK01

f (y1hv)2 f (y)

h
.

It is clear that, for all x�U , v�RN , f 7(x ; v) is a well-defined real number and
the function vO f 7(x ; v) is a Lipschitz continuous finite gauge (of rank equal
to the Lipschitz rank of f around x). Therefore f 7(x ; Q) determines the genera-
lized gradient of f

¯f (x) »4]p�RN N( v�RN ap , vbG f 7(x ; v)(

and

s ¯f (x) (v)4 f 7(x ; v), v�RN .

The set-valued map U�xO ¯f (x) has compact convex values and appears to be
upper semicontinuous, since the function (x , v) O f 7(x ; v) is an upper semi-
continuous real function.

The Rademacher theorem asserts that f is differentiable almost every-
where in U , i.e. for almost all x�U , ˜f (x), the gradient of f at x , exists
and

a˜f (x), vbG f 7(x ; v) , v�RN .

If g : UKR is C 1-smooth, then it is locally Lipschitz; g7(x ; v)4 a˜g(x), vb and
¯g(x)4]˜g(x)( for x�U and v�RN. The reader should consult [9] for other
useful properties of f 7 and ¯f .

Let us note the following two straightforward facts.

LEMMA 2.1. – Suppose that f : UKR is locally Lipschitz.

(i) If g : UKR is a nonnegative C 1-function, then

¯( fg)(x)4 f (x) ˜g(x)1g(x) ¯f (x) (x�U) .

(ii) If g1 , g2 : UKR are nonnegative C 1-smooth and g1 (y)1g2 (y)41
for all y from a neighborhood of x�U , then

¯f (x)4¯( g1 f )(x)1¯( g2 f )(x) . r



APPROXIMATE SMOOTHINGS OF LOCALLY LIPSCHITZ FUNCTIONALS 293

Assume A%RN and let W : A2i RN be a set-valued map (i.e. to each x�A a
nonempty set W(x)%RN is assigned). Given a neighborhood U of the graph
Graph (W) »4](x , y)�A3RN Ny�W(x)( (in A3RN), we say that g : AKRN

is a U-approximation (on the graph) of W if

Graph ( g)% U .

Similarly, given a function e : AK (0 , 1Q), we say that g is an e-approxima-
tion (on the graph) of W provided

( x�A g(x)�B(W(B(x , e(x) )OA), e(x) ) .(2)

It is a routine to show that these notions coincide, that is: for any neighbor-
hood U of Graph (W), there is a continuous e(Q) such that an e-approximation of
W is a U-approximation, and, conversely, given continuous e(Q), there is a nei-
ghborhood U such that a U-approximation of W is an e-approximation. Thus, in
the sequel, we shall speak of e-approximations for continuous functions e . For
more details concerning graph approximation (in a much more general set-
tiing) see [19], [20] or [21].

In order to obtain a more analytic characterization of graph-approxima-
tions we shall need the following notation. For A%RN , let

NNNANNN»4 sup
u�D(0 , 1 )

inf
a�A

aa , ub42 inf
u�D(0 , 1 )

s A (u) .

It is easy to see that NNNANNN4NNNconv ANNN4NNNcl conv ANNN . Since D(0 , 1 ) is
compact convex, in view of the well-known min-max equality (see e.g. [1, Th. 8.1]),

NNNANNN4 inf
a� conv A

sup
u�D(0 , 1 )

aa , ub4 inf
a� conv A

NaN .(3)

Thereore NNNANNN40 if and only if 0� cl conv A .
In particular, for f : UKR as above and x�U ,

NNN¯f (x)NNN42 inf
u�D(0 , 1 )

f 7(x ; u) .

LEMMA 2.2. – Let U%RN , W : U2i RN with closed convex values, g :
UKRN and e : UK (0 , 1Q). The following conditions are equivalent:

(i) g is an e-approximation of W;

(ii) for any x�U , there is x�U with Nx2xNEe(x) such that

NNNg(x)2W(x)NNNEe(x) ;

(iii) for any x�U , there is x�U with Nx2xNEe(x) such that

(u�D(0 , 1 ) ag(x), ub2s W(x) (u)Ee(x) .
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PROOF. – By (2), g is an e-approximation of W if and only if, for each x�U ,
there is x�B(x , e(x) ) and y�W(x) such that Ng(x)2yNEe(x), i.e. NNNg(x)2
W(x)NNNEe(x) in view of (3).

On the other hand

NNNg(x)2W(x)NNN4 sup
u�D(0 , 1 )

(ag(x), ub2 sup
y�W(x)

ay , ub) ;

thus (ii) and (iii) are equivalent. r

3. – Approximate smoothing.

We shall start with the «if» part of Theorem stated in Introduction. Let, as
above, U%RN be open.

THEOREM 3.1. – Let W : U2i RN be an upper semicontinuous set-valued
map with compact convex values. If, for any (constant) eD0, W admits e-ap-
proximation of the form ˜g : UKRN , where g : UKR is a C 1-smooth fun-
ction, then W has (Lipschitz) variational structure.

PROOF. – For any integer nF1, let gn : UKR be a C 1-smooth function
such that ˜gn is a (1 /n)-approximation of W . Since W , being upper semiconti-
nuous with compact values, is locally bounded (i.e. for any x�U and any boun-
ded neighborhood Vx%U of x , there is cxD0 such that sup

z�W(y)
NzNGcx for y�Vx),

we get by (2) that the family ]˜gn( is also (uniformly) locally bounded.
Without loss of generality, we may assume that U is connected. Choose

x0�U; replacing gn by gn (Q)2gn (x0 ), we may also assume that gn (x0 )40 for
all n . This, the local boundedness of the family ]˜gn( and the mean value
theorem imply that, for any x�U , the set ]gn (x)( is bounded and the family
]gn( is equicontinuous. Therefore, by the (generalized) Ascoli-Arzela theorem
(see e.g. [15, Cor. 0.4.12]), we may assume that gn converges almost uniformly
(i.e. uniformly on compact subsets of U) to a continuous function f : UKR . It
is clear that f is locally Lipschitz.

Fix x�U , u�D(0 , 1 ) and eD0. Choose hD0 such that D(x , 3h)%U
and

( z�B(x , 3h) s W(z) (u)Es W(x) (u)1e .(4)

Such a choice is possible in view of the upper semicontinuity of W .
Take an arbitrary y�U with Ny2xNEh and 0EhEh . By the mean value

theorem, for each n , there is u n� (0 , 1 ) such that

gn (y1hu)2gn (y)

h
4 a˜gn (y1u n hu), ub .(5)
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By Lemma 2.2, there is yn�U (depending on y and h) with Ny1u nhu2ynNE
1

n
such that

a˜gn (y1u n hu), ubGs W(yn ) (u)1
1

n
.(6)

Clearly Nx2yn NG2h1
1

n
; hence, for sufficiently large n , say nFn0 ,

Nx2yn NE3h and 1

n
Ee . By (5), (6) and (4), for nFn0 ,

gn (y1hu)2gn (y)

h
Es W(x) (u)12e .(7)

Since gnK f uniformly on D(x , 3h), by (7)

f (y1hu)2 f (y)

h
Gs W(x) (u)12e .

Therefore, for any u�D(0 , 1 ),

s ¯f (x) (u)4 f 7(x ; u)4 inf
hD0

sup
y�B(x , h), h� (0 , h)

f (y1hu)2 f (y)

h
Gs W(x) (u) .

This implies that s ¯f (x)Gs W(x) on RN , i.e. ¯f (x)%W(x) for all x�U . r

REMARK 3.2. – For the sake of completness we shall discuss a different, mo-
re synthetic proof of Theorem 3.1. As above the sequence ( gn ) converges almo-
st uniformly to f and the sequence (˜gn ) is locally bounded. By the Dunford-
Pettis theorem ˜gn � h�L 1

loc (U , RN ) (weakly). Hence, for any test function
k : UKR (i.e. a C Q-function with compact support),

s
U

f (x) ˜k(x) dx4 lim
nKQ

s
U

gn (x) ˜k(x) dx4

2 lim
nKQ

s
U

k(x) ˜gn (x) dx42s
U

k(x) h(x) dx ,

i.e. h is the weak gradient of f . Since f is locally Lipschitz, f�W 1, Q
loc (U) and its

weak gradient h4˜f a.e. on U (where ˜f is the ordinary gradient existing a.e.
in view of the Rademacher theorem) – see e.g. [16, Sec. 5.8]. By the Conver-
gence Theorem (see e.g. [2, Th. 3.2.6]), ˜f (x)�W(x) for almost all x�U . Hen-
ce, by (1), in view of the upper semicontinuity of W and because values of W are
convex, ¯f (x)%W(x) for all x�U . r

In the rest of this section we shall deal with the converse of Theorem 3.1.
The argument we are going to present is standard and follows the steps of the
Whitney theorem’s proof with necessary adjustments provided by below Lem-
ma 3.4.
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Let v : RNKR be a C Q-mollifier, i.e. a nonnegative function with the
support

supp v%D(0 , 1 )

and such that

s
RN

v(x) dx41 .

Suppose f : RNKR is a locally Lipschitz function with compact support; then f
is globally Lipschitz. For any lD0, we define the l-regularization of f
putting

gl (x) »4s
RN

f (x2lz) v(z) dz .(8)

The following properties are self-evident.

PROPOSITION 3.3. – Let LD0 be the Lipschitz rank of f . If gl is a regulari-
zation of f , then

(i) gl is C Q-smooth;

(ii) gl is a uniform lL-approximation of f;

(iii) supp gl%D( supp f , l). r

The next lemma plays a key role in our smoothing procedure.

LEMMA 3.4. – Let f1 , R , fn : RNKR be Lipschitz continuous functions of
common rank L and compact supports. For any eD0, there is mD0 such
that, for all x�RN , there exists x�B(x , e) such that

(u�D(0 , 1 ) sup
z�B(x , m), h� (0 , m)

fi (z1hu)2 fi (z)

h
E f i7(x; u)1

e

2
(9)

for each i41, R , n .

PROOF. – Fix y�RN . By the very definition of the directional derivative, for

all u�D(0 , 1 ), there is 0Eh4h(y , u)E e

8L
such that

sup
z�B(y , 2h), h� (0 , h)

fi (z1hu)2 fi (z)

h
E f i7(y ; u)1

e

8
(10)

for all i41, R , n . By compactness, we can choose u1 , R , um�D(0 , 1 ) such



APPROXIMATE SMOOTHINGS OF LOCALLY LIPSCHITZ FUNCTIONALS 297

that D(0 , 1 ) is covered by ]B(uj , h(y , uj ) )(j41
m . Put

h(y) »4min ]e , h(y , u1 ), R , h(y , um )( .

Then, for each i41, 2 , R , n ,

(u�D(0 , 1 ) sup
z�B(y , 2h(y) ), h� (0 , h(y) )

fi (z1hu)2 fi (z)

h
E f i7(y ; u)1

e

2
.(11)

Indeed, take any u�D(0 , 1 ), z�B(y , 2h(y) ) and h� (0 , h(y) ). For some j�
]1, R , m( we have Nu2uj NEh(y , uj ). Using (10), the Lipschitz continuity of
fi and f i7(y ; Q), we get for each i ,

fi (z1hu)2 fi (z)

h
4

fi (z1huj )2 fi (z)

h
1

fi (z1hu)2 fi (z1huj )

h

E f i7(y ; uj )1
e

8
1Lh(y , uj )E f i7(y ; uj )1

e

4

G f i7(y ; u)1LNu2uj N1
e

4
E f i7(y ; u)1

e

2
,

which proves (11).

Let K»4 0
i41

n

supp fi . There are y1 , R , yp�K such that K is contained in

V»4 0
j41

p

B(yj , h(yj ) ). The compactness of K also implies the existence of h 0D0

so small that B(K , h 0 )%V . We put

m»4minm h 0

2
, h(y1 ), R , h(yp )n .

We shall verify (9). Take x�RM . Two cases are distinguished. If x�V , then
B(x , 2m)OK4¯ , which means that, for z�B(x , m), 0EhEm and u�D(0 , 1 ),
one has

fi (z1hu)404 fi (z) ,

for all i , because Nz1hu2xNGNz2xN1mNuNE2m . Since f i7(x ; u)40, con-
dition (9) holds with x »4x . If x�V , then there is yj�K such that Nx2yj NE

h(yj ). Take z�B(x , m), h� (0 , m), u�D(0 , 1 ), then Nz2yj NEm1h(yj )G
2h(yj ) and 0EhEh(yj ). Hence putting x »4yj and using (11) one obtains (9)
again. r

As a consequence we derive the local version of our result.

PROPOSITION 3.5. – Let fi (i41, R , n) be as in Lemma 3.4. Then, for any
eD0, there exists l 0D0 such that the following conditions are satisfied:
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(i) for any lGl 0 , l-regularization gl
i (of fi ) is a uniform e-approxima-

tion of fi , for all i41, R , n ;

(ii) for any x�RN , there exists x�B(x , e) such that for all lGl 0 and
each i41, R , n

NNN˜gl
i (x)2¯fi (x)NNNEe .

PROOF. – We apply Lemma 3.4 and put l 0 »4minmm , e

L
nD0. Take lGl 0 .

In view of Proposition 3.3 (ii), property (i) holds.
To proceed with (ii), fix a point x and u�D(0 , 1 ). There is d4d(l , x , u)E

m such that, for all i , we have

( h� (0 , d) a˜gl
i (x), ubE

gl
i (x1hu)2gl

i (x)

h
1

e

2
.(12)

By (9) we get, for h� (0 , d),

gl
i (x1hu)2gl

i (x)

h
4

1

h
s

D(0 , 1 )

[ fi (x2lz1hu)2 fi (x2lz) ] v(z) dzE f i7(x ; u)1
e

2
.

This inequality along with (12) gives a˜gl
i (x), ubE f i7(x; u)1e .

Since u was arbitrary, this completes the proof in view of Lemma 2.2. r

REMARK 3.6. – By inspection of the above proofs, it is easy to see that we

can achieve that, given an arbitary neighborhood W of 0
i41

n

supp fi , if x�W ,

then the existing point x lies actually in WOB(x , e). r

Now we are in a position to prove the main result of this section.

THEOREM 3.7. – Suppose f : UKR , where U%RN is open, is a locally Lip-
schitz function. For any continuous e : UK (0 , 1Q), there is a C Q-function
g : UKR such that

(i) for all x�U , Nf (x)2g(x)NEe(x);

(ii) ˜g is an e-approximation (on the graph) of ¯f (Q).
In other words g is an e-approximate smoothing of f .
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PROOF. – Let ]Kn(n40
Q be an increasing family of compact sets such

that

K04¯ ; (nF1 ¯cKn% int Kn11 and U4 0
n41

Q

Kn .(13)

For any nF1, let Pn »4 int Kn11 0Kn21 . In view of (13), ]Pn( is an open cove-
ring of U; let ]W n(n41

Q be a C Q-smooth partitition of unity subordinated to it,
i.e. supp W n%Pn for any nF1.

Clearly, functions W n Q f (nF1) are (globally) Lipschitz and may be conside-
red as defined on RN . In view of the continuity of e , the numbers

e 1 »4minm 1

2
min
x�K2

e(x), dist ( supp W 3 , K2 ), dist ( supp W 2 , K1 )n ;

e n »4minm 1

2
min

x�Kn11
e(x), dist ( supp W n21 , [Kn ), dist ( supp W n12 , Kn11 )n (nF2)

(where [ denotes the complement) are positive. Applying Proposition 3.5, for
each nF1, we find l nD0 such that, for any 0ElGl n , l-regularizations gl

n

and gl
n11 of W n Q f and W n11 Q f , respectively, are appropriate uniform (e n /2 )-ap-

proximations and, for any x�PnNPn11 , there is x�B(x , e n )O (PnNPn11 )
(see Remark ) satisfying

NNN˜gl
n (x)2¯(W n f )(x)NNNEe n /2(14)

and

NNN˜gl
n11 (x)2¯(W n11 f )(x)NNNEe n /2(15)

for all 0ElGl n . Moreover, taking into account Proposition 3.3 and decrea-
sing l n if necessary, we may assume that

supp gl
n%Pn and supp gl

n11%Pn11(16)

for all 0ElGl n . Furthermore, without loss of generality, one can also assu-
me that the sequence ]l n(

Q
n41 is nonincreasing.

Finally, define g : UKR by the formula

g(x)4 !
n41

Q

gl n
n (x) .

Evidently, g is well-defined and C Q-smooth since, by (16), at most two terms
may be nonzero simultaneously. It remains to show that g is an e-approximate
smoothing of f . For a fixed x�U , there is a unique nF0 such that x�
Kn11 0Kn . If n40, then g(y)4g 1

l 1
(y) on a neighborhood of x and the claim

follows from (14) and the definition of e 1 . If nF1, then, by (16), g(y)4
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gl n
n (y)1gl n11

n11 (y) for y from a neighborhood of x . This yields

˜g(x)4˜gl n
n (x)1˜gl n11

n11 (x) .(17)

By the choice of numbers e n , we gather that, for all y�B(x , e n ),

W n (y)1W n11 (y)41 .(18)

Therefore

Ng(x)2 f (x)NGNgl n
n (x)2W n (x) f (x)N1Ngl n11

n11 (x)2W n11 (x) f (x)NEe nGe(x) .

By (17), (18) and Lemma 2.1,

NNN˜g(x)2¯f (x)NNNGNNN˜gl n
n (x)2¯(W n f )(x)NNN1

NNN˜gl n11
n11 (x)2¯(W n11 f )(x)NNNGe nGe(x) ,

which, in virtue of Lemma 2.2, ends the proof. r

REMARK 3.8. – We would like to thank the referee for turning our attention
to the contribution of J. Warga concerning the so-called derivate containers.
In [26] Warga studies a Lipschitz functional f : UKR and says that a family of
compact subsets ]L e f (x)Nx�U , eD0( of RN is a derivate container for f if
L h f (x)%L e f (x) (hEe) and, for every compact subset U *%U , there exists a
sequence ] fi( of C 1-fuctions defined on a neighborhood of U * such that
lim

iKQ
fi4 f uniformly on U * and, for any x�U * and eD0, there are i0 , dD0

(depending on e and U *) such that ˜fi (y)�L e f (x) provided iF i0 and
Ny2xNEd . He also shows [26, Th. 2.5], that the family ¯ e f (x) »4
cl conv ]˜f (y)NNy2xNGe , ˜f (y) exists( (x�U , eD0) is a derivate container.
It is not difficult to see that the generalized gradient ¯f(x)4 1

eD0
¯e f(x) for each

x�U . Having these facts, one may prove the local version of the «only if» part
of Theorem from Section 1 – comp. Proposition 3.5. It seems however that the
presented self-contained setting and the consequent use of the language of
graph-approximations is more convenient. r

COROLLARY 3.9. – Let f : UKR , where U%RN is open, be a locally Lip-
schitz function. Suppose c�R and f 21 (c)c¯ . There exists a locally Lip-
schitz function g : UKR such that:

(i) g 21 (c)4 f 21 (c) and ( f (x)2c)( g(x)2c)F0 for all x�U ;

(ii) g is C Q-smooth on U0 f 21 (c);

(iii) for all x� f 21 (c), ¯g(x)%¯f (x).

PROOF. – For simplicity of notation assume that c40. Let e : UK (0 ,
1Q) be given by e(x)4min ]Nf (x)N2 , Nf (x)N/2(. Clearly e(x)D0 if x�
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U0 f 21 (0). Put fE4 fNf 21 (0 , 1Q) and fI4 fNf 21 (2Q , 0 ). In view of Theorem
3.7, there are e-approximate smoothings gE : f 21 (0 , 1Q)KR and gI :
f21 (2Q , 0)KR of fE and fI , respectively. The function g : UKR is given by

g(x)4
.
/
´

gE (x)

0

gI (x)

if f (x)D0

if f (x)40

if f (x)E0 .

It is not difficult to show that g is locally Lipschitz, conditions (i), (ii) are sati-
sfied and

( x�U Nf (x)2g(x)NGe(x) .(19)

To check (iii), suppose first that x� f 21 (0) and that ˜g(x) exists. For any
u�RN and hD0, we have

g(x1hu)

h
4

g(x1hu)2 f (x1hu)

h
1

f (x1hu)

h
G

Nf (x1hu)N2

h
1

f (x1hu)

h
GLx

2 hNuN21
f (x1hu)2 f (x)

h

where Lx is a Lipschitz rank of f around x . Hence

a˜g(x), ubG f 7(x ; u) ,

i.e. ˜g(x)�¯f (x). Now suppose that g is not differentiable at x� f 21 (0). Recall
that, in virtue of (1),

¯g(x)4 conv mz4 lim
nKQ

˜g(xn )NxnKx , xn�V gn
where V g is the set (of full measure) on which ˜g exists. For any z4
lim ˜g(xn )�¯g(x) (xnKx and xn�V g), there are two possibilities: almost all
xn belong to f 21 (0) or, for a subsequence (still denoted by ]xn() one has
f (xn )c0. In the first case z�¯f (x) since ˜g(xn )�¯f (xn ) and the graph of ¯f is
closed. Otherwise, for any n , there is xn�B(xn , e(xn ) ) such that ˜g(xn )�
B(¯f (xn ), e(xn ) ). Clearly xnKx; hence, again by the closedness of the graph of
¯f , we gather that z�¯f (x). Hence ¯g(x)%¯f (x) since the latter set is
convex. r

4. – Approximate smoothings of sets.

In this section we shall apply results of Section 3 to the problem of regula-
rization of sets in RN and their approximation by smooth sets.
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Suppose U is an open subset of RN . Let K%U be closed in U . By the nor-
mal cone to K at x�K we understand the cone

NK (x) »4¯dK (x) 77 .

This cone admits a more intrinsic description by means of the tangent cone to
K at x (in the sense of Clarke)

CK (x) »4{u�RN N lim
yKx , y�K , hK01

dK (y1hu)

h
40} ;

namely

NK (x)4CK (x) 74]p�RN N(u�CK (x) ap , ubG0( .

It is clear that if x� int K , then NK (x)4]0(.
Here and below, by a smooth set in U we understand a closed (in U) set K

for which bd U K , the boundary with respect to U, is an (N21)-dimensional
C Q-smooth manifold, that is, for any x� bd U K , there is a neighborhood V%U
of x and a C Q-function g : VKR such that 0 is a regular value of g and
bd U KOV4g 21 (0). In this case

NK (x)4]l˜g(x)NlF0( .

Let us first observe that the very notion of regularization and/or approxi-
mation of a set requires a careful description. If one wants just to approximate
a given (closed in U) set K%U in the sense of the existence of a smooth set KA in
an arbitrary neighborhood V of K (but such that U0Vc¯), then the problem is
easy. It is enough to take a nonnegative C Q-function h : UKR equal to 0 on K
and 1 on the complement U0V of U (such functions always exist). The Sard
theorem implies the existence of a regular value e� (0 , 1 ) of h . The set KA »4

h21 [0 , e] is a desired smooth set contained in V . In this way, putting KAn »4

h21 [0 , e n ] where (e n ) is a sequence of regular values tending to 0 , we obtain
the sequence ]KAn( of closed (in U) smooth neighborhoods of K such that

K4 1
n41

Q

KAn (it is clear that if the boundary of K with respect to U is not com-

pact, then the family ]KAn( is not necessarily cofinal in the family of all neigh-
borhoods of K).

However, such approximations seem to be useless if one requires that
a set KA should have the same geometry and/or topology as K . For instance,
without additional assumptions on K and h one cannot expect that KA

is homeomorphic to K . The geometrical properties of K , which should
be inherited by its approximations, may be – for instance – stated in
the language of tangent (or normal) cones to K and the accuracy of
approximations studied in terms of their relations with tangent (or normal)
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cones to approximating sets. Some abstract variants of such approximations
are discussed in [12].

Regular sets.

In the present paper we shall deal with sets of the form

K4]x�UNf (x)G0((S)

where U%RN is open and f : UKR is a locally Lipschitz function. We say that
K is represented by f . This, of course, does not restrict generality since any
closed set is represented by its distance function being (globally) Lip-
schitz.

Let

Z4Z( f ) »4]x�UN0�¯f (x)(

be the set of critical points of f .

REMARK 4.1. – Since the domain U of f is open, neither K nor Z must be clo-
sed in RN ; these sets are, however, closed in U. It is easy to see that K4

int KN f 21 (0) and bd U K , the boundary of K with respect to U , equals to
bd KOU4K0 int K%bd f 21 (0)OU% f 21 (0). If

f 21 (0)OZ4¯ ,(20)

then bd U K4 f 21 (0). r

Above mentioned additional conditions concerning K and implying the exi-
stence of appropriate «good» approximations will now be stated in terms of the
functional constraint f. After [13] and [4] we recall the key definition.

DEFINITION 4.2. – Let K be of the form (S).

(i) We say that K is regular if the set Z0K is closed in U .

(ii) If, for any x� bdU K ,

lim inf
yKx , y�U0K

NNN¯f (y)NNND0 ,(21)

then K is said to be strictly regular.

REMARK 4.3. – It is to be emphasized that (strict) regularity is not a proper-
ty of a set alone; it strongly depends on a function representing it. For instan-
ce, any closed set K%RN admits a C Q-function f : RNKR such that K4 f 21 (0)
but, in general, above conditions (i), (ii) are not satisfied. Therefore, when
speaking of (strict) regularity of K%RN we have to consider a particular (local-
ly Lipschitz) function f : UKR representing it.



ALEKSANDER ĆWISZEWSKI - WOJCIECH KRYSZEWSKI304

(1) If K is regular, then there is an open set V%U conatining K such that,
for x�V0K , 0�¯f (x) (e.g. we may take V»4U0(Z0K)). Thus, the regularity of
K means that f has no critical points in V0K. We emphasize also that no as-
sumptions concerning the behavior of ¯f on K are stated.

(2) It is clear that any strictly regular set is regular for (21) implies the
existence of V as in (1) above (1).

(3) Assume that K is of the form (S) and consider the following
condition:

(˜) there is a neighborhood V%U of K such that inf
y�V0K

NNN¯f(y)NNND0.

Evidently (˜) implies that K is strictly regular (2). Conversely, if bd U K is
compact and K is strictly regular, then condition (˜) is satisfied. Hence (at
least for sets of the form (S) with compact boundary with respect to U) one
may think of strictly regular sets in terms of condition (˜).

(4) If condition (20) holds, then K is strictly regular (since the function
yKNNN¯f (y)NNN is lower semicontinuous) and has nonempty interior. The same
argument shows that the set U0 int K (represented by 2f ) is strictly
regular.

(5) At last observe that, in general, neither regular nor strictly regular
sets are required to have nonempty interiors. r

We shall now provide some examples of (strictly) regular sets.

EXAMPLE 4.4.

(1) Any closed convex subset of RN (represented by dK) is strictly regu-
lar (see [13]).

(2) Any proximate retract (see [23], [17]) is strictly regular. Recall that a
closed set K%RN is a proximate retract if there is an open neighborhood V of
K and a retraction r : VKK such that Nr(x)2xN4dK (x) for all x�V . An easy
computation shows that in this case NNN¯dK (x)NNNF1 on V0K . Thus K , repre-
sented by dK , is indeed strictly regular.

(3) In particular proximally smooth sets from [10] are proximate retrac-
ts and, thus, strictly regular.

(1) Direct argument: let ]xn( be a sequence in Z0K such that xnKx�U. Clearly
x�Z; if x�K , then x� bd U K and 04 lim

nKQ
NNN¯f (xn )NNNF lim inf

yKx , y�K
NNN¯f (y)NNND0, a

contradiction.
(2) Actually condition (˜) was used in [13] to define strictly regular sets; in [13] the

infinite-dimensional situation was considered and condition (ii) of Definition 4.2 was not
sufficient for our purposes.
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(4) Any orientable (N21)-dimensional closed C 1-manifold M in RN is
strictly regular. Indeed, then M4g 21 (0) where g is a C 1 function defined on a
neighborhood W of M and 0 is a regular value of g . Letting f (x)4Ng(x)N for
x�W , we see that M is represented by f and lim inf

yKx , y�M
N˜f (y)ND0. Note that

such manifolds are not necessarily proximate retracts unless they are of class
C 2 .

Similarly the graph of a C 1-function g : U1KRN2 , where U1%RN1 is open
(N4N11N2); it is represented by f : U4U13RN2KR given by f (x , y)4
Ng(x)2yN , (x , y)�U .

(5) To see a set which is regular but not strictly regular consider K»4

S1NS21 where Sk »4]z4 (x , y)�R2 N(x2k)21y 241(.

(6) The so-called «Warsaw sinusoid», i.e. the set K»4](x , y)�R2 Nxc
0, y4sin (1 /x)(N ]0(3 [21, 1 ] is not regular.

Smooth approximation of regular sets.

First let us introduce some auxiliary concepts. Given a sequence ]An(n41
Q

of subsets of RN , the upper limit of (An ), Limsup
nKQ

An , is the set of cluster poin-

ts of sequences ]yn( such that yn�An . Similarly, given a set-valued map W
from A%RN into the family of (nonempty) subsets of RN , the upper limit of W
at the cluster point x0 of A is defined as

Limsup
xKx0

W(x) »4]y�RN N lim inf
xKx0

d(y , W(x) )40( .

REMARK 4.5. – If K , represented by a locally Lipschitz f : UKR , is strictly
regular, then for each x� bd U K ,

Limsup
yKx , y�K

¯f (y) 77%¯f (x) 7 7 .(22)

Indeed: let q�Limsup
yKx, y�K

¯f (y) 77. There are sequences ynKx, yn�K and qnKq,

qn�¯f (yn ) 77 , nF1. By (21), there is mD0 such that NNN¯f (yn )NNNFm for
almost all n; thus qn4l n pn where pn�¯f (yn ) and l nF0. Clearly the sequence
]l n( is bounded and (for a subsequence) l nKlF0. Since (again for a subse-
quence) pnKp�¯f (x), we infer that q4lp�¯f (x) 77. r

We shall need another concept of a limit for sequences of sets. Recall that
the (extended) Hausdorff distance between two closed nonempty subsets A , B
of RN is defined by

H(A , B) »4max msup
a�A

d(a , B), sup
b�B

d(b , A)n ,
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which may be equal to 1Q when A or B is unbounded. Given a sequence
]An(n41

Q of closed subsets of RN and a closed A%RN we write

A4 H2 lim
nKQ

An

if and only if lim
nKQ

H(An , A)40. In this case, for any eD0, A%B(An , e) and

An%B(A , e) for almost all nF1. Observe also that if A4 H2 lim
nKQ

An , then

A4Limsup
nKQ

An4Lim inf
nKQ

An (see e.g. [3] for the notion of the lower limit

Lim inf).
Let us also note the following simple facts.

LEMMA 4.6. – Let A , B%RN be compact convex and C4A77 .

(i) If 0�A , then C4 0
lF0

lA and C is pointed (3).

(ii) The closed convex cone spanned by CNB , i.e. the cone [CNB] 77

equals to cl m 0
lF0

l conv [ANB]n.
(iii) If 0� conv [ANB], then the cone [CNB] 77 is pointed; conversely, if

[CNB] 77 is pointed, 0�A and 0�B , then 0� conv [ANB]. r

Now we state the main result of this section.

THEOREM 4.7. – Let K, represented by a locally Lipschitz function f : UKR ,
be regular and suppose that bdU K is compact. Then:

(i) there is a sequence ]Kn(n41
Q of closed (in U) smooth sets with com-

pact boundaries (with respect to U) and such that, for all nF1,

K4 1
n41

Q

Kn , K% int Kn11%Kn11% int Kn ,(23)

K4 H2 lim
nKQ

Kn(24)

and Kn is bi-Lipschitz homeomorphic to Kn11 (4). If K is strictly regular, then
for any nF1, K is a strong deformation retract of Kn (5).

(ii) For all nF1 and all x� bd U Kn , the closed convex cone spanned by
NKn

(x)N¯f (x) is pointed;

(3) Recall that a closed cone L is pointed if LO (2L)4]0(.
(4) Meaning that there is a Lipschitz homeomorphism Hn : KnKKn11 with the in-

verse Hn
21 being also Lipschitz.

(5) I.e. There is a continuous homotopy H : Kn3 [0 , 1 ]KKn such that H(0 , x)4x ,
H(1 , x)�K for x�Kn and H(t , x)4x for t� [0 , 1 ], x�K.
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(iii) for any sequence ]xn(n41
Q such that xn�Kn and xnKx� bd U K ,

Limsup
nKQ

NKn
(xn )% Limsup

yKx , y�K
¯f (y) 77 .(25)

PROOF. – I. The compactness of bdU K implies that in place of the open nei-
ghborhood V of K (from Remark (1)) one may take V»4B(K , 2d) where dD0
is small enough to ensure that cl V%U and f has no critical points in V0K and,
if K is strictly regular, then

inf
x�V0K

NNN¯f (x)NNN4: mD0(26)

(comp. Remark 4.3 (3)). Clearly cl V0 int K is compact. Let

W»4B(K , d) and V»4W0Z

(recall that Z4]x�UN0�¯f (x)(). Then W and V are open, K%W% cl W%V
and W0K%V .

II. Let x�V . Since 0�¯f (x), by the separation theorem, there are mD0
and u�RN , NuN41, such that s ¯f (x) (u)1mE2km . The upper semicontinuity
of the function V�xO s ¯f (x) (u) implies the exitence of r4rx� (0 , m) such that
D(x , 2r)%U and s ¯f (y) (u)1mE2km for all y�D(x , 2r). Hence

conv D(¯f (D(x , 2r) ), r)OB(0 , kr)4¯ .(27)

Let ]l j(j�J be a partition of unity inscribed into the cover ]B(x , rx )(x�V , i.e.
for each j�J , there is xj�V such that supp l j%B(xj , rj ) where rj »4rxj

.
Define

e 1 (x)4 !
j�J

l j (x) rj , x�V .

Clearly e 1 : VK (0 , 1Q) is continuous. Given x�V , there is i�J such that
l i (x)D0 (therefore x�B(xi , ri )) and e 1 (x)Gri . Hence

D(¯f (D(x , e 1 (x) ) ), e 1 (x) )%D(¯f (D(xi , 2ri ) ), ri ) .

Now let

e(x) »4min ]e 1 (x), dZ (x), d , Nf (x)N2 , Nf (x)N/2(, x�V .

It is clear that, for any x�V , B(x , e(x) )%V0Z and

conv B(¯f (B(x , e(x) ) ), e(x) )OB(0 , ke(x))4¯ .(28)

Moreover, e(x)D0 for x�V0 f 21 (0).
If K is strictly regular, then (26) holds and modifying the above construc-
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tion in an obvious way, we may assume that, for x�W0K ,

conv B(¯f (B(x , e(x) ) ), e(x) )OB(0 , m/2 )4¯ .(29)

III. As in the proof of Corollary 3.9, we construct a locally Lipschitz fun-
ction g : VKR such that g 21 (0)4 f 21 (0)OV , g is an e-smoothing of f on
V0 f 21 (0), ¯g(x)%¯f (x) for x� f 21 (0) and f (x)g(x)D0 on V0 f 21 (0). Moreo-
ver

0�¯g(x) whenever x�V .(30)

It is clear for x�g 21 (0)OV . If x�V0g 21 (0), then

˜g(x)�B(¯f (B(x , e(x) ) ), e(x) ) ;(31)

hence, by (28),

N˜g(x)NDke(x)D0 .(32)

Similarly, by (28),

0� conv [¯g(x)N¯f (x) ](33)

for all x�V .

IV. We shall now redefine g to obtain a locally Lipschitz function
h : WKR satisfying assumptions of Lemma 5.1 (see Appendix). We put

h(x)4
.
/
´

g(x)

0

if x�W0K ;

if x�K .

Then h 21 (2Q , 0 ]4K . Take bD0 such that h 21 (2Q , b]%W .
Take a positive integer n0Fb 21 and, for any nF1, let

Kn »4h 21 (2Q , (n01n)21 ] .

Condition (23) is immediate and (24) holds since given an arbitrary eD0,
there is n1 such that Kn%B(K , e) for all nFn1 .

Since, for any nF1, (n01n)21D0 is, by (30), a regular value of h , Kn is a
smooth set (it is closed in W and, its boundary with respect to W or U ,
bd U Kn4h 21 ( (n1n0 )21 ) is compact and contained in W0K).

Let nF1. There are now two cases:

(a) K is regular;

(b) K is strictly regular.



APPROXIMATE SMOOTHINGS OF LOCALLY LIPSCHITZ FUNCTIONALS 309

In each case there is 0GaE (n01n11)21 such that g 21 (a , b)4
h 21 (a , b) is nonempty,

inf
x�h21 (a , b)

NNN¯g(x)NNND0 and cl g 21 (a , b)%W .(34)

Indeed, in case (a), we may take any a� (0 , (n01n11)21 ): then h 21 [a , b]4
g 21 [a , b] is compact and contained in V , so by (30) and the lower semiconti-
nuity of NNN¯g(Q)NNN , condition (34) is satisfied. If (b) holds, then in view of (31)
and (29), condition (34) is satisfied with a40.

Clearly h4g and ¯h4¯g on h 21 (a , b)4g 21 (a , b); in view of (34) and part

(B) of Lemma 5.1 gwhere d4 1

n01n
, c4 1

n01n11
h, Kn is homeomorphic to

Kn11 through a bi-Lipschitz homeomorphism and if K is strictly regular, then
K is a strong deformation retract of Kn . This shows assertion (i).

V. Let x� bdU Kn , nF1. By Lemma 4.6 (ii), [NKn
(x)N¯f (x) ] 77 , the

closed convex cone spanned by NKn
(x)N¯f (x), is equal to

cl m 0
lF0

l Qconv [˜g(x)N¯f (x) ]n . Again by Lemma 4.6 (iii) and (33), this cone is

pointed, which proves assertion (ii).

VI. Finally let x� bdU K , take a sequence ]xn( such that xn�Kn , xnKx
and suppose that q�Limsup

nKQ
NKn

(xn ). Without loss of generality suppose that

h(xn )4g(xn )4 1

n01n
(i.e. xn� bdU Kn), nF1. Again without loss of generality

we may assume that there exists a sequence qn�NKn
(xn ) such that qnKq . For

any n , by (31), there is l nF0 such that

qn4l n ˜g(xn )4l n pn1l n e(xn ) un(35)

where pn�¯f (xn ), f (xn )D0, for some xn�B(xn , e(xn ) ), and Nun NG1. By (32),
the sequence ml nke(xn )n is bounded, which means that l n e(xn )K0, i.e.

q4 lim
nKQ

qn , where qn4l n pn�¯f (xn ) 77 .

Therefore q� Limsup
yKx , y�K

¯f (y) 77 .

The proof of part (iii) and thereby of our theorem is completed. r

REMARK 4.8. – Let K be as in the above theorem.

(1) If K is strictly regular, then by (22),

Limsup
nKQ

NKn
(xn )%¯f (x) 77

or, equivalently,

Limsup
nKQ

Graph (NKn
)%Graph (¯f (Q) 77) .

This can be improved: (arguing as in step VI) we see that the sequence (l n ) is
bounded and that (passing to a subsequence if necessary) ˜g(xn )Kz�¯g(x);
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hence, by (35),

Limsup
nKQ

NKn
(xn )%¯g(x) 77 .

(2) Let K be regular. Take b 8D0 such that f 21 (2Q , b 8 ]%W , a suffi-
ciently large nF1 such that K%Kn% f 21 (2Q , b 8 ) and a 8� (0 , b 8 ) (or a 840
if K is strictly regular) such that f 21 (2Q , a 8 ]% int Kn . Then

inf
x� f21 (a 8 , b 8 )

NNN¯f (x)NNND0. Let D(x)4h(x)2 (n01n)21 , x�W , i.e. bd U Kn4

D21 (0). It is clear that a 8E inf
D21 (0)

fG sup
D21 (0)

fEb 8 , DD0 on f 21 (b 8 ), DE0 on

f 21 (a 8 ) and, since ¯D4¯h on D21 (0), by (33), inf
x�D21 (0)

NNN¯D(x)N¯f (x)NNND0.

Therefore, by part (B) of Lemma 5.1, for any a 8EcGdEb 8 , the sets
f 21 (2Q , c] and f 21 (2Q , d] are bi-Lipschitz homeomorphic, K is a strong
deformation retract of f 21 (2Q , d] provided K is strictly regular, and, by part

(A) of Lemma 5.1, for c�ma 8 , inf
D21 (0)

fn , the sets f 21 (2Q , c] and Kn are bi-Lip-
schitz homeomorphic.

Hence: Kn is bi-Lipschitz homeomorphic to f 21 (2Q , c] for all nF1 and
all, sufficiently small, cD0. r

To proceed further we need the notion of an epi-Lipschitz set. Let U%RN

be open. A set K of the form (S), represented by a locally Lipschitz f : UKR ,
satisfying (20) is strictly regular and, additionally, it is epi-Lipschitz in the
sense of Rockafellar [24]: for any x�K , the Clarke normal cone NK (x) is poin-
ted. Indeed, in view of [2, Prop. 16, 7.3], for any x� bdU K , NK (x)%¯f (x) 774
0

lF0
l¯f (x). Thus NK (x) must be pointed.

Conversely, given a closed (in U) epi-Lipschitz set K%U (i.e. such that, for
all x� bd U K , the cone NK (x) is pointed), we gather that K is strictly regular
and condition (20) holds. Namely it is represented by D K »4dK2d [K : UKR
and, as shown by Hiriart-Urruty, 0�¯D K (x), x� bd U K . Clearly the interior
int K of an epi-Lipschitz set is nonempty and bd U K4D K

21 (0).
The next result explains the relevance of assertion (ii) of Theorem 4.7.

THEOREM 4.9. – Suppose that K , represented by a locally Lipschitz fun-
ction f : UKR , is regular and has the compact boundary bd U K . Assume
that there is a family ]Mn(n41

Q of subsets of U , being closed in U , with com-
pact boundaries bd U Mn4Mn 0 int Mn such that

K4 H2 lim
nKQ

Mn ,(36)

and, for almost all nF1,

K% int Mn .(37)
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If,

.
/
´

for almost all nF1 and all x� bd U Mn ,

the closed convex cone spanned by NMn
(x)N¯f (x) is pointed ,

(38)

then, for almost all n ,

(i) Mn is epi-Lipschitz;

(ii) Mn is bi-Lipschitz homeomorphic to Mn11 and to Kn (where Kn is
the set constructed in Theorem 4.7);

(iii) K is a strong deformation retract of Mn provided K is strictly
regular.

PROOF. – Assumption (38) implies that, for almost all n , say nFn0F1, and
all x� bd U Mn , the normal cone NMn

(x) is pointed. Hence, for nFn0 , Mn is an
epi-Lipschitz set; thus it is represented by D n : UKR , D n (x)4d(x , Mn )2
d(x , [Mn ); condition (20) holds, i.e. 0 /�¯D n (x) and

NMn
(x)4 0

lF0
l¯D n (x)

for x�D n
21 (0)4 bd U Mn . By Lemma 4.6 (iii), 0� conv [¯D n (x)N¯f (x) ] (on

D n
21 (0)); since D n

21 (0) is compact, we have

inf
x�D n

21 (0)
NNN¯D n (x)N¯f (x)NNND0(39)

provided nFn0 .
There, of course, exists bD0 such that f 21 (2Q , b]%U and 0�¯f (x) if x�

f 21 (0 , b]. By (36), there is n1Fn0 such that Mn% f 21 (2Q , b) for nFn1 . Let
nFn1; by (37) there is aD0 such that f 21 (2Q , a]% int Mn (and a40 if K is
strictly regular). In view of compactness, aE inf

D n
21 (0)

f , sup
D n

21 (0)

fEb; moreover

D nD0 on f 21 (b) and D nE0 on f 21 (a). Since inf
x� f21 (a , b)

NNN¯f (x)NNND0, in view of

(39) and part (A) of Lemma 5.1, we see that Mn is bi-Lipschitz homeomorphic
to f 21 (2Q , c] where aEcG inf

D n
21 (0)

f and K is a strong deformation retract of
Mn if K is strictly regular.

Employing Remark 4.8 (2) we complete the proof. r

REMARK 4.10. – In the setting of Theorem 4.9, instead of (38) assume that,
for any sequence ]xn( such xn�Mn and xnKx� bdU K ,

Limsup
nKQ

NMn
(xn )%Nf (x) »4 Limsup

yKx , y�K
¯f (y) 77 .(40)

We claim that
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if, for any x� bd U K , Nf (x) is pointed (or, in the strict regular situation,
the cone ¯f (x) 77 containing Nf (x) ) is pointed, then condition (38) is
satisfied.

To see this observe first that, for almost all nF1 and x�Mn , the cones
¯f (x) 77 and NMn

(x) are pointed. It is obvious for ¯f (x) 77 – see Lemma 4.6 (i). As
concerns the other cone, suppose to the contrary (skipping subsequences)
that, for any n , there would exist xn� bd U Mn , pn�NMn

(xn ), NpnN41 such that
the straight line ]lpn Nl�R(%NMn

(xn ). Clearly (a subsequence) xnKx�
bd U K , pnKp�Nf (x), NpN41, and at the same time 2p�¯f (x) 77 , a contra-
diction.

Assume now that our claim does not hold. Again skipping subsequences in
order to simplify the notation, there is a sequence ]xn(n41

Q , xn� bd U Mn , such
that the closed convex cone spanned by NMn

(xn )N¯f (xn ) (see Lemma 4.6 (ii))
is not pointed. Since both cones NMn

(xn ) and ¯f (xn ) 77 are pointed, it easily fol-
lows that, for any nF1, there are pn�NMn

(xn ), NpnN41 and qn�¯f (xn ) 77 ,
NqnN41 such that pn42qn . It is clear that (for subsequences) xnKx�
bd U K , pnKp�Nf (x), qnKq�Nf (x), p42qc0, i.e. Nf (x) is not pointed, a
contradiction.

However, the pointedness of Nf (x) is too strong an assumption. Even in ve-
ry natural situations it cannot be satisfied (e.g. consider K being a one-point
set). r

In the following statement we recover generalizations of the main results
due to Cornet-Czarnecki [12]. We belive that our framework makes it possible
to essentially simplify their approach.

COROLLARY 4.2 (comp. [12]). – Suppose that K , of the form (S), satisfies
condition (20) (i.e. K is epi-Lipschitz) and the boundary bd U K is com-
pact.

(A) Then there is a sequence ]Kn( of closed (in U) smooth sets such that

K4 1
n41

Q

Kn , K% int Kn11%Kn11% int Kn , K4 H2 lim
nKQ

Kn and Kn is bi-Lip-

schitz homeomorphic to K for all nF1. Moreover,

Limsup
nKQ

Graph (NMn
)%Graph (NK )

and, for all nF1 and x� bd U Kn , the cone [NKn
(x)N¯f (x) ] 77 is pointed.

(B) If there is a sequence ]Mn(n41
Q of subsets of U , being closed in U , with

compact boundaries bdU Mn such that

K4 H2 lim
nKQ

Mn
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and

Limsup
nKQ

Graph (NMn
)%Graph (NK ) ,(41)

then for all n ,

(i) Mn is an epi-Lipschitz set;

(ii) Mn is bi-Lipschitz homeomorphic to K (6).

Observe that above, contrary to Theorem 4.9, we do not assume that K%
int Mn . Since now the cone ¯f (x) 77 (x� bdU K) is pointed, condition (˜) from
the footnote (or (41)) implies that (38) is satisfied.

PROOF. – Again we use the notation of the proof of Theorem 4.7. Let us re-
turn to step IV of this proof. Since (20) is satisfied there is aE0 such that
g 21 [a , b] is compact and contained in V; hence (34) holds again.

Take a locally Lipschitz function h : WKR such that hNZf0 and
hNg 21 [a , 1Q)f1 and define

h(x)4
.
/
´

0

h(x) g(x)

if x�ZOW ;

if x�V .

Now we may proceed as in steps IV – VI of the proof of Theorem 4.7 (emplo-
ying Lemma 5.1) in order to complete the proof of part (A) of the asser-
tion.

As concerns part (B) we see that, by condition (˜) (or (41)) and Remark
4.10, for almost all nF1 and all x� bd U Mn , the cone [NMn

(x)N¯f (x) ] 77 is
pointed and we may reason as in the proof of Theorem 4.9. Since now aE0 we
may take c40, i.e. Mn (with large n) is bi-Lipschitz homeomorphic to
f 21 (2Q , 0 ]4K . r

5. – Appendix – Deformation lemma.

A part of the following lemma is a well-known standard for smooth fun-
ctions (see e.g. [25] and [29]). A particular case of the version we present has
been used in [12] without a proof (with a reference to [6] where only a part of
the complete proof is given). For the reader’s convenience (and for a future re-
ference) we provide a simple, constructive and quantitative proof of a result
slightly surpassing our actual needs.

(6) Since NK (x)%¯f (x) 77 for x� bd U K , condition (41) may be replaced by a slightly
weaker one:

Limsup
nKQ

Graph (NMn )%Graph (¯f (Q) 77).(˜)
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LEMMA 5.1. – Let h : WKR , where W%RN is open, be a locally Lipschitz
function such that, for some aEb , the set cl h 21 (a , b) is nonempty and con-
tained in W . Suppose inf

x�h21 (a , b)
NNN¯h(x)NNND0 (7).

(A) Assume further that there is a locally Lipschitz function D : WKR
such that D21 (0)c¯ and

aE inf
x�D21 (0)

h(x)G sup
x�D21 (0)

h(x)Eb ,(42)

DD0 on h 21 (b), DE0 on h 21 (a) ,(43)

inf
x�D21 (0)

NNN¯h(x)N¯D(x)NNND0 .(44)

Then, for any c� (a , inf
D21 (0)

h],

(i) the sets h c »4h 21 (2Q , c] and S»4D21 (2Q , 0 ] are bi-locally
Lipschitz homeomorphic;

(ii) h a is a strong deformation retract of S .

(B) For any cGd in (a , b), h c and h d are bi-locally Lipschitz homeomor-
phic and h a is a strong deformation retract of h d .

PROOF. – Part (B) follows from (A) if we take D(x) »4h(x)2d .
To prove (A) put V»4h 21 (a , b). Clearly V is open, cl V%W and, by (42),

D21 (0)%V . By (44), for some mD0,

minm inf
x�h21 (a , b)

NNN¯h(x)NNN , inf
x�D21 (0)

NNN¯h(x)N¯D(x)NNNnDm .

For any x�D21 (0), mENNN¯h(x)N¯D(x)NNN4 sup
u�D(0 , 1 )

inf
p�¯h(x)N¯D(x)

ap , ub.

Hence there is is ux�D(0 , 1 ), such that

inf
p�¯h(x)

ap , ux bDm and inf
p�¯D(x)

ap , ux bDm ,

i.e.

h7(x ; 2ux )E2m and D7(x ; 2ux )E2m .

Since h7(Q ; 2ux ) and D7(Q ; 2ux ) are upper semicontinuous, there is a neighbo-
rhood Nx of x , Nx%V such that, for all y�Nx ,

h7(y ; 2ux )E2m and D7(y ; 2ux )E2m .

(7) We shall see that this implies, in particular, that h 21 (j)c¯ for any j�
[a , b].
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Similarly, for any x�V0D21 (0), there is ux�D(0 , 1 ) and a neighborhood
Mx%V0D21 (0) of x such that

h7(y ; 2ux )E2m , y�Mx .

Let ]l j(j�J be a locally Lipschitz partition of unity inscribed into the cove-
ring ]Nx(x�D21 (0)N ]Mx(x�V0D21 (0) , i.e. for any j�J , l j : RNK [0 , 1 ] is locally
Lipschitz and supp l j%Nxj

for some xj�D21 (0) or supp l j%Mxj
with xj�

V0D21 (0). Define V : VKRN by the formula

V(x) »4 !
j�J

l j (x) uj , x�V ,

where uj »42uxj
, j�J . It is clear that V is locally Lipschitz; for any x�V ,

NV(x)NG1, and

h7(x ; V(x) )E2m for x�V ,(45)

D7(x ; V(x) )E2m for x�N(46)

where N is a neighborhood of D21 (0) (in V).
For any x�V , the Cauchy initial value problem

.
/
´

d

dt
s (t , x)4V(s (t , x) )

s (0 , x)4x

has a unique solution s (Q , x) in V defined on the maximal interval of existence
Jx »4 (T2 (x), T1 (x) ) with 2QGT2 (x)E0ET1 (x)G1Q . It is well-known
(see [18]) that T2 (Q), T1 (Q) : VKRN ]6Q( are upper semicontinuous and
lower semicontinuous, respectively; U»4](t , x)Nx�V , t�Jx( is open and
s : UKV is locally Lipschitz.

Fix x�V and let a(t , x)4h(s (t , x) ), t�Jx . It is clear that a x »4a(Q , x) is
locally Lipschitz and, by (45), for almost all t�Jx ,

d

dt
a x (t)Ga x7(t ; 1 )Gh7gs (t , x);

d

dt
s (t , x)hE2m .

Hence a(Q , x) is strictly decreasing (we say that h decreases along trajecto-
ries) and, for all t1 , t2�Jx , t1E t2 ,

a2bGa(t2 , x)2a(t1 , x)4s
t1

t2

d

dt
a x (s) dsE2m(t22 t1 ) .(47)



ALEKSANDER ĆWISZEWSKI - WOJCIECH KRYSZEWSKI316

Therefore, actually, NT6 (x)NG b2a

m
. Since,

Ns (t2 , x)2s (t1 , x)NGs
t1

t2

NV(s (s , x)NdsG t22 t1 ,

the (left and right) limits s (T6 (x), x)»4 lim
tKT6 (x)

s (t, x) exist, belong to cl V%W
and

h(s (T2 (x), x) )4b , h(s (T1 (x), x) )4a .

In this way both functions s and a are well-defined on ](t , x)Nx�V , t�
cl Jx4 [T2 (x), T1 (x) ]( and a( [T2 (x), T1 (x) ]3]x()4 [a , b].

Observe that T2 (Q) (resp. T1 (Q)) is also lower (resp. upper) semicontinuous
on V . We prove, for example, that T1 is upper semicontinuous. Suppose to the
contrary that there is a sequence ]xn( in V such that xnKx�V and T1 (x)1
e 0GT1 (xn ) for some e 0D0 and all n . For any t�Jx and n , by (47) and the up-
per (resp. lower) semicontinuity of T2 (Q) (resp. T1 (Q)),

a2a(t , xn )4 lim
tKT1 (xn )2

(a(t , xn )2a(t , xn ) )G2m(T1 (xn )2 t)G2me 0 .

Hence, when nKQ , a2a(t , x)G2me 0 and, when tKT1 (x)2 , 0G2me 0 ,
contradiction. In a similar manner we prove that T2 is lower semicontinuous.
Thus T6 are continuous on V .

Fix x0�V and pEq in Jx0
. The compactness of the trajectory S p , q (x0 ) »4

]s (t , x0 )Nt� [min ]p , 0(, max ]q , 0(]( entails that both h and V are (globally)
Lipschitz of rank L0D0 on a neighborhood U of S p , q (x0 ). The continuity of
T6 (Q) and s implies the existence of a neighborhood U0 of x0 such that [p , q]%
Jx and S p , q (x)4]s (t , x)Nt� [min ]p , 0(, max]q , 0(](% U for x� U0 (8). By
the Gronwall inequality (see [18, III, Th. 1.1]), for x1 , x2� U0 , t� [p , q],

Ns (t , x1 )2s (t , x2 )NGM0 Nx12x2N(48)

where M04exp (L0 max ]NpN , NqN(). Hence, for such x1 , x2 and t ,

Na(t , x1 )2a(t , x2 )N4Nh(s (t , x1 ) )2h(s (t , x2 )NGL0 M0 Nx12x2N .(49)

For any s� (a , b) and x�V , let b(s , x) be a unique time in Jx such that
a(b(s , x), x)4s . Clearly, b(h(x), x)40 and b(Q , x) is decreasing on (a , b).

The function b : (a , b)3VKR is locally Lipschitz. Indeed, take x0�V and

(8) It is not difficult to precisely establish the size of U0 knowing how large U is.
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cEd in (a , b). Put p4b(d , x0 ), q4b(c , x0 ). For any x1 , x2� U0 (U0 was de-
termined above) and si� [c , d], putting ti4b(si , xi ) (i41, 2), by (47) and (49),
we get

Nt22 t1 NG
1

m
Na(t2 , x2 )2a(t1 , x2 )NG

1

m
(Ns22s1 N1Na(t1 , x1 )2a(t1 , x2 )N)G

1

m
(Ns12s2N1L0 M0Nx12x2N) .

For any x�V , there is a unique time t(x)�Jx such that D(s (t(x), x) )40.
The existence follows since, by (43), D changes the sign along trajectories. To
see the uniqueness suppose that, there are t , t 8�Jx , tE t 8 such that
D(s (t , x) )404D(s (t 8 , x) ). Since D decreases along trajectories contained in
N (see (46)), the set of zeros of D(s (Q , x) ) is isolated and, thus, t1 »4min ]j�
(t , t 8 ]ND(s (j , x) )40( is well-defined and t1D t . The function [t , t1 ]�

jOD(s (j , x) ) is decreasing on intervals [t , t1e) and (t12e , t1 ] gfor some

small 0EeE
t12 t

3
h; hence it has a zero in [t1e , t12e], a contradiction.

The function t : VKR is continuous. Indeed, let xnKx0�V . By (42),
passing to a subsequence if necessary, t(xn )K t0�Jx0

; hence 04
D(s (t(xn ), xn ) )KD(s (t0 , x0 ) ), i.e. t04t(x0 ).

We show that t is actually locally Lipschitz. Take x0�V; the continuity of s
implies that there is eD0 such that s ( (t(x0 )2e , t(x0 )1e)3B(x0 , e) )%N0

where N0%N (see (46)) is a neighborhood of s (t(x0 ), x0 ) on which D is Lip-
schitz with constant lD0. The continuity of t implies the existence of 0EdEe
such that, for x�B(x0 , d), Nt(x)2t(x0 )NEe . Take x1 , x2�B(x0 , d) and suppo-
se that t(x1 )Gt(x2 ). Then

D(s (t(x2 ), x2 ) )2D(s (t(x1 ), x2 ) )4 s
t(x1 )

t(x2 )

d

ds
D(s (s , x2 ) ) dsG2m(t(x2 )2t(x1 ) )

hence, by (48),

t(x2 )2t(x1 )G
1

m
[D(s (t(x1 ), x2 ) )2D(s (t(x2 ), x2 ) ) ]4

1

m
[D(s (t(x1 ), x2 ) )2D(s (t(x1 ), x1 ) ) ]G

l

m
[s (t(x1 ), x2 )2s (t(x1 ), x1 ) ]G

lM0

m
Nx12x2N .
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Observe finally that, for any x�D21 (0) and t�Jx , t(s (t , x) )42t . More-
over, for all x�V , D(s (t , x) )D0 when T2 (x)G tEt(x) and D(s (t , x) )E0 for
t(x)E tGT1 (x).

Take aEcGc1 »4 inf
D21 (0)

h and an auxiliary number eD0 such that c2eDa.

We define H : SKW and G : h cKW by the formulae

H(x)4
.
/
´

sg b(c2e, x) t(s (b(c, x), x))

t(s (b(c, x), x))1b(c, x)2b(c2e, x)
, xh

x

if x�S0h 21 (2Q, c2e]

if x�h 21 (2Q, c2e] ,

G(x)4
.
/
´

x

sg b(c2e , x) t(s (b(c , x), x) )

b(c2e , x)2b(c , x)
, xh

if x�h 21 (2Q , c2e]

if x�h 21 (c2e , c] .

It is a routine to check that h i H does not increase and h i G does not decrease
along trajectories; hence H(S)4h c , G(h c )4S; moreover H i G is the identity
on h c and G i H is the identity on S . Since H and G are locally Lipschitz, the
proof of part (i) of (A) is completed.

In a similar manner a homotopy x : S3 [0 , 1 ]KW given by

x(x , l)4
.
/
´

s (lT1 (x), x)

x

if x�S0h a , l� [0 , 1 ]

if x�h a , l� [0 , 1 ]

is easily seen to be continuous, maps S3 [0 , 1 ] onto S and provides the requi-
red strong deformation retraction of S onto h a . r

The above proof considerably simplifies if h 21 [a , b] is compact. In this ca-
se the above homeomorphisms appear to be Lipschitz continuous instead of
being merely locally Lipschitz.
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