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Bollettino U. M. 1.
(8) 5-B (2002), 265-278

Some Relations on the Lattice of Varieties
of Completely Regular Semigroups

MARIO PETRICH

Sunto. — Nel reticolo L(CR) delle varieta dei semigruppi completamente regolari, con-
siderati come algebre con la moltiplicazione binaria e U'inversione unaria tra i sot-
togruppi massimali, st studiano le relazioni K;, K, K., T;, T, T,, C e L. Qui K deno-
ta la relazione nucleo, T la relazione traccia, T e T, le relazioni traccia sinistra e
destra rispettivamente, K, = KN T, per pe {l, r}, C la relazione cove ed L la rela-
zione locale. Viene data una definizione alternativa per ciascuna di queste relazio-
ni P nella forma

UP Ve UNP=9NP U, Ve LECR)),

per alcune sottoclassi P di CR. Si caratterizzano inoltre le intersezioni di queste
relazioni ed alcuni dei loro join nel reticolo delle equivalenze su L(CR).

Summary. — On the lattice L(CR) of varieties of completely regular semigroups con-
sidered as algebras with the binary multiplication and unary inversion within
maximal subgroups, we study the relations K;, K, K., T;, T, T,, C and L. Here K is
the kernel relation, T is the trace relation, T; and T, are the left and the right trace
relations, respectively, K,= KN T, for pe {l, r}, C is the core relation and L is the
local relation. We give an alternative definition for each of these relations P of the
form

UP Ve UNP=9NP (U, Ve LECR)),

for some subclasses P of CR. We also characterize the intersections of these rela-
tions and some joins within the lattice of equivalence relations on L(CR).

1. — Introduction and summary.

Completely regular semigroups (that is those semigroups which are
unions of their subgroups) are considered here as algebras S with the
binary operation of multiplication and the unary operation of inversion
a—a "', where a ! is the inverse of a in the maximal subgroup of S
to which a belongs. The class CR of all such algebras, henceforth called
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completely regular semigroups, forms a variety. For any subvariety ©
of CR, we denote by L£(V) the lattice of subvarieties of V.

The global study of £(CR) is generally based on consideration of certain
relations or operators enjoying some useful properties. Firstly we may trans-
fer the kernel and the (left, right) trace on the lattice of fully invariant congru-
ences on a free completely regular semigroup of countably infinite rank to
L(CR) via the usual antiisomorphism, thereby obtaining the relations K, T, T
and T, on £(C&R). These relations may be defined directly on L£(C&R) in view of
some known results. Secondly the core operator C and the local operator L on
L(CR) can be used to define the corresponding relations, denoted here again
by C and L, respectively. All of these relations can be defined directly using
the intersection with certain subclasses of CQR.

The purpose of this note is to establish the following results. In Theorem 1,
we prove that K can be given by

UKV UNK=9VNK (U, Ve LICR))

for a well specified subclass K of CR. Partly from known results, we deduce in
Theorem 2 that the same form is valid for the relations 7}, T, T,, C and L for
suitable subclasses T}, T, ... of CR. We also characterize the upper ends for
some VP, the P-class containing U, where P denotes any of the above rela-
tions. In all cases, we prove that the lower end of the class VP is of the form
(9N P), the variety generated by © N P. In Theorem 3 setting K,=KNT,for
pe{l, r}, we construct the joins of some of these relations.

We follow the standard terminology and notation which can be found in the
usual texts on semigroups.

2. — The kernel relation.

Let S be a regular semigroup, E(S) its set of idempotents and ©(S) its con-
gruence lattice. For any o e C(S), the set

ker o = {aeS|a ¢ e for some ecE(S)}

is the kernel of o. On C(S) we define the kernel relation K by
AKo if kerli=kerop.

Then K is a complete N-congruence on C(S).

For S a free completely regular semigroup on an infinite set X, we denote
by ¢ the usual antiisomorphism of £2(CR) onto the lattice of fully invariant con-
gruences on S, writing £ : V— . The relation K on C(S) can now be trans-
ferred from C(S) to L(CR) by defining a relation, again denoted by K, on
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L(CR) by
UK© if CyKECy

Then K is a complete congruence on £(CR), see ([3], Theorem 11).

We denote by G, CS, Re G, NBG and O the varieties of groups, completely
simple semigroups, rectangular groups, normal bands of groups and or-
thogroups, respectively.

Let ¢ denote the equality relation on any set. For any regular semigroup S, a
congruence o on S is idempotent pure if ker o = E(S). We denote by 7 the great-
est idempotent pure congruence on any regular semigroup S; if 7 = ¢, S is said to
be E-disjunctive. We write S = (Y; S,) to indicate that the completely regular
semigroup S is a semilattice Y of its completely simple components S,,.

For Ve £L(CR), let

Vi={SeCR|eSee ¥ for all ec E(S)};

we say that the semigroups in ©” are locally (in) ©. In particular O denotes
the variety of all locally orthodox completely regular semigroups. Denote by @
the class of all E-disjunctive completely regular semigroups and let

K=GU(ES\ReG) U (DNCR\OM)).

We are now ready for our first result.
THEOREM 1. — For any U, Ve L(CR), we have

UNK=9NK
UNG=9ng if U, Ve LO)

S UNCS=9NECS if U, Ve LON)\ LO0O)
UND=9ND if U Ve LOY)

< UK V.

PROOF. — Assume first that U N K = 9N K. We consider tree cases.
Case: U e £O). Then UN K =UNG whence

YVNE=(VNGU(PNES\ReS)U(DNDNCR\O*)cG
which implies that

) VN(CS\ ReG) = 0.
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Let S=(Y; S,) € V. Then S, e VN €S which by (1) implies that S, e ReG. By
([5], Lemma 1), we get that S e ©. Hence V¢ O. But then VN KE=9n G and
thus UNG=9VNG.

Case: UeLOY\LO). Then UNK=UN(CS\ReG) so that VNKcECS
and thus

2) VNDNCR\OY) =¢.

Let Se V. In view of ([8], Lemma 3.1(ii)), we get S/re @ and hence S/te VN Q.
By (2), we have that S/re O which by ([10], Corollary 7.4(iii)) gives
(S/)/te NRBG. By (8], Lemma 3.1(ii)) again we have (S/7) = (S/7)/r so that
S/tre NBG. But again by ([10], Corollary 7.4(iii)), we obtain that SeOF,
Therefore ©c O and hence

@) UNGUES\ReG)=UNK=9NK=9N(GUCS\ReQ)).

Since U ¢ £(0), there exists S e U such that S ¢ ©. Hence S = (Y; S,) and
S, ¢ ReG for some aeY in view of ([5], Lemma 1). It follows that S,/9( is a
rectangular band which is neither a left nor a right zero semigroup. Thus
RBCU. Also S, e UN(CS\ ReQ) and thus, by (3), we have S, e © which as
above leads to RBc V.

Next let SeUNCS. If Se GUCS\ ReG), then by (3), we get Se V.
If Se Reg, then S =B x G for a rectangular band B and a group G. Hence
GeUN G so by (3), we have G € ©. We have seen above that R B ¢V whence
B X G e V. Therefore Se V which proves that UN CSc V. A symmetrical
argument can be used to prove that VN CSc U. Consequently U N CS =
VN es.

Case: U ¢ £L(OF). By the above two cases we get immediately that also
V¢ L(OF). As in the preceding case, we have RBc UN V. Let Se U N ®. If
S e K, then by hypothesis, we have that Se ©. Let Se O". Since Se M, as
above we conclude that Se CS. If Se Re@, then as above we get S=B x G
with Ge U N K whence Ge © and also Be © since RABc © and thus Se ©.
Therefore S e V in all cases and we conclude that U N M ¢ V. By symmetry,
we have also that VN @ ¢ U which implies that UN ® = VN Q.

We have proved the direct implication of the first equivalence in the state-
ment of the theorem. For the reverse implication, we assume the relevant con-
ditions and argue as follows.

If U Ve L©) and UNG=VNG, then clearly UNK =9VNK. If U,
Ve LOMH\LO) and UNCS=9N CS, then

UNE=NE, UNES\ReS) = VN(CS\ ReC)
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and thus UNK=9NK. If U, Ve LO") and UND = 9VN®D, then
UNDNECS\OF) =9NnDNES\OY)

and thus UNK = 9VNK.
This completes the proof of the first equivalence. For the second equiva-
lence, we proceed as follows. First

VNDNRCIONRC(VNDYND
and equality prevails throughout. It follows that
UND)Y=(VND) & UND=ND.
Thus in the statement of the theorem, we can write
(UNDYy=(VN®) if U, VeLOF)
instead of
UND=oN®m if U Ve LOF).

Now ([8], Theorem 5.8) shows that the second characterization is equivalent to
Ug = Vx which is evidently equivalent to U K V. This establishes the second
equivalence.

3. — Further relations.

For any semigroup S and any equivalence relation 6 on S, let 6° denote
the greatest congruence on S contained in 6. Now let S also be regular. For
o € &(S), the relation

tro=o|gs)
is the trace of 0. We define the trace relation T on C(S) by
ATo if tri=tro.
We also define the left and the right traces of o e C(S) by
ltro=tr oV L), rtro=tr(@VR),

respectively, where the join is taken within equivalence relations on S. We
now define the left and right trace relations T; and T, on C(S) by

AT o if ltrA=1ltro, AT,o if rtri=r1tro,

respectively. All three relations 7}, T and T, are complete congruences on
C(S), see ([4], Corollary 4.3). As in the case of the kernel relation, the above re-
lations on a free completely regular semigroup S on a infinite set induce rela-
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tions, again denoted by the same letters, on L(CR) given by
URV if CyRCy (Re{T,, T, T.}).
All these relations are complete congruences on L(CR). Set
T={SeCR|H"=¢},
T,={SeCR| =¢} (pe{l,r}).

These are the classes of (left, right) fundamental completely regular semi-

groups.
For any regular semigroup S, C(S) denotes the core of S, that is the sub-
semigroup of S generated by E(S). For Ve L(CR), let

V={SeCR|C(S)e V}.

We can now define the core relation C and the local relation L on L(CR) by

UCV if U=9° ULV if U'=9k,
respectively. Denote by C the class of idempotent generated completely regu-
lar semigroups and by L the class of completely regular monoids. Both rela-
tions C and L are complete congruences on £(CR), see ([9], Theorems 3.1(ii)
and 5.1(ii)).
Since the classes of all the above relations P are intervals, we may write
them as

VP =[Vp, V] (Ve LCR)).
For P = C, the above two usages of O are consistent in view of ([9], Theorem
3.1(ii)). For P = L, the notation O and the two usages of ¥ are consistent by
(191, Theorem 5.1(ii)). For Pe {K, T;, T, T,}, ©" can be expressed by means
of the Malcev product, see ([2], Proposition 7.2(ii)) and ([8], Theorems 6.2 and
8.2). We shall characterize Vp as well as V7, the latter with the exception of K,
in our second theorem.

In order to handle the upper ends of some of the relations under study, we
first introduce the following notation. For S e CR, let Hom (S) be the class of
all homomorphie images of S and Sub (S) be the class of all completely regular
semigroups isomorphic to some subsemigroup of S. For X, Yc CR, define

(X:Y) ={SeCR|Hom(S)NYc X},
[X:Y]={SeCR|Sub(S)NYcX},
(X:Y)={SeCR|(S)NYc X}.

We shall also need the following auxiliar results.

LEMMA 1. — Let Ve LICR) and Cc CR.
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(1) Vc(V:C)c(V:0c[V:Cl.

(i) VNeC=xXxNeC (Xe{(V:0),[V:CL(V:C)}).

(tir) Ue LCR), UNC=VNC= UC(V:C).

() (V:C) is closed under taking homomorphic images, [V: C] is closed
under taking completely regular subsemigroups and (V:C) under both.

Proor. — (i) This follows directly from the definition.
(i) For X e {(V:0),[V:C]} the inclusions

VNCc(V:C)yNCcxNe

follow from part (i); further, if SeX NG, then {S} = {S} NCc ¥ and thus
Xnecvne

(ili) Assume the antecedent of part (iii) and let S e U and T e (S) N C. Then
Te(S)YNU so that Te UNC=VNCcV whence Se(V:C). It follows that
Uc(V:C).

(iv) This is obvious. =

For any Cc CR, we define a relation e by

UCY if UNC=9VNE (U, Ve LCR)).

Clearly Cis a complete N-congruence on L(CR).

If P is any relation on 2(CR), for Ve L(CR), we denote by Vp the least
and by O the greatest element of the class ©P if these exist. The next lemma
provides some simple properties of these concepts.

LEMMA 2. — Let Ve L(CR) and CC CKR.

(i) Vz=(VNe). _
@) If (V:0C) e LCR), then V= (
(1) If [V:Cle LCR), then V=]
(iv) V¢=(V:C)e= (V:C) e LICR)
< (V:C) 1s closed under direct products.

10 =
1 Cl =

Proor. — (i) First
(VNneyneCconec(vne)ne

and equality prevails throughout so that (VNE)C V. If Ue LECR) is
such that UNC=VNCE then

(VNE)={(UNEC)cU.

(i) (i) Let X € {(V:©),[V:C]} and assume that X € L(CR). By Lemma
13ii), we have X NC = VN which by Lemma 1(iii) implies that X c(9: C).
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Hence Lemma 1(i) implies that X = (©: C). But then (V:C) e L(CR) which
by Lemma 1(iii) yields that V¢ = (9:C).

(iv) The only nontrivial implication follows directly from Lemma
1(i)3Ev). =

We now return to our specific relations.
COROLLARY. — For any Ve L(CR), we have V9 = [V:6]=(V:6).

Proor. — It is well known that [V:(] is a variety. Now apply Lemma
23ii). =

The next lemma is known.

LEMMA 3. — Let S be a reqular semigroup. Then 9C° (respectively £°, R°) is
the least fundamental (vespectively left, right fundamental) congruence on S.

PRroOF. — Let o be a fundamental congruence on S and let a 9(°b. Then
xay IC by for all &, y e S' whence (x0)(ag)(ye) I (x0)(bo)(ye) which implies
that apd(’bo whence ap =bo in view of the hypothesis. Hence apb and
IC°co. This proves the statement for I(°. The same proof is valid for £°
and R°. =

LEMMA 4. — Let Ve L(CR).
(i) O = (9:P)=(V:P) (Pe{T, T, T,}).
(ii) V' =[V:P]=(V:P) (Pe{C, L)).

Proor. — (i) By ([8], Theorem 6.2), we have
V'={SeCR|S/I"e V}

whence (V:T)c ©7 since S/9°eT. Conversely, let Se ¥ and let Qe
Hom (S) N T. Then Q = S/o for a fundamental congruence ¢. By Lemma 3, we
have o 2 9(° which implies that S/o is a homomorphic image of S/9C°. By the
above, S/9(°e ¥ and hence also S/o e V. Thus @ € ¥ which proves that Se
(©:T). Therefore ©V'c(V:T) and equality prevails. Hence (©:7) e L(CR)
and Lemma 2(ii) yields that also ©” = (©: 7).

The same type of argument is valid for 7T using ([8], Theorem 8.2) and its
dual.

(ii) Since C(S) e Sub (S) N C, we get [V: C] c VC. Conversely, C(S) contains
all idempotent generated subsemigroups of S whence V¢ c[¥: (] and equality
prevails. Hence [V: Cle L(CR) and Lemma 2(iii) yields that also ©¢=

(©:0C).
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Since eSe e Sub (S) N L for any e e E(S), we get [V: L] ¢ V*. Conversely, if
M is a submonoid of S, then for its identity e, we have M ¢ eSe whence V' ¢
[©:1] and equality prevails. Hence [V:L] e L(CR) and Lemma 2(iii) yields
that also V' =(9V:L). =

We are now ready for our second theorem.

THEOREM 2. — Let Pe{K, T;, T, T,, C, L} and U, Ve LCR).
() UPV < UNP=9NP.

(i) Vp= (9N P).

(i11) Op = (©:P) except for P =K.

ProoF. — (i) For P = K, this forms part of Theorem 1; for P = T}, this was
proved in ([8], Corollary 8.3); for P = T, this was proved in ([8], Corollary 6.3);
the case P=T, is dual to the case P=T).

Let U, Ve LCR). Suppose first that U C ¥ so that U= V' and let
SeUNC. Then C(S)=SeU and thus Se U’ whence Se V. But then
S = C(S) e © which implies that U N C ¢ ©. By symmetry, we also have ©N
C c U whence UNC = 9N C. Conversely, suppose that UNC = 9N C and
let Se UC. Then C(S) e UN C and thus C(S) e © whence S e V°. Therefore
UCc ©° and equality follows by symmetry. This proves the assertion for
the case P=C.

Next suppose that U L ¥ so that UX = ©* and let S e U N L. Then for any
ec E(S), we have eSee U and thus Se UL. The hypothesis implies that
S e V-, Since S is a monoid, we get S e . Hence U N L ¢ ¥ and by symmetry
also ©N L ¢ U. Therefore U N L = ©N L. Conversely, assume that UNL =
YN L and let S e UL. Then for any e e E(S), eSee UN L so that eSe € 9 which
implies S e VL. Therefore UXc V* and equality follows by symmetry. This
proves the assertion for the case P=1L.

(ii) This a direct consequence of part (i) and Lemma 2().

(iii) This forms part of Lemma 4. =

For K we only have
Ve (V:D)c(VV S: M) c VK,

as it is easily verified.
By ([6], Proposition 9.1), for any completely regular semigroup S and 2,
o € C(S), we have
AKo © AN =pN I,
ATo & AV IC=pVIC,
AT, 0 ANP=0NnP (pe{l,r}).
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Now letting S be a free completely regular semigroup on a countably infinite
set and U, Ve LCR), we get

UNT=9NT < UTV < EuTCoe= CuVIH=CvVIC.
Extending ¢ by setting 7= I(, we get
@) UNT=9NT & UTV <ty VEr=ECoVEr
We obtained a formula which remains valid if we substitute 7' by a variety. An
analogous discussion is valid for 7),, namely letting {7 = & for pe {l, r}, in
formula (4) we may substitute 7' by 7).

This interpretation does not carry over to K in view of the above equiva-
lence. Thus we have no analogue for K, or C or L.

4. — All meets and some joins.

The meets are of course intersections; they are characterized in Lemma 6
below in a general setting. A few joins are computed in Theorem 3.

If 0 is an equivalence relation on a lattice L whose classes are intervals and

aeL, we write the o-class of a as the interval ao = [a,, a’].

LEMMA 5. — Let o and t be equivalence relations on a lattice L whose class-
es are intervals. Then for any aelL, we have a(cNt)=[a,Va,a’\a’].

PrOOF. — For any x e L, we have

rea(cNt) e rxeacNat © q,<x<a’, a, <cx<a’

s e, Ve, sr<sa’Na’= xela,Va, a’°Na’]

as asserted. =
With the above notation, we have a,~,=a,V a,, a’""=a’Aa’.

LEMMA 6. — Lgt X ‘m‘% Y be equivalence relations on L(CR) for which there
exist subclasses X and Y of L(CR) such that for any U, Ve LCR),

UX Ve UNX=9NX,

UY Ve UNY=9NY.
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Then for any U, Ve LICR), we have

UXNY Ve UNKUY)=9NEXUY).

ProOOF. — Indeed, it follows easily that

UXNY Ve UX T, UY 9
e UNX=9NX, UNY=9NY
e UNKUY)=9NXUY). =

COROLLARY 1. — With the notation of Lemma 2, we have
Vxny=(VNENY))
and thus
(VNXH)vV N =(onXnY)).
For pe{l, r}, set K,=KNT,.
COROLLARY 2. — For any U, Ve LCR) and pe {l, r}, we have
UK,V < UNKUT,)=9onEKUT,).
We need some further auxiliar statements

LEMMA 7. — Let P and Q be relations on a lattice L whose classes are inter-
vals and such that a*@=a for all aeL. Then P\ Q = PQP = QPQ.

Proor. - If a PQPQ ...Qb, then
aPx;QusP...x, Qb
for some x; € L, whence
al=xf, el =af, ..., 22=09
which yields
afQ= o 2R =gl .., 2 =09
and the hypothesis implies that a9 = 59", But then

aPafQa™=0"2Qb"Pb
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so that a PQPb. It follows that PV @ = PQP and symmetrically PV @ =
QPQ. =

In the above lemma, it suffices that each class of P and of @ has a greatest
element. Also we may reverse the situation by working with least elements in
each P- and Q-class. The next lemma is known [9].

LEMMA 8. — For any Ve £LCR), Pe{K;, K,} and Qe {C,L}, we have
V= 9,

PrOOF. — We consider only the case P = K; and @ = C; the other cases have
essentially the same proofs. Indeed,
-@KIC — (sz)C
= {SeCRI|C(S) e VK= 9K Ti= 9ENPN} by Lemma 5
={SeCR|CS)e PrIn {SecCcRr |C(S) e v
— (-@K)C N (’@T;)C — WKC N leC
= VENYT by ([6], Lemmas 5.3 and 5.5)
— (vC)K N (”@C)Tl

= QUENT)  hy Lemma 5

— 90K,
= Yok

as required. =

Parts of the following theorem can be found in ([1], Corollaries 3.1 and 3.4)
and [11] for existence varieties of regular semigroups.

THEOREM 3. — Let Pe{T,, T, T,, K;, K, K,, C, L} and Qe {C, L}. Then
P\ @Q=PQP=0QPQ.

ProOF. — For any Ve L(CR) and pe {l, r}, we have

YHC = 9T 9TC = 9T by ([7], Lemma 5.5)

VEC = 9Ky by Lemma 8
YEC = YUK by ([7], Lemma 5.3)
YL = YLy YL = LT by ([7], Lemma 6.5)
VL = YL by Lemma 8

AL = LK by ([7], Lemma 6.3).
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For these combinations, the assertion follows by Lemma 7. It remains to con-
sider the case C'\VV L. Indeed,

UCLCV <« UCXLYCV for some3€ Y
o UC=XC, ¥l = YL, YO =
— UOLC = }CLC | FLC — qLC cyCLC <9CLC
= ULC = FLC = YIC = IC
= UL UCULC=VCCVL D
= ULCL YV = CLCcLCL;

conversely

ULCLV <« ULXCYLV for some X, Y
o UL = XL, X0 = YO, YL =
= UL = FLOL | xCL — qCL, yLCL <QLCL
= UCL = xOL = YL = HOL
= UL UCU" = V"C VLY
= UCLC YV = LCLcCLC.

Therefore LCL = CLC whence C\VL=LCL. =
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