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Some Relations on the Lattice of Varieties
of Completely Regular Semigroups

MARIO PETRICH

Sunto. – Nel reticolo L(C R) delle varietà dei semigruppi completamente regolari, con-
siderati come algebre con la moltiplicazione binaria e l’inversione unaria tra i sot-
togruppi massimali, si studiano le relazioni Kl , K , Kr , Tl , T , Tr , C e L . Qui K deno-
ta la relazione nucleo, T la relazione traccia, Tl e Tr le relazioni traccia sinistra e
destra rispettivamente, Kp4KOTp per p� ]l , r(, C la relazione core ed L la rela-
zione locale. Viene data una definizione alternativa per ciascuna di queste relazio-
ni P nella forma

U P V ` UOPA4 VOPA (U, V � L(C R) ) ,

per alcune sottoclassi PA di C R. Si caratterizzano inoltre le intersezioni di queste
relazioni ed alcuni dei loro join nel reticolo delle equivalenze su L(C R).

Summary. – On the lattice L(C R) of varieties of completely regular semigroups con-
sidered as algebras with the binary multiplication and unary inversion within
maximal subgroups, we study the relations Kl , K , Kr , Tl , T , Tr , C and L . Here K is
the kernel relation, T is the trace relation, Tl and Tr are the left and the right trace
relations, respectively, Kp4KOTp for p� ]l , r(, C is the core relation and L is the
local relation. We give an alternative definition for each of these relations P of the
form

U P V ` UOPA4 VOPA (U, V � L(C R) ) ,

for some subclasses PA of C R. We also characterize the intersections of these rela-
tions and some joins within the lattice of equivalence relations on L(C R).

1. – Introduction and summary.

Completely regular semigroups (that is those semigroups which are
unions of their subgroups) are considered here as algebras S with the
binary operation of multiplication and the unary operation of inversion
aKa 21 , where a 21 is the inverse of a in the maximal subgroup of S
to which a belongs. The class C R of all such algebras, henceforth called
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completely regular semigroups, forms a variety. For any subvariety V

of C R, we denote by L(V) the lattice of subvarieties of V.
The global study of L(C R) is generally based on consideration of certain

relations or operators enjoying some useful properties. Firstly we may trans-
fer the kernel and the (left, right) trace on the lattice of fully invariant congru-
ences on a free completely regular semigroup of countably infinite rank to
L(C R) via the usual antiisomorphism, thereby obtaining the relations K , Tl , T
and Tr on L(C R). These relations may be defined directly on L(C R) in view of
some known results. Secondly the core operator C and the local operator L on
L(C R) can be used to define the corresponding relations, denoted here again
by C and L , respectively. All of these relations can be defined directly using
the intersection with certain subclasses of C R.

The purpose of this note is to establish the following results. In Theorem 1,
we prove that K can be given by

U K V ` UOKA4 VOKA (U, V � L(C R) )

for a well specified subclass KA of C R. Partly from known results, we deduce in
Theorem 2 that the same form is valid for the relations Tl , T , Tr , C and L for
suitable subclasses TAl , TA, R of C R. We also characterize the upper ends for
some V P , the P-class containing V, where P denotes any of the above rela-
tions. In all cases, we prove that the lower end of the class V P is of the form
aVOPAb, the variety generated by VOPA. In Theorem 3 setting Kp4KOTp for
p� ]l , r(, we construct the joins of some of these relations.

We follow the standard terminology and notation which can be found in the
usual texts on semigroups.

2. – The kernel relation.

Let S be a regular semigroup, E(S) its set of idempotents and C(S) its con-
gruence lattice. For any r� C(S), the set

ker r4]a�SNa r e for some e�E(S)(

is the kernel of r . On C(S) we define the kernel relation K by

l K r if ker l4 ker r .

Then K is a complete O-congruence on C(S).
For S a free completely regular semigroup on an infinite set X , we denote

by z the usual antiisomorphism of L(C R) onto the lattice of fully invariant con-
gruences on S , writing z : V Kz V . The relation K on C(S) can now be trans-
ferred from C(S) to L(C R) by defining a relation, again denoted by K , on
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L(CR) by

U K V if z U K z V .

Then K is a complete congruence on L(C R), see ([3], Theorem 11).
We denote by G, C S, R e G, 8B G and O the varieties of groups, completely

simple semigroups, rectangular groups, normal bands of groups and or-
thogroups, respectively.

Let e denote the equality relation on any set. For any regular semigroup S , a
congruence r on S is idempotent pure if ker r4E(S). We denote by t the great-
est idempotent pure congruence on any regular semigroup S ; if t4e , S is said to
be E-disjunctive. We write S4 (Y ; Sa) to indicate that the completely regular
semigroup S is a semilattice Y of its completely simple components Sa .

For V � L(C R), let

V L4]S� C RNeSe� V for all e�E(S)( ;

we say that the semigroups in V L are locally (in) V. In particular O L denotes
the variety of all locally orthodox completely regular semigroups. Denote by D

the class of all E-disjunctive completely regular semigroups and let

KA4 GN(C S0 R e G)N (DO(C R0O L ) ) .

We are now ready for our first result.

THEOREM 1. – For any U, V � L(C R), we have

UOKA4 VOK
A

`
.
/
´

UOG 4 VOG

UOC S 4 VOC S

UOD 4 VOD

if U, V � L(O)

if U, V � L(O L )0 L(O)

if U, V � L(O L )

` U K V .

PROOF. – Assume first that UOKA4 VOKA. We consider tree cases.
Case: U � L(O). Then UOKA4 UOG whence

VOKA4 (VOG)N (VO(C S0 R e G) )N (VODO(C R 0O L ) )’ G

which implies that

VO(C S 0 R e G)4¯ .(1)
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Let S4 (Y ; Sa )� V. Then Sa� VOC S which by (1) implies that Sa� R e G. By
([5], Lemma 1), we get that S� O. Hence V ’ O. But then VOKA4 VOG and
thus UOG 4 VOG.

Case: U�L(O L)0L(O). Then UOKA4UO(CS0ReG) so that VOKA’CS

and thus

VODO(C R0O L )4¯ .(2)

Let S�V. In view of ([8], Lemma 3.1(ii)), we get S/t�D and hence S/t�VOD.
B y ( 2 ) , w e h a v e t h a t S/t� O L w h i c h b y ( [ 1 0 ] , C o r o l l a r y 7 . 4 ( i i i ) ) g i v e s
(S/t) /t�8B G. By ([8], Lemma 3.1(ii)) again we have (S/t)` (S/t) /t so that
S/t�8B G. But again by ([10], Corollary 7.4(iii)), we obtain that S� O L .
Therefore V ’ O L and hence

UO(GN(C S 0 R e G) )4 UOKA4 VOKA4 VO(GN(C S 0 R e G) ) .(3)

Since U � L(O), there exists S� U such that S� O. Hence S4 (Y ; Sa ) and
Sa� R e G for some a�Y in view of ([5], Lemma 1). It follows that Sa / H is a
rectangular band which is neither a left nor a right zero semigroup. Thus
R B ’ U. Also Sa� UO(C S 0 R e G) and thus, by (3), we have Sa� V which as
above leads to R B ’ V.

Next let S� UOC S. If S� GN(C S 0 R e G), then by (3), we get S� V.
If S� R e G, then S`B3G for a rectangular band B and a group G . Hence
G� UOG so by (3), we have G�V. We have seen above that R B ’V whence
B3G� V. Therefore S� V which proves that UOC S ’ V. A symmetrical
argument can be used to prove that VOC S ’ U. Consequently UOC S 4

VOC S.
C a s e: U � L(O L ) . B y t h e a b o v e t w o c a s e s w e g e t i m m e d i a t e l y t h a t a l s o

V � L(O L ). As in the preceding case, we have R B ’ UOV. Let S� UOD. If
S�KA, then by hypothesis, we have that S� V. Let S� O L . Since S� D, as
above we conclude that S� C S. If S� R e G, then as above we get S`B3G
with G� UOKA whence G� V and also B� V since R B ’ V and thus S� V.
Therefore S� V in all cases and we conclude that UOD ’ V. By symmetry,
we have also that VOD ’ U which implies that UOD 4 VOD.

We have proved the direct implication of the first equivalence in the state-
ment of the theorem. For the reverse implication, we assume the relevant con-
ditions and argue as follows.

If U, V � L(O) and UOG 4 VOG, then clearly UOKA4 VOKA. If U,
V � L(O L )0 L(O) and UOC S 4 VOC S, then

UOG 4 VOG , UO(C S 0 R e G)4 VO(C S 0 R e G)
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and thus UOKA4 VOKA. If U, V � L(O L ) and UOD 4 VOD, then

UODO(C S 0O L )4 VODO(C S 0O L )

and thus UOKA4 VOKA.
This completes the proof of the first equivalence. For the second equiva-

lence, we proceed as follows. First

(VOD)OD ’ VOD ’ aVODbOD

and equality prevails throughout. It follows that

aUODb4 aVODb ` UOD 4 VOD .

Thus in the statement of the theorem, we can write

aUODb4 aVODb if U, V � L(O L )

instead of

UOD 4 VOD if U, V � L(O L ) .

Now ([8], Theorem 5.8) shows that the second characterization is equivalent to
UK4 VK which is evidently equivalent to U K V. This establishes the second
equivalence.

3. – Further relations.

For any semigroup S and any equivalence relation u on S , let u 0 denote
the greatest congruence on S contained in u . Now let S also be regular. For
r� C(S), the relation

tr r4rNE(S)

is the trace of r . We define the trace relation T on C(S) by

l T r if tr l4 tr r .

We also define the left and the right traces of r� C(S) by

ltr r4 tr (rSL)0 , rtr r4 tr (rSR)0 ,

respectively, where the join is taken within equivalence relations on S . We
now define the left and right trace relations Tl and Tr on C(S) by

l Tl r if ltr l4 ltr r , l Tr r if rtr l4rtr r ,

respectively. All three relations Tl , T and Tr are complete congruences on
C(S), see ([4], Corollary 4.3). As in the case of the kernel relation, the above re-
lations on a free completely regular semigroup S on a infinite set induce rela-
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tions, again denoted by the same letters, on L(C R) given by

U R V if z U R z V (R� ]Tl , T , Tr() .

All these relations are complete congruences on L(C R). Set

TA4

TAp4

]S� C RNH 04e( ,

]S� C RNP 04e( (p� ]l , r() .

These are the classes of (left, right) fundamental completely regular semi-
groups.

For any regular semigroup S , C(S) denotes the core of S , that is the sub-
semigroup of S generated by E(S). For V � L(C R), let

V C4]S� C RNC(S)� V( .

We can now define the core relation C and the local relation L on L(C R) by

U C V if UC4 V C , U L V if UL4 V L ,

respectively. Denote by CA the class of idempotent generated completely regu-
lar semigroups and by LA the class of completely regular monoids. Both rela-
tions C and L are complete congruences on L(C R), see ([9], Theorems 3.1(ii)
and 5.1(ii)).

Since the classes of all the above relations P are intervals, we may write
them as

V P 4 [VP , V P ] (V � L(C R) ) .

For P4C , the above two usages of V P are consistent in view of ([9], Theorem
3.1(ii)). For P4L , the notation O L and the two usages of V L are consistent by
([9], Theorem 5.1(ii)). For P� ]K , Tl , T , Tr(, V P can be expressed by means
of the Malcev product, see ([2], Proposition 7.2(ii)) and ([8], Theorems 6.2 and
8.2). We shall characterize VP as well as V P , the latter with the exception of K ,
in our second theorem.

In order to handle the upper ends of some of the relations under study, we
first introduce the following notation. For S� C R, let Hom (S) be the class of
all homomorphic images of S and Sub (S) be the class of all completely regular
semigroups isomorphic to some subsemigroup of S . For X, Y ’ C R, define

(X : Y)4]S� C RNHom (S)OY ’ X( ,

[X : Y ]4]S� C RNSub (S)OY ’ X( ,

aX : Yb4]S� C RNaSbOY ’ X( .

We shall also need the following auxiliar results.

LEMMA 1. – Let V � L(C R) and C ’ C R.
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(i) V ’ aV : C b’ (V : C)’ [V : C].
(ii) VOC 4JOC (J� ](V : C), [V : C], aV : C b().
(iii) U � L(C R), UOC 4 VOC ¨ U ’ aV : C b.
(iv) (V : C) is closed under taking homomorphic images, [V : C] is closed

under taking completely regular subsemigroups and aV : Cb under both.

PROOF. – (i) This follows directly from the definition.
(ii) For J� ](V : C), [V : C]( the inclusions

VOC ’ aV : C bOC ’JOC

follow from part (i); further, if S�JOC, then ]S(4]S(OC ’ V and thus
JOC ’ VOC.

(iii) Assume the antecedent of part (iii) and let S� U and T� aSbOC. Then
T� aSbOU so that T� UOC 4 VOC ’ V whence S� aV : C b. It follows that
U ’ aV : C b.

(iv) This is obvious. r

For any C ’ C R, we define a relation C by

U C V if UOC 4 VOC (U, V � L(C R) ) .

Clearly C is a complete O-congruence on L(C R).
If P is any relation on L(C R), for V � L(C R), we denote by VP the least

and by V P the greatest element of the class V P if these exist. The next lemma
provides some simple properties of these concepts.

LEMMA 2. – Let V � L(C R) and C ’ C R.
(i) V C4 aVOC b.
(ii) If (V : C)� L(C R), then V C4 (V : C)4 aV : C b.
(iii) If [V : C]� L(C R), then V C4 [V : C]4 aV : C b.
(iv) V C4 aV : C b` aV : C b� L(C R)

` aV : C b is closed under direct products.

PROOF. – (i) First

aVOC bOC ’ VOC ’ aVOC bOC

and equality prevails throughout so that aVOC b C V. If U � L(C R) is
such that UOC 4 VOC, then

aVOC b4 aUOC b’ U .

(ii) (iii) Let J� ](V : C), [V : C]( and assume that J� L(C R). By Lemma
1(ii), we have JOC 4 VOC which by Lemma 1(iii) implies that J’ aV : C b.



MARIO PETRICH272

Hence Lemma 1(i) implies that J4 aV : C b. But then aV : C b� L(C R) which
by Lemma 1(iii) yields that V C4 aV : C b.

(iv) The only nontrivial implication follows directly from Lemma
1(iii)(iv). r

We now return to our specific relations.

COROLLARY. – For any V � L(C R), we have V G4 [V : G]4 aV : Gb.

PROOF. – It is well known that [V : G] is a variety. Now apply Lemma
2(ii). r

The next lemma is known.

LEMMA 3. – Let S be a regular semigroup. Then H 0 (respectively L 0 , R0 ) is
the least fundamental (respectively left, right fundamental) congruence on S .

PROOF. – Let r be a fundamental congruence on S and let a H 0 b . Then
xay H xby for all x , y�S 1 whence (xr)(ar)(yr) H (xr)(br)(yr) which implies
that ar H 0 br whence ar4br in view of the hypothesis. Hence a r b and
H 0’r . This proves the statement for H 0 . The same proof is valid for L 0

and R0 . r

LEMMA 4. – Let V � L(C R).
(i) V P4 (V : PA)4 aV : PAb (P� ]T , Tl , Tr().
(ii) V P4 [V : PA]4 aV : PAb (P� ]C , L().

PROOF. – (i) By ([8], Theorem 6.2), we have

V T4]S� C RNS/ H 0� V(

whence (V : TA)’ V T since S/ H 0�TA. Conversely, let S� V T and let Q�
Hom (S)OTA. Then Q`S/r for a fundamental congruence r . By Lemma 3, we
have r* H 0 which implies that S/r is a homomorphic image of S/ H 0 . By the
above, S/ H 0� V and hence also S/r� V. Thus Q� V which proves that S�
(V : TA). Therefore V T’ (V : TA) and equality prevails. Hence (V : TA)� L(C R)
and Lemma 2(ii) yields that also V T4 aV : TAb.

The same type of argument is valid for TP using ([8], Theorem 8.2) and its
dual.

(ii) Since C(S)�Sub (S)OCA, we get [V : CA]’ V C. Conversely, C(S) contains
all idempotent generated subsemigroups of S whence V C’ [V : CA] and equality
prevails. Hence [V : CA]� L(C R) and Lemma 2(iii) yields that also V C4

aV : CAb.
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Since eSe�Sub (S)OLA for any e�E(S), we get [V : LA]’ V L . Conversely, if
M is a submonoid of S , then for its identity e , we have M’eSe whence V L’
[V : LA] and equality prevails. Hence [V : LA]� L(C R) and Lemma 2(iii) yields
that also V L4 aV : LAb. r

We are now ready for our second theorem.

THEOREM 2. – Let P� ]K , Tl , T , Tr , C , L( and U, V � L(C R).
(i) U P V ` UOPA4 VOPA.
(ii) VP4 aVOPAb.
(iii) VP4 aV : PAb except for P4K .

PROOF. – (i) For P4K , this forms part of Theorem 1; for P4Tl , this was
proved in ([8], Corollary 8.3); for P4T , this was proved in ([8], Corollary 6.3);
the case P4Tr is dual to the case P4Tl .

Let U, V � L(C R). Suppose first that U C V so that UC4 V C and let
S� UOCA. Then C(S)4S� U and thus S� UC whence S� V C . But then
S4C(S)� V which implies that UOCA’ V. By symmetry, we also have VO
CA’ U whence UOCA4 VOCA. Conversely, suppose that UOCA4 VOCA and
let S� UC . Then C(S)� UOCA and thus C(S)� V whence S� V C . Therefore
UC’ V C and equality follows by symmetry. This proves the assertion for
the case P4C .

Next suppose that U L V so that UL4 V L and let S� UOLA. Then for any
e�E(S), we have eSe� U and thus S� UL . The hypothesis implies that
S� V L . Since S is a monoid, we get S� V. Hence UOLA’ V and by symmetry
also VOLA’ U. Therefore UOLA4 VOLA. Conversely, assume that UOLA4

VOLA and let S� UL . Then for any e�E(S), eSe� UOLA so that eSe� V which
implies S� V L . Therefore UL’ V L and equality follows by symmetry. This
proves the assertion for the case P4L .

(ii) This a direct consequence of part (i) and Lemma 2(i).
(iii) This forms part of Lemma 4. r

For K we only have

V ’ (V : D)’ (VSS : D)’ V K ,

as it is easily verified.
By ([6], Proposition 9.1), for any completely regular semigroup S and l ,

r� C(S), we have

l K r

l T r

l Tp r

` lOH 4rOH ,

` lSH 4rSH ,

` lOP 4rOP (p� ]l , r() .
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Now letting S be a free completely regular semigroup on a countably infinite
set and U, V � L(C R), we get

UOTA4 VOTA ` U T V ` z U T z V` z USH 4z VSH .

Extending z by setting z TA4 H, we get

UOTA4 VOTA ` U T V ` z USz TA4z VSz TA .(4)

We obtained a formula which remains valid if we substitute TA by a variety. An
analogous discussion is valid for Tp , namely letting z Tp

A4 P for p� ]l , r(, in
formula (4) we may substitute T by Tp .

This interpretation does not carry over to K in view of the above equiva-
lence. Thus we have no analogue for K , or C or L .

4. – All meets and some joins.

The meets are of course intersections; they are characterized in Lemma 6
below in a general setting. A few joins are computed in Theorem 3.

If s is an equivalence relation on a lattice L whose classes are intervals and
a�L , we write the s-class of a as the interval as4 [as , a s ].

LEMMA 5. – Let s and t be equivalence relations on a lattice L whose class-
es are intervals. Then for any a�L , we have a(sOt)4[asSat, a sRa t].

PROOF. – For any x�L , we have

x�a(sOt) `

`

x�asOat ` asGxGa s , atGxGa t

asSatGxGa sRa t ` x� [asSat , a sRa t ]

as asserted. r

With the above notation, we have asOt4asSat , a sOt4a sRa t .

LEMMA 6. – Let X and Y be equivalence relations on L(C R) for which there
exist subclasses XA and YA of L(C R) such that for any U, V � L(C R),

U X V ` UOXA4 VOXA ,

U Y V ` UOYA4 VOYA .
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Then for any U, V � L(C R), we have

U XOY V ` UO(XANYA)4 VO(XANYA) .

PROOF. – Indeed, it follows easily that

U XOY V `

`

`

U X V, U Y V

UOX
A
4 VOX

A
, UOY

A
4 VOY

A

UO(XANYA)4 VO(XANYA) . r

COROLLARY 1. – With the notation of Lemma 2, we have

VXOY4 aVO(XAOYA)b

and thus

aVOXA bS aVOYAb4 aVO(XAOYA)b .

For p� ]l , r(, set Kp4KOTp .

COROLLARY 2. – For any U, V � L(C R) and p� ]l , r(, we have

U Kp V ` UO(KANTAp )4 VO(KANTAp ) .

We need some further auxiliar statements

LEMMA 7. – Let P and Q be relations on a lattice L whose classes are inter-
vals and such that a PQ4a QP for all a�L . Then PSQ4PQP4QPQ .

PROOF. – If a PQPQRQ b , then

a P x1 Q x2 PR xn Q b

for some xi�L , whence

a P4x1
P , x1

Q4x2
Q , R , xn

Q4b Q

which yields

a PQ4x1
PQ , x1

QP4x2
QP , R , xn

QP4b QP

and the hypothesis implies that a PQ4b QP . But then

a P a P Q a PQ4b PQ Q b P P b
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so that a PQP b . It follows that PSQ4PQP and symmetrically PSQ4

QPQ . r

In the above lemma, it suffices that each class of P and of Q has a greatest
element. Also we may reverse the situation by working with least elements in
each P- and Q-class. The next lemma is known [9].

LEMMA 8. – For any V � L(C R), P� ]Kl , Kr( and Q� ]C , L(, we have
V PQ4 V QP .

PROOF. – We consider only the case P4Kl and Q4C ; the other cases have
essentially the same proofs. Indeed,

V Kl C 4

4

4

4

4

4

4

4

(V Kl )C

]S� C RNC(S)� V Kl4 V KOTl4 V KOV Tl( by Lemma 5

]S� C RNC(S)� VK(O ]S� C RNC(S)� V Tl(

(V K )CO (V Tl )C4 V KCOV Tl C

V CKOV CTl by ([6], Lemmas 5.3 and 5.5)

(V C )KO (V C )Tl

V C(KOTl ) by Lemma 5

V CKl ,

as required. r

Parts of the following theorem can be found in ([1], Corollaries 3.1 and 3.4)
and [11] for existence varieties of regular semigroups.

THEOREM 3. – Let P� ]Tl , T , Tr , Kl , K , Kr , C , L( and Q� ]C , L(. Then
PSQ4PQP4QPQ .

PROOF. – For any V � L(C R) and p� ]l , r(, we have

V Tp C4 V CTp , V TC4 V CT by ([7], Lemma 5.5)

V Kp C4 V CKp by Lemma 8

V KC4 V CK by ([7], Lemma 5.3)

V Tp L4 V LTp , V TL4 V LT by ([7], Lemma 6.5)

V Kp L4 V LKp by Lemma 8

V KL4 V LK by ([7], Lemma 6.3).
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For these combinations, the assertion follows by Lemma 7. It remains to con-
sider the case CSL . Indeed,

U CLC V `

`

¨

¨

¨

¨

U CJL Y C V for some J , Y

UC4JC , JL4 Y L , Y C4 V C

UCLC4JCLC , JLC4 Y LC , Y CLC4 V CLC

ULC4JLC4 Y LC4 V LC

U L UL C ULC4 V LC C V L L V

U LCL V ¨ CLC’LCL ;

conversely

U LCL V `

`

¨

¨

¨

¨

U LJC Y L V for some J , Y

UL4JL , JC4 Y C , Y L4 V L

ULCL4JLCL , JCL4 Y CL , Y LCL4 V LCL

UCL4JCL4 Y CL4 V CL

U L UC C UCL4 V CL C V C L V

U CLC V ¨ LCL’CLC .

Therefore LCL4CLC whence CSL4LCL . r
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