Bollettino Unione Matematica Italiana

Wolfgang Woess

Erratum: Heat diffusion on homogeneous trees.
 Note on a paper by G. Medolla and A. G. Setti: Long time heat diffusion on homogeneous trees

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.1, p. 259-260.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_259_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Erratum

Heat Diffusion on Homogeneous Trees (Note on a Paper by Medolla and Setti)

Wolfgang Woess

(Bollettino UMI (8) 4-B (2001), 703-709)

Due to a technical problem, some symbols have disappeared in printing.
Considering the distances $d(x, o)$ corresponds to computing with polar coordinates. We now change to «horospheric coordinates». We choose and fix a point ξ in \mathbb{T}, and define $\widehat{T}^{*}=\widehat{T} \backslash\{\xi\}$ and $\partial^{*} T=\partial T \backslash\{\xi\}$. If $\eta \in \partial^{*} T$ then there is a unique two-sided infinite path $\left[\ldots, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right]$, denoted $\bar{\xi}$, such that $\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ represents the end η and $\left[x_{0}, x_{-1}, x_{-2}, \ldots\right]$ represents ξ. Again, given $v, w \in \widehat{T}^{*}$, their confluent $v \sqcap w$ with respect to ξ is defined by $\overline{v \xi} \cap \overline{w \xi}=\overline{(v \sqcap w) \xi}$. Again, this is a vertex, unless $v=w \in \partial^{*} T$.
\mathbb{T}_{2} in horocyclic layers

For $x \in T$, its height with respect to ξ is hor $(x)=d(x, x \sqcap o)-d(x \sqcap o, o)$. This is an integer (not necessesarily positive). The level sets $H_{k}=\{x \in$ $T: \operatorname{hor}(x)=k\}$ are the horocycles.

Lemma 2. - The process $Y_{t}=\operatorname{hor}\left(X_{t}\right)$ is an integer-valued Markov process with the following properties:
(i) independent increments: whenever $0 \leqslant t_{0}<t_{1}<\ldots<t_{r}$, the random variables $Y_{t_{1}}-Y_{t_{0}}, \ldots, Y_{t_{r}}-Y_{t_{r-1}}$ are independent.
(ii) additivity: For $s<t$, the distribution of $Y_{t}-Y_{s}$ coincides with that of Y_{t-s}.
(iii) Y_{t} has expected value $\mathfrak{m t}$ and variance t.

Proof. - Recall that an automorphism of T is a self-isometry of T with respect to the graph metric. The action of each automorphism extends continuously to ∂T. Let Γ be the group of automorphisms that fix the end ξ. Then \mathcal{C}_{t} is Γ-invariant, that is, $h_{t}(\gamma x, \gamma y)=h_{t}(x, y)$ for every $\gamma \in \Gamma$. Also, hor $(\gamma y)-$ $\operatorname{hor}(\gamma x)=\operatorname{hor}(y)-\operatorname{hor}(x)$, and the map $\gamma \mapsto \operatorname{hor}(\gamma x)-\operatorname{hor}(x)$ is independent of $x \in T$ and a homomorphism $\Gamma \rightarrow(\mathbb{Z},+)$. Therefore, the probability $\operatorname{Pr}\left[\operatorname{hor}\left(X_{t}\right)=l \mid X_{s}=x\right]$ depends only on $t-s$ and hor (x). From here, (i) and (ii) are straightforward.
(iii) is a computational exercise. As a hint, let μ be the the distribution of the integer-valued random variable hor $\left(Z_{1}\right)$, given that $Z_{0}=0$. That is, μ has support $\{-1,1\}$, with $\mu(1)=q /(q+1)$ and $\mu(-1)=1 /(q+1)$. Then the distribution of Y_{t} is

$$
\mu_{t}=e^{-t} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mu^{(k)}
$$

where $\mu^{(k)}$ is the k-th convolution power of μ.
Thus, $\left(Y_{t}\right)_{t \geqslant 0}$ is a continuous-time analogue of a sum of i.i.d. integer valued random variables, and the characteristic function φ_{t} of Y_{t} (the Fourier transform of μ_{t}) satisfies $\varphi_{t}=\varphi_{1}^{t}$. We have the law of large numbers and central limit theorem as stated in Theorem 1, with Y_{t} in the place of $d\left(X_{t}, o\right)$. Thus, the following Lemma provides the last step in our proof of Theorem 1.

Lemma 3. - As $t \rightarrow \infty$, the process $d\left(X_{t}, o\right)-Y_{t}$ converges almost surely to the almost surely finite random variable $2 d\left(o, X_{\infty} \sqcap o\right)$.

Proof. - Let $\eta \in \partial^{*} T$, and suppose that $x_{t} \in T$ and $\left(x_{t}\right)_{t \geqslant 0}$ converges to η in the topology of $\partial \mathbb{} T$, when $t \rightarrow \infty$. Then there must be t_{0} such that $x_{t} \sqcap o=\eta \sqcap o$ for all $t \geqslant t_{0}$. (In particular, hor $\left(x_{t}\right) \rightarrow \infty$.) But then

$$
d\left(x_{t}, o\right)=\operatorname{hor}\left(x_{t}\right)+2 d(o, \eta \sqcap o) \quad \text { for all } t \geqslant t_{0} .
$$

Now observe that $\operatorname{Pr}\left[X_{\infty}=\xi\right]=0$, since the distribution v of X_{∞} on T is equidistribution, that is,

$$
\nu\left(\left\{\eta \in \partial T: \theta(\eta, \xi)<e^{-n}\right\}\right)=v(\{\eta \in \partial T: d(\eta \wedge \xi, o) \geqslant n+1\})=\frac{1}{(q+1) q^{n}}
$$

for $n \in \mathbb{N}$. This means that $X_{\infty} \in \partial^{*} T$ almost surely, and given $\omega \in \Omega$ such that $X_{\infty}(\omega) \in \partial^{*} T$, we can apply the above argument to $x_{t}=X_{t}(\omega)$.

As a matter of fact, we have shown that almost surely, there is a (random) t_{0} such that $d\left(X_{t}, o\right)=Y_{t}+2 d\left(o, X_{\infty} \sqcap o\right)$ for all $t \geqslant t_{0}$.

