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On the Suspension Homomorphism.

S. DRAGOTTI - G. MAGRO - L. PARLATO

Sunto. — In questa nota vengono studiate le condizioni affinché l'omomorfismo di
sospensione

5107 (8", 29) > OTS", @)

sia un epimorfismo o un 1somorfismo.

Summary. — In this paper we investigate the conditions for the suspension homomor-
phism

$:07_ (8", ) —>OI(S", x,)

is onto or an isomorphism.

Introduction.

The functor ®” associated to a manifold class  satisfies all the Eilenberg-
Steenrod axioms except excision. The last axiom holds provided that F satis-
fies the geometric excision property (see [4]). In this case ®7 coincides with
the classical homology functor.

In this paper we introduce a weaker geometric property: the «dimension-
controled» excision, or (m, n) excision, and we investigate how it is related to
the suspension homomorphism

s: 07 (8", 1)) = OT(S", x).

Already in a recent note ([6]) we have proved that s is an isomorphism if
r =n. By making power to the, purely geometrie, custom there employed, we
arrive to devoid a definition wich allows us to obtain a larger result for the ho-
momorphism s (Theor. 3.1).

The intuitive idea of «dimension-controled» excision is that of eliminating a
part X of a geometrical space S without shifting another part Y, provided that
the dimensions of X, Y, S have selected values.

Elementary techniques of PL topology (regular neighbourhoods, general
position theorems) state conditions for the manifold class PL of the standard
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PL-spheres satisfies the new definition (Prop. 2.3). In this case the functor ©7
agrees with the classical homotopy functor sz, and our main theorem, joint to
the recalled result of [6], provides, in greater geometric simplicity and in a
broadened point of view, a proof of the well- known Freudenthal’s suspension
theorem.

The original construction of the functor ©” is developed in [3]. The papers
[4], [5], [7] contain more closely investigations about their basic properties,
and their behaviour in interesting special cases.

In order to make the current paper self-contained enough that the main
theorem can be understood we include a section that provides the definitions
of manifold class and functor associated.

1. — Manifold classes and associated functors.

A manifold class is a graded collection F= { &, }, > of compact polyhedra,
defined up to a PL-isomorphism, closed under link and join, and such that S°e
Jy (S™= standard PL-sphere).

The collection C of the geometric cycles without boundary is so, and for
each F such that = {S°} we have F¢c C

The collection P.£ of the standard PL-spheres is so, and $P.£ ¢ &F for each
manifold class F.

A polyhedron X e &, is called J,-sphere, a polyhedron P of the form X —

sot(.oc, 3) is called F,-pseudodisc. F,-spheres and F,-pseudodiscs are allowable
links for a theory of generalized manifolds, the J~manifolds, and a subsequent
cobordism theory, the J-cobordism.

A manifold class & is said to be connected if the polyhedron obtained at-
taching two Jj-pseudodiscs, by a PL-homeomorphism between their bound-
aries (if there exists), is an J,-sphere.

Let Fbe a connected manifold class such that & = {S°}. The last hypothe-
sis implies that any J~manifold M is a geometric cycle, so it makes sense to de-
fine M to be orientable if M is orientable as geometric cycle. If M denotes an
oriented Fmanifold, then —M will denote the same manifold with the oppo-
site orientation.

An Fcobordism between two oriented Jj-spheres ¥ and X, is an oriented
F-manifold W such that:

a) oW is the disjoint union of ¥; and —2,;
b) WU¢ 2, Uc %X, is an F,,-sphere.

An Fcobordism between two oriented Jj,-pseudodises P; and P, is an ori-
ented Fmanifold W such that:
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a') IW=P,UP,UW,, where W, is a cobordism between OP; and JP,;
b") WUc¢; #P;Ucy * Py is an J, ., -pseudodisc.

Let (X, x,) be a pointed topological space. A singular F,-sphere of (X, x,)
is a triple (X, 4, f), where X is an oriented F,-sphere, AcX is a top dimen-
sional simplex and f : (X, 4) — (X, xy) a continuous map.

Two singular J;-spheres (X, 44, f;) and (X5, 45, f;) are said J-cobor-
dant if there exists a triple (W, W', g), called J~cobordism, where W is an
cobordism between X; and X5, W' c W is a PL-disec such that W' N2, =4,
1=1,2, and g : (W, W') = (X, ;) is a continuous map, such that: ¢/, =1,
1=1,2.

The Fcobordism between singular J-spheres is an equivalence relation.

Let ©7(X, x,) denote the set of the J-cobordism classes of singular F-
spheres of (X, x).

As in the case of the homotopy theory we can geometrically define an addi-
tion in @7 (X, x,) (h = 1) which give a group structure. The zero element is the
class of the J,-spheres cobordant to zero, and a cobordism to zero of (X, 4, f)
is a triple (P, D, g), where P is an oriented (h + 1)-pseudodisc, D c P is a top-
dimensional simplex, and ¢ : (P, D) — (X, ;) is a continuous map such that
OP=3, DNX=A, and ¢/> =F.

Let (X, A) be a pair of topological spaces and let x, be a point of A. By rela-
tive J,-sphere of (X, A, x,) we mean a triple (P, 4, f), where P is an oriented
TFy,-pseudodise, A ¢ P is a top-dimensional simplex meeting 9P in a top-dimen-
sional simplex, and f:(P, A) — (X, x,) is a map which carries oP to A.

Given a relative J,-sphere (P, 4, f) of (X, A, xy), (3P, AN oP, f/) is a
singular &, _-sphere of (A, x,) which will be denoted by 3(P, 4, f).

Two relative J<spheres (P;, 4;,9;), 1=1,2, of (X, A, x,) are called J*
cobordant if there exists a triple (V, V', G) where V is an J<cobordism be-
tween P; and P, V'cV a &PL-cobordism between A; and A4,, and
G:(V,V')—= (X, x) is a continuous map such that the following conditions
hold:

Q) V'nP=4;,i=1,2
@) G/Pi=g;,1=1,2
(3) Let W=0V— (P,UP,)() and W' =W N V". Then (W, W', G/) is
an J-cobordism between A(P;, 44, g;) and A(P,, 4,, g,) with G(W) c A.
The Fcobordism between relative J-spheres is an equivalence relation.
Let ©§(X, A, x,) denote the set of the J-cobordism classes of relative Fj-

spheres of (X, A, x,). As before, we can introduce in @ (X, A, ) (h=2) a
group structure. The zero element is the class of the relative J;-spheres cobor-

Q) P stands for P — oP.



250 S. DRAGOTTI - G. MAGRO - L. PARLATO

dant to zero, and a cobordism to zero of (P, 4, f) is a triple (@, D, F') where @
is an Fpseudodisc of dimension 2+ 1, DcQ is an h+1 simplex of @,
F:(Q, D)— (X, x) is a continuous map such that

1) PcéQ, DNP=4
2) F/P=f

3) Let Q'=3Q—P and D' =DN (8Q—P). Then (Q', D', F/ is a
cobordism to zero of (P, 4, f) with F(Q') c A.
Given a continuous map f : (X, A, x,) — (Y, B, y,), we can define, for each
h =2, a homomorphism @7(f): @7(X, A, x,) = @7 (Y, B, y,) by setting

O7(NIP, 4, D =[P, 4,fop].

As proved in [3], the definitions above recalled allow us to build a covariant
functor ® 7 which assigns to every pointed pair of topological spaces (X, A, x)
a graded group ©@7(X, A, x,), just as PL determines the classical functor =
using J-spheres and JF-pseudodiscs instead of PL-spheres and discs.

Every O 7 satisfies the first six axioms of Eilenberg and Steenrod (excision
is excluded).

If F' ¢ J there exists a canonical homomorphism (forgetful) of graded
groups ¥ g g 07 (X, A, x,)—07(X, A, x,) which allows to factorize the
classical Hurewicz homomorphism

Yop e

X, 1)) —> HX, )
Yoe 5N 7Y ge
07(X, xy)

A manifold class F is said to be coconnected if for every &,-sphere X and -

[}
pseudodise Pc X, the polyhedron X — P is an J,-pseudodisc.

PROPOSITION 1.1. — Let & be a connected, coconnected manifold class. All
the F-spheres and F-pseudodiscs of positive dimension are connected. The
only Fy-sphere is S°.

PROPOSITION 1.2. — Let F be a connected, coconmected manifold class, and
let P' c P be J,-pseudodiscs such that P N OP' = P" is an T, _ ;-pseudodisc,

then the polyhedron P — (1% UP") is an JFy-pseudodisc.

PROPOSITION 1.3. — Let F be a connected manifold class. The cylinder P x I
and the cone cP on an T, _,-pseudodisc P are Fy-pseudodiscs.
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PROPOSITION 1.4. — Let F be a connected, coconnected manifold class. The
polyhedron obtained by gluing two JFj-pseudodiscs belong an JF, _-pseu-
dodisc of their boundary is an J,-pseudodisc.

2. — The (m, n) excision property.

In this section we do the definition of «dimension-controled» excision and
some observations about this. Moreover we study the behaviour with respect
to this property of the manifold class P.L£ of the standard PL-spheres.

The intuitive idea of dimension-controled excision, described in the Intro-
duction, in case the objects are polyhedra and pseudodiscs of a manifold class
can be well formulated in the following fashion.

DEFINITION 2.1. — Let m>n =0 integers. A manifold class F is said
(m, m)-excisive if for each pair of disjoint polyhedra X,, X, of codimension n
contained in an m-pseudodisc P and such that X; = X; N P has codimen-
ston =nin OP,1=1, 2, for every (m — 1)-pseudodisc P; of OP containing X,
and not meeting X;, if there is one, there exists an m-pseudodisc P; such
that

l) XLCH'lt PL
i) P,NX;=0,1#j
iii) P, N AP is an (m — 1)-pseudodisc contained in int P;.

Roughly speaking, if Fis (m, n)-excisive, it is possible to eliminate a poly-
hedron X contained in a pseudodisc P without moving another polyhedron Y
provided dim P =m, dim X = dim Y = m — n, and provided that it is possible
to eliminate on the boundary OP the polyhedron X N JP without moving
YN oP.

REMARK 2.2. — At first glance the Definition 2.1 may seem strange because
considers only polyhedra X; of P which meet OP. Newertheless if X; N\ OP = @,
we can replace, without loss of the generality, X; by Y; = X; U x;, where x; is a
point of OP — X;. Indeeed the hypothesis m > n implies that the codimension
m—1 of Y;NOP in 9P results greater or equal to n.

Since a polyhedron of codimension 7 is contained in a polyhedron of codi-
mension n' >n, it is evident that a manifold class F(m, n)-excisive is also
(m, n')-excisive for each n' such that m >n’'>n.

The manifold class C of the geometric cycles is (m, n)-excisive for each m
and n, m >mn. This follows from the excision property of the geometric
cycles.

Finally we consider the class #£ of the standard PL-spheres.



252 S. DRAGOTTI - G. MAGRO - L. PARLATO

ProPOSITION 2.3. — The manifold class PL is (m, n)-excisive provided n =
2 and m<2n — 1.

Proor. - Let X;, 1 =1, 2, be disjoint polyhedra of dimension m —n con-

tained in a PL-disec m-dimensional D, such that dim X; N 0D <m — 1 — n. Sup-

@]
pose that there is a top dimensional PL-disc D, of dD such that X; " oD c D;
and Di, ﬁX, = ﬂ, Z¢j

Being m <2n —1, we have 2(m —n—1)+1 <m — 1. Hence there is a

(o]
point ¢; of D; in general position with respect to X;/ = X; N D/, so ¢/ and X,
[©]
are joinable, and the cone C; =¢; * X, is contained in D;.

Now consider a point ¢; € D in general position with respect to C; U X; U X;
(this is possible because 2(m — n) + 1 < m), hence the cone C; =¢; * (C; U X;)
is disjoint from X;. An e-neighbourhood of C; is a PL-disc D; (C; is collapsible),
and there exists & > 0 sufficiently small so that such a disc not meet X;.

Moreover D; N dD is a regular neighbourhood, in 3D, of the cone C;, so it is

o]

a PL-disc contained in D;. =

3. — The main theorem.

THEOREM 3.1. — Let & be a connected, coconnected manifold class.
If Fis (r,n) excisive for each r<m (r>n=2) then the suspension
homomorphism:

§:07_1(8" 71, @) = OT(S", w)

18 an isomorphism for each r<m — 1.
If r=m, s is onto.

Proor. — The suspension homomorphism s is obtained by composition
07 (8”71, 2) S OTDY, 8", 1) > OU(S", D, 20) < O(S”, )

S=j_loioa_1

where D} and D” are the northern and southern hemispheres of S, and x is
a fixed point of 8"~ '=D" ND".

The boundary homomorphisms 9 and j also are isomorphisms by standard
properties of the involved spaces, and by homotopy and exactness axioms of
the functor @7

Hence s is an isomorphism or s is onto if, and only if, the homomorphism
1 is so. R R

Let p, € D" the north pole, p, e D" the south pole of S, consider the dia-
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gram (r=2)

F 9 F
OI(DY, S" 1, x) —> 07 (8", x)

U 1
P ) \L ) - \L]
O (8" —ps, 8" = (p1Ups), 1) —> O7_1(S" — (py U ps), xp)

where the vertical maps are induced by inclusion maps. Because DY and S™ —
p, are contractible, the homotopy and exactness axioms of the functor @7 as-
sure that the connecting homomorphisms 9;, 9, are isomorphisms. Moreover
S"~1is a strong deformation retract of S™— (p; Up,), and hence j; is an
isomorphism.

From the trivial commutativity of the above diagram it follows that ¢, is an
isomorphism.

A similar argument shows that if » =2 also the homomorphism

ip: @7(S", D", 1)) > OF(S", 8" = pi, @)
is an isomorphism.
Finally consider the commutative diagram

i

O7I(DL, 8" 1wy  —=>  OTS" —pg, 8" = (p1Ups), i)

l l/h
ONS", D", w)  —> O7(S", 8" = py, 7)
where & is induced by inclusion.
Being ¢, and 7, isomorphisms, to prove that 7 is onto (or injective) is equiva-
lent to prove that % is onto (or injective).
Then we now show that, if » <m, the homomorphism

h:@7(S" —py, 8" = (p1Upy), ) = OT(S", 8" = p1, @)
is onto.

Let (P, 4, f) be a representative triple of an element « of @7(S", S" —
D1, %) that is f: P—S™, f(OP)cS" — py, f(4) = x,.

We need a representative triple (P', A4', f') of a such that f'(P')cS" —
pe, f1(OP")CcS™ — (pr Upg), f1(A") = x.

Up to a homotopy we can suppose that f is a simplicial map, p; is the
barycentre of a top dimensional simplex of D} and p, is the barycentre of a top
dimensional simplex of D”.

If f~1(py) = 0 it suffices to take

P =P, A'=4, f'=f.
If not, being f a simplicial map, f~!(p,) is a polyhedron X, of dimension r —

n contained in the r-pseudodisc P, and analogously f “1(p,), if not empty, is a
polyhedron Y; of dimension » — 7 contained in P.
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Let X; =Y, U b4 N IP) (b(A N IP) is the barycentre of the face 4y =4N
OP of A).
We have

dimX;=dim Y, =r—mn, dimX;NoP=0<r—-1—-n
X1 N X, =0 because f(b) =xy# p;
XiNoP={b(4N3dP)}cd,
XoNAy=0 because f(b) =xy#Z ps .
Being F(r, n) excisive, there exists an r-pseudodisc P; such that

(a) chintpl, leXZZQ
(b) P;NAP is an (r — 1)-pseudodisc contained in 4

Let 4, be an r-simplex contained in 4 N P; such that A, N oP,cA4,N P is
an 7 — 1 simplex containing b(4 N 9P).

The triple (P, 4, f) is J-cobordant to (P, 4, f) (cfr. [3] theor. 2.10).

Now if we take P' =P, A' =4, f' =f/P, we have

1) f'(P')=f(P;)cS™— p, because Py,NX, =0
(2) f'(8P") =f(3P;)cS™ — (p; U py) because f1(p;) cX;c P, by (a)
@3 fr ") =f(4")cfla) =ux.

Hence the triple (P', A', f') determines an element a’ of @I(S" -
P2, 8" = (p1 U ps), Xp).

In order to prove that h(a') = a it remains to construct an J-cobordism
(W, W', G) between (P, 4", ) (~ (P, 4, f)) and (P', 4", f").

Let W=PxI, W =A"x1I, G=fXid.

We have

W NPx{0}=4"x{0}; W' NP x{1}=4"x{1}

GOW — (P x{0}UP' x {1}))cS" —p

Then, by using the Propositions 1.2, 1.3, 1.4, it is easy to verify that the
triple (W, W', G) satisfies all the conditions which assure that it is the re-
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quired cobordism between (P, A', f) and (P', A’, f'), where P and P' are
respectively identified with P x {0} and P' x {1}.

Now we prove that % is injective for r<m — 1.

Let a = [(P, 4, f)] be an element of ©@7(S™ — p,, S™ — (p; U ps), %) such
that 2(a) = 0. As above, we can suppose, up to a homotopy, that fis a simplicial
map, p; is the barycentre of a top dimensional simplex of D} and p, is the
barycentre of a top dimensional simplex of D”.

Let (Q, D, F) be a cobordism to zero of (P, A4, f)in (S™, S"—py, &), that is:

Q is an Fpseudodisc of dimension r+ 1, Dc@Q is an r + 1 simplex of @Q,
F:.(Q,D)—(S", xy) is a simplicial map such that

1) PcoQ, DNP=4

2) F/IP=f ]

3) (9Q -P, DN (0Q — P), F) is a cobordism to zero of (P, A4, f) such
that F(0Q — P)cS" — p.

In order to prove the assert we need a cobordism to zero of (P, 4, f) in
(8™ = pa, S — (p; U pa), %o).

If F1(py) = 0, it suffices to take (Q, D, F) itself.

If not, let Y,=F ~(p,), Yo=F 1(p,) Ux, where x is a point of 3Q—P.

Y, and Y; are disjoint polyhedra of dimension »+ 1 — % contained in @ =
Q- (D UA) which 1s an (7 + 1)-pseudodisc by Prop. 1.2 again.

Being »+ 1 <m, Fis (r + 1, n)-excisive by hypothesis, and being 3Q — P
an r-pseudodise containing Y, N dQ and not meeting Y;, there exists an (r +
1)-pseudodise @, of @ such that

(a,) YzcintQZ, Ylﬁngﬂ o
() Q,NAQ is an r-pseudodise Q5 contained in int(3Q — P)

Let D' be an (r+1) simplex contained in intD such that D' NoQ=A.
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Being J a coconnected manifold class, by Prop. 1.2, the polyhedron @' =
Q@ — (Q,UQy) is an (r + 1)-pseudodise.
We have

PcoQ’ because @, cint (3@ — ;’)

F(Q')cS"™— p, because F (py)cint@, and Q' NintQ, =0

F(3Q' — P)cS" — (py Upy).

At this point it is straightforward to see that the triple (@', D', F/) is the
required cobordism to zero of (P,4,f) in (S"—p,,S"— (U
pZ); 9(;()). u

COROLLARY 3.2 (Freudenthal’s Suspension Theorem). — If r<2n —2,
then

st (S" Y =m,.(S")
3(752%73(Sn71)) :7[2%72(8")

PROOF. — Being ©®7* =z, the assert follows

— if »# n, from the Prop. 2.3 and Theorem 3.1;

— if »=mn, as particular case of the result of [6] recalled in Introduc-
tion.
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